Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
LSM9DS1.cpp
- Committer:
- 5hel2l2y
- Date:
- 2016-06-17
- Revision:
- 2:ac3b69ccd3dd
- Parent:
- 0:622e8874902e
- Child:
- 3:f96b287c0bf7
File content as of revision 2:ac3b69ccd3dd:
#include "LSM9DS1.h"
LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) : i2c(sda, scl)
{
// xgAddress and mAddress will store the 7-bit I2C address, if using I2C.
xgAddress = xgAddr;
mAddress = mAddr;
}
uint16_t LSM9DS1::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl,
gyro_odr gODR, accel_odr aODR, mag_odr mODR)
{
// Store the given scales in class variables. These scale variables
// are used throughout to calculate the actual g's, DPS,and Gs's.
gScale = gScl;
aScale = aScl;
mScale = mScl;
// Once we have the scale values, we can calculate the resolution
// of each sensor. That's what these functions are for. One for each sensor
calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
calcaRes(); // Calculate g / ADC tick, stored in aRes variable
// To verify communication, we can read from the WHO_AM_I register of
// each device. Store those in a variable so we can return them.
// The start of the addresses we want to read from
char cmd[2] = {
WHO_AM_I_XG,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(xgAddress, cmd+1, 1);
uint8_t xgTest = cmd[1]; // Read the accel/gyro WHO_AM_I
// Reset to the address of the mag who am i
cmd[1] = WHO_AM_I_M;
// Write the address we are going to read from and don't end the transaction
i2c.write(mAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(mAddress, cmd+1, 1);
uint8_t mTest = cmd[1]; // Read the mag WHO_AM_I
// Gyro initialization stuff:
initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
setGyroODR(gODR); // Set the gyro output data rate and bandwidth.
setGyroScale(gScale); // Set the gyro range
// Accelerometer initialization stuff:
initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
setAccelODR(aODR); // Set the accel data rate.
setAccelScale(aScale); // Set the accel range.
// Magnetometer initialization stuff:
initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
setMagODR(mODR); // Set the magnetometer output data rate.
setMagScale(mScale); // Set the magnetometer's range.
// Once everything is initialized, return the WHO_AM_I registers we read:
return (xgTest << 8) | mTest;
}
void LSM9DS1::initGyro()
{
char cmd[4] = {
CTRL_REG1_G,
gScale | G_ODR_119_BW_14,
0, // Default data out and int out
0 // Default power mode and high pass settings
};
// Write the data to the gyro control registers
i2c.write(xgAddress, cmd, 4);
}
void LSM9DS1::initAccel()
{
char cmd[4] = {
CTRL_REG5_XL,
0x38, // Enable all axis and don't decimate data in out Registers
(A_ODR_119 << 5) | (aScale << 3) | (A_BW_AUTO_SCALE), // 119 Hz ODR, set scale, and auto BW
0 // Default resolution mode and filtering settings
};
// Write the data to the accel control registers
i2c.write(xgAddress, cmd, 4);
}
void LSM9DS1::initMag()
{
char cmd[4] = {
CTRL_REG1_M,
0x10, // Default data rate, xy axes mode, and temp comp
mScale << 5, // Set mag scale
0 // Enable I2C, write only SPI, not LP mode, Continuous conversion mode
};
// Write the data to the mag control registers
i2c.write(mAddress, cmd, 4);
}
void LSM9DS1::readAccel()
{
// The data we are going to read from the accel
char data[6];
// The start of the addresses we want to read from
char subAddress = OUT_X_L_XL;
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, &subAddress, 1, true);
// Read in all 8 bit registers containing the axes data
i2c.read(xgAddress, data, 6);
// Reassemble the data and convert to g
ax_raw = data[0] | (data[1] << 8);
ay_raw = data[2] | (data[3] << 8);
az_raw = data[4] | (data[5] << 8);
ax = ax_raw * aRes;
ay = ay_raw * aRes;
az = az_raw * aRes;
}
void LSM9DS1::readMag()
{
// The data we are going to read from the mag
char data[6];
// The start of the addresses we want to read from
char subAddress = OUT_X_L_M;
// Write the address we are going to read from and don't end the transaction
i2c.write(mAddress, &subAddress, 1, true);
// Read in all 8 bit registers containing the axes data
i2c.read(mAddress, data, 6);
// Reassemble the data and convert to degrees
mx_raw = data[0] | (data[1] << 8);
my_raw = data[2] | (data[3] << 8);
mz_raw = data[4] | (data[5] << 8);
mx = mx_raw * mRes;
my = my_raw * mRes;
mz = mz_raw * mRes;
}
void LSM9DS1::readTemp()
{
// The data we are going to read from the temp
char data[2];
// The start of the addresses we want to read from
char subAddress = OUT_TEMP_L;
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, &subAddress, 1, true);
// Read in all 8 bit registers containing the axes data
i2c.read(xgAddress, data, 2);
// Temperature is a 12-bit signed integer
temperature_raw = data[0] | (data[1] << 8);
temperature_c = (float)temperature_raw / 8.0 + 25;
