Sensor Code By Jorge Troncoso

Dependencies:   Sensor2 MAX31855-1 libmDot-1

Fork of 0A101_mDot_Sensor_Rev3_AUS by Jorge Troncoso

radio_sensor.cpp

Committer:
jortronm2
Date:
2018-06-13
Revision:
2:0417c5cdceaf
Parent:
0:1441b10e38a6

File content as of revision 2:0417c5cdceaf:

/*
** Because we're working with relatively small packet sizes (~10 bytes) each set
** of sensor data must be split up and sent in multiple packets. To keep track
** of these packets they will each contain a id which indicates the set of
** sensor data they belong to and a sequence number which indicates their
** position in that set of sensor data. The first packet of each set will also
** include and additional field which will be the number of packets to expect.
** This will make it easy to determine if packets have been dropped and
** therefore if the set of sensor data will be valid.
** The packet structure:
** [id (1 byte)] [sequence (1 byte)] [expected packets (1 byte)] [data (n - 3 bytes)]
** [id (1 byte)] [sequence (1 byte)] [data (n - 2 bytes)]
** Note:
**       The ID is allowed to and will be expected to overflow back to 0.
*/


#include "radio_sensor.h"


mDot* dot = NULL;


// Radio settings.

/*    Singapore JTRON2
uint8_t  radio_network_address[]     = {0x65, 0x34, 0x03, 0x03};
uint8_t  radio_network_session_key[] = {0x23, 0x45, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04};
uint8_t  radio_data_session_key[]    = {0xF0, 0x34, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04};
*/

/*    USA Tom JTRON4
uint8_t  radio_network_address[]     = {0x65, 0x34, 0x03, 0x02};
uint8_t  radio_network_session_key[] = {0x23, 0x45, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04};
uint8_t  radio_data_session_key[]    = {0xF0, 0x34, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04};
*/

/*    Australia  JTRON6
uint8_t  radio_network_address[]     = {0x65, 0x34, 0x03, 0x04};
uint8_t  radio_network_session_key[] = {0x23, 0x45, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04};
uint8_t  radio_data_session_key[]    = {0xF0, 0x34, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04};
*/

static uint8_t radio_packet_current_id;



extern int8_t radio_sensor_init(enum mts::MTSLog::logLevel logging_level) {
    uint8_t radio_data_rate, radio_power, radio_frequency_band;
    uint32_t radio_frequency;
    lora::ChannelPlan* plan;
    
    
    radio_packet_current_id = 0;
    
    
    // Configure the logging level and instatiate the mDot with the correct channel plan.
    mts::MTSLog::setLogLevel(logging_level);
    
#if RADIO_CHANNEL_PLAN == CP_US915
    plan = new lora::ChannelPlan_US915();
#elif RADIO_CHANNEL_PLAN == CP_AU915
    plan = new lora::ChannelPlan_AU915();
#elif RADIO_CHANNEL_PLAN == CP_EU868
    plan = new lora::ChannelPlan_EU868();
#elif RADIO_CHANNEL_PLAN == CP_KR920
    plan = new lora::ChannelPlan_KR920();
#elif RADIO_CHANNEL_PLAN == CP_AS923
    plan = new lora::ChannelPlan_AS923();
#elif RADIO_CHANNEL_PLAN == CP_AS923_JAPAN
    plan = new lora::ChannelPlan_AS923_Japan();
#elif RADIO_CHANNEL_PLAN == CP_IN865
    plan = new lora::ChannelPlan_IN865();
#endif
    assert(plan);
    
    dot = mDot::getInstance(plan);
    assert(dot);
    dot->setLogLevel(logging_level);
    
    // Return the mdot to a known state.
    dot->resetConfig();
    
