mbed library sources

Fork of mbed-src by mbed official

targets/hal/TARGET_STM/TARGET_STM32F3XX/pwmout_api.c

Committer:
mbed_official
Date:
2015-06-09
Revision:
563:9f26fcd0c9ce
Parent:
227:7bd0639b8911

File content as of revision 563:9f26fcd0c9ce:

/* mbed Microcontroller Library
 *******************************************************************************
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************
 */
#include "mbed_assert.h"
#include "pwmout_api.h"

#include "cmsis.h"
#include "pinmap.h"

// TIM2 cannot be used because already used by the us_ticker
static const PinMap PinMap_PWM[] = {
//  {PA_0,  PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH1
//  {PA_1,  PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH2
    {PA_1,  PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_9)},  // TIM15_CH1N
    {PA_2,  PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_9)},  // TIM15_CH1
    {PA_3,  PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_9)},  // TIM15_CH2
//  {PA_5,  PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH1
    {PA_6,  PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1
    {PA_7,  PWM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM17_CH1
//  {PA_7,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH1N
    {PA_8,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH1
    {PA_9,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH2
//  {PA_9,  PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_10)}, // TIM2_CH3
    {PA_10, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH3
//  {PA_10, PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_10)}, // TIM2_CH4
    {PA_11, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_11)}, // TIM1_CH4
//  {PA_11, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH1N
    {PA_12, PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1
//  {PA_12, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH2N
    {PA_13, PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1N
//  {PA_15, PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH1

    {PB_0,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH2N
    {PB_1,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH3N
//  {PB_3,  PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH2
    {PB_4,  PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1
    {PB_5,  PWM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_10)}, // TIM17_CH1
    {PB_6,  PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1N
    {PB_7,  PWM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM17_CH1N
    {PB_8,  PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1
    {PB_9,  PWM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM17_CH1
//  {PB_10, PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH3
//  {PB_11, PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH4
    {PB_13, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH1N
    {PB_14, PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM15_CH1
//  {PB_14, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH2N
    {PB_15, PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM15_CH2
//  {PB_15, PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_2)},  // TIM15_CH1N
//  {PB_15, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_4)},  // TIM1_CH3N

    {PC_0,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_2)},  // TIM1_CH1
    {PC_1,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_2)},  // TIM1_CH2
    {PC_2,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_2)},  // TIM1_CH3
    {PC_3,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_2)},  // TIM1_CH4
    {PC_13, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_4)},  // TIM1_CH1N

    {PF_0,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH3N

    {NC,    NC,     0}
};

void pwmout_init(pwmout_t* obj, PinName pin) {
    // Get the peripheral name from the pin and assign it to the object
    obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
    MBED_ASSERT(obj->pwm == (PWMName)NC);

    // Enable TIM clock
    if (obj->pwm == PWM_1) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
    if (obj->pwm == PWM_15) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM15, ENABLE);
    if (obj->pwm == PWM_16) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM16, ENABLE);
    if (obj->pwm == PWM_17) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM17, ENABLE);

    // Configure GPIO
    pinmap_pinout(pin, PinMap_PWM);

    obj->pin = pin;
    obj->period = 0;
    obj->pulse = 0;

    pwmout_period_us(obj, 20000); // 20 ms per default
}

void pwmout_free(pwmout_t* obj) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_DeInit(tim);
}

void pwmout_write(pwmout_t* obj, float value) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_OCInitTypeDef TIM_OCInitStructure;

    if (value < (float)0.0) {
        value = (float)0.0;
    } else if (value > (float)1.0) {
        value = (float)1.0;
    }

    obj->pulse = (uint32_t)((float)obj->period * value);

    // Configure channels
    TIM_OCInitStructure.TIM_OCMode       = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_Pulse        = obj->pulse;
    TIM_OCInitStructure.TIM_OCPolarity   = TIM_OCPolarity_High;
    TIM_OCInitStructure.TIM_OCNPolarity  = TIM_OCPolarity_High;
    TIM_OCInitStructure.TIM_OCIdleState  = TIM_OCIdleState_Reset;
    TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;

    switch (obj->pin) {
        // Channels 1
//      case PA_0:
        case PA_2:
//      case PA_5:
        case PA_6:
        case PA_7:
        case PA_8:
        case PA_12:
//      case PA_15:
        case PB_4:
        case PB_5:
        case PB_8:
        case PB_9:
        case PB_14:
        case PC_0:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC1Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 1N
        case PA_1:
//      case PA_7:
//      case PA_11:
        case PA_13:
        case PB_6:
        case PB_7:
        case PB_13:
//      case PB_15:
        case PC_13:
            TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
            TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC1Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 2
//      case PA_1:
        case PA_3:
        case PA_9:
//      case PB_3:
        case PB_15:
        case PC_1:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC2Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 2N
//      case PA_12:
        case PB_0:
//      case PB_14:
            TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
            TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC2Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 3
//      case PA_9:
        case PA_10:
//      case PB_10:
        case PC_2:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC3PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC3Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 3N
        case PB_1:
        case PF_0:
//      case PB_15:
            TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
            TIM_OC3PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC3Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 4
//      case PA_10:
        case PA_11:
//      case PB_11:
        case PC_3:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC4PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC4Init(tim, &TIM_OCInitStructure);
            break;
        default:
            return;
    }
}

float pwmout_read(pwmout_t* obj) {
    float value = 0;
    if (obj->period > 0) {
        value = (float)(obj->pulse) / (float)(obj->period);
    }
    return ((value > (float)1.0) ? ((float)1.0) : (value));
}

void pwmout_period(pwmout_t* obj, float seconds) {
    pwmout_period_us(obj, seconds * 1000000.0f);
}

void pwmout_period_ms(pwmout_t* obj, int ms) {
    pwmout_period_us(obj, ms * 1000);
}

void pwmout_period_us(pwmout_t* obj, int us) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
    float dc = pwmout_read(obj);

    TIM_Cmd(tim, DISABLE);

    obj->period = us;

    TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
    TIM_TimeBaseStructure.TIM_Period = obj->period - 1;
    TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(SystemCoreClock / 1000000) - 1; // 1 µs tick
    TIM_TimeBaseStructure.TIM_ClockDivision = 0;
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInit(tim, &TIM_TimeBaseStructure);

    // Set duty cycle again
    pwmout_write(obj, dc);

    TIM_ARRPreloadConfig(tim, ENABLE);

    // Warning: Main Output must be  enabled on TIM1, TIM8, TIM5, TIM6 and TIM17
    if ((obj->pwm == PWM_1) || (obj->pwm == PWM_15) || (obj->pwm == PWM_16) || (obj->pwm == PWM_17)) {
        TIM_CtrlPWMOutputs(tim, ENABLE);
    }

    TIM_Cmd(tim, ENABLE);
}

void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
    pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}

void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
    pwmout_pulsewidth_us(obj, ms * 1000);
}

void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
    float value = (float)us / (float)obj->period;
    pwmout_write(obj, value);
}