temperature_f = temperature_c * 1.8 + 32;
}
void LSM9DS1::readGyro()
{
// The data we are going to read from the gyro
char data[6];
// The start of the addresses we want to read from
char subAddress = OUT_X_L_G;
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, &subAddress, 1, true);
// Read in all 8 bit registers containing the axes data
i2c.read(xgAddress, data, 6);
// Reassemble the data and convert to degrees/sec
gx_raw = data[0] | (data[1] << 8);
gy_raw = data[2] | (data[3] << 8);
gz_raw = data[4] | (data[5] << 8);
gx = gx_raw * gRes;
gy = gy_raw * gRes;
gz = gz_raw * gRes;
}
void LSM9DS1::setGyroScale(gyro_scale gScl)
{
// The start of the addresses we want to read from
char cmd[2] = {
CTRL_REG1_G,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(xgAddress, cmd+1, 1);
// Then mask out the gyro scale bits:
cmd[1] &= 0xFF^(0x3 << 3);
// Then shift in our new scale bits:
cmd[1] |= gScl << 3;
// Write the gyroscale out to the gyro
i2c.write(xgAddress, cmd, 2);
// We've updated the sensor, but we also need to update our class variables
// First update gScale:
gScale = gScl;
// Then calculate a new gRes, which relies on gScale being set correctly:
calcgRes();
}
void LSM9DS1::setAccelScale(accel_scale aScl)
{
// The start of the addresses we want to read from
char cmd[2] = {
CTRL_REG6_XL,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(xgAddress, cmd+1, 1);
// Then mask out the accel scale bits:
cmd[1] &= 0xFF^(0x3 << 3);
// Then shift in our new scale bits:
cmd[1] |= aScl << 3;
// Write the accelscale out to the accel
i2c.write(xgAddress, cmd, 2);
// We've updated the sensor, but we also need to update our class variables
// First update aScale:
aScale = aScl;
// Then calculate a new aRes, which relies on aScale being set correctly:
calcaRes();
}
void LSM9DS1::setMagScale(mag_scale mScl)
{
// The start of the addresses we want to read from
char cmd[2] = {
CTRL_REG2_M,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(mAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(mAddress, cmd+1, 1);
// Then mask out the mag scale bits:
cmd[1] &= 0xFF^(0x3 << 5);
// Then shift in our new scale bits:
cmd[1] |= mScl << 5;
// Write the magscale out to the mag
i2c.write(mAddress, cmd, 2);
// We've updated the sensor, but we also need to update our class variables
// First update mScale:
mScale = mScl;
// Then calculate a new mRes, which relies on mScale being set correctly:
calcmRes();
}
void LSM9DS1::setGyroODR(gyro_odr gRate)
{
char cmd[2];
char cmdLow[2];
if(gRate == G_ODR_15_BW_0 | gRate == G_ODR_60_BW_16 | gRate == G_ODR_119_BW_14 | gRate == G_ODR_119_BW_31) {
cmdLow[0] = CTRL_REG3_G;
cmdLow[1] = 1;
i2c.write(xgAddress, cmdLow, 2);
}
// The start of the addresses we want to read from
cmd[0] = CTRL_REG1_G;
cmd[1] = 0;
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(xgAddress, cmd+1, 1);
// Then mask out the gyro odr bits:
cmd[1] &= (0x3 << 3);
// Then shift in our new odr bits:
cmd[1] |= gRate;
// Write the gyroodr out to the gyro
i2c.write(xgAddress, cmd, 2);
}
void LSM9DS1::setAccelODR(accel_odr aRate)
{
// The start of the addresses we want to read from
char cmd[2] = {
CTRL_REG6_XL,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(xgAddress, cmd+1, 1);
// Then mask out the accel odr bits:
cmd[1] &= 0xFF^(0x7 << 5);
// Then shift in our new odr bits:
cmd[1] |= aRate << 5;
// Write the accelodr out to the accel
i2c.write(xgAddress, cmd, 2);
}
void LSM9DS1::setMagODR(mag_odr mRate)
{
// The start of the addresses we want to read from
char cmd[2] = {
CTRL_REG1_M,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(mAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(mAddress, cmd+1, 1);
// Then mask out the mag odr bits:
cmd[1] &= 0xFF^(0x7 << 2);
// Then shift in our new odr bits:
cmd[1] |= mRate << 2;
// Write the magodr out to the mag
i2c.write(mAddress, cmd, 2);
}
void LSM9DS1::calcgRes()
{
// Possible gyro scales (and their register bit settings) are:
// 245 DPS (00), 500 DPS (01), 2000 DPS (10).
switch (gScale)
{
case G_SCALE_245DPS:
gRes = 245.0 / 32768.0;
break;
case G_SCALE_500DPS:
gRes = 500.0 / 32768.0;
break;
case G_SCALE_2000DPS:
gRes = 2000.0 / 32768.0;
break;
}
}
void LSM9DS1::calcaRes()
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100).
switch (aScale)
{
case A_SCALE_2G:
aRes = 2.0 / 32768.0;
break;
case A_SCALE_4G:
aRes = 4.0 / 32768.0;
break;
case A_SCALE_8G:
aRes = 8.0 / 32768.0;
break;
case A_SCALE_16G:
aRes = 16.0 / 32768.0;
break;
}
}
void LSM9DS1::calcmRes()
{
// Possible magnetometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11).
switch (mScale)
{
case M_SCALE_4GS:
mRes = 4.0 / 32768.0;
break;
case M_SCALE_8GS:
mRes = 8.0 / 32768.0;
break;
case M_SCALE_12GS:
mRes = 12.0 / 32768.0;
break;
case M_SCALE_16GS:
mRes = 16.0 / 32768.0;
break;
}
}