    // Configure MDOT network settings.
    if (dot->getJoinMode() != mDot::PEER_TO_PEER) {
        logInfo("changing network join mode to PEER_TO_PEER");
        if (dot->setJoinMode(mDot::PEER_TO_PEER) != mDot::MDOT_OK) {
            logError("failed to set network join mode to PEER_TO_PEER");
        }
    }
    
    radio_frequency_band = dot->getFrequencyBand();
    switch (radio_frequency_band) {
        case lora::ChannelPlan::EU868_OLD:
        case lora::ChannelPlan::EU868:
            // 250kHz channels achieve higher throughput
            // DR_6 : SF7 @ 250kHz
            // DR_0 - DR_5 (125kHz channels) available but much slower
            radio_frequency = 869850000;
            radio_data_rate = lora::DR_6;
            // the 869850000 frequency is 100% duty cycle if the total power is under 7 dBm - tx power 4 + antenna gain 3 = 7
            radio_power = 4;
            break;

        case lora::ChannelPlan::US915_OLD:
        case lora::ChannelPlan::US915:
        case lora::ChannelPlan::AU915_OLD:
        case lora::ChannelPlan::AU915:
            // 500kHz channels achieve highest throughput
            // DR_8 : SF12 @ 500kHz
            // DR_9 : SF11 @ 500kHz
            // DR_10 : SF10 @ 500kHz
            // DR_11 : SF9 @ 500kHz
            // DR_12 : SF8 @ 500kHz
            // DR_13 : SF7 @ 500kHz
            // DR_0 - DR_3 (125kHz channels) available but much slower
            radio_frequency = 915500000;
            radio_data_rate = lora::DR_13;
            // 915 bands have no duty cycle restrictions, set tx power to max
            radio_power = 20;
            break;

        case lora::ChannelPlan::AS923:
        case lora::ChannelPlan::AS923_JAPAN:
            // 250kHz channels achieve higher throughput
            // DR_6 : SF7 @ 250kHz
            // DR_0 - DR_5 (125kHz channels) available but much slower
            radio_frequency = 924800000;
            radio_data_rate = lora::DR_6;
            radio_power = 16;
            break;

        case lora::ChannelPlan::KR920:
            // DR_5 : SF7 @ 125kHz
            radio_frequency = 922700000;
            radio_data_rate = lora::DR_5;
            radio_power = 14;
            break;

        default:
            while (true) {
                logFatal("no known channel plan in use - extra configuration is needed!");
                wait(5);
            }
    }
    
    update_peer_to_peer_config(radio_network_address, radio_network_session_key, radio_data_session_key, radio_frequency, radio_data_rate, radio_power);
    
    // Save changes to configuration.
    logInfo("saving configuration");
    if (!dot->saveConfig()) {
        logError("failed to save configuration");
    }
    
    // Join network if not joined.
    if (!dot->getNetworkJoinStatus()) {
        join_network();
    }

    // Display configuration.
    display_config();
    
    return 0;
}

extern int8_t radio_sensor_transmit(struct sensor_data_raw data) {
    uint8_t packet_length_max, packet_seq, packets_required;
    uint8_t tx_buffer[sizeof(struct sensor_data_raw)];
    uint32_t packet_length_data, tx_buffer_size;
    std::vector<uint8_t> radio_packet;
    
    packet_length_max = dot->getMaxPacketLength();
    logDebug("The maximum packet length is %i.", packet_length_max);
    
    if(packet_length_max < 3) {
        logError("The packet length allowed by the mDot is too small (%u).", packet_length_max);
        return -1;
    }
    
    
    packet_length_data = packet_length_max - 2;
    tx_buffer_size = sizeof(struct sensor_data_raw);
    // This performs an integer division and round up operation.
    packets_required = (tx_buffer_size + packet_length_data - 1) / packet_length_data;
    
    // Turn the sensor data into a stream of bytes.
    serialize_sensor_to_bytes(data, tx_buffer);
    
    packet_seq = 0;
    
    // For the first 
    //radio_packet.push_back(radio_packet_current_id);
    //radio_packet.push_back(packet_seq);
    //radio_packet.push_back(packets_required);
    
    for(uint32_t i = 0; i < tx_buffer_size; i++) {
        // Current packet finished constructing, send it and begin again.
        if(radio_packet.size() >= packet_length_max) {
            send_data(radio_packet);
            radio_packet.clear();
            
            packet_seq++;
            
            radio_packet.push_back(radio_packet_current_id);
            radio_packet.push_back(packet_seq);
        }
        
        radio_packet.push_back(tx_buffer[i]);
    }
    
    // Send the last packet. This will happen if the data is not divisible by the number of required packets.
    if(radio_packet.size() > 0) {
        send_data(radio_packet);
        radio_packet.clear();
    }
    
    radio_packet_current_id++;
    
    return 0;
}