Basic gzip/gunzip in memory buffer examples using zlib code.

Dependencies:   mbed-rtos mbed

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers deflate.c Source File

deflate.c

00001 /* deflate.c -- compress data using the deflation algorithm
00002  * Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler
00003  * For conditions of distribution and use, see copyright notice in zlib.h
00004  */
00005 
00006 /*
00007  *  ALGORITHM
00008  *
00009  *      The "deflation" process depends on being able to identify portions
00010  *      of the input text which are identical to earlier input (within a
00011  *      sliding window trailing behind the input currently being processed).
00012  *
00013  *      The most straightforward technique turns out to be the fastest for
00014  *      most input files: try all possible matches and select the longest.
00015  *      The key feature of this algorithm is that insertions into the string
00016  *      dictionary are very simple and thus fast, and deletions are avoided
00017  *      completely. Insertions are performed at each input character, whereas
00018  *      string matches are performed only when the previous match ends. So it
00019  *      is preferable to spend more time in matches to allow very fast string
00020  *      insertions and avoid deletions. The matching algorithm for small
00021  *      strings is inspired from that of Rabin & Karp. A brute force approach
00022  *      is used to find longer strings when a small match has been found.
00023  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
00024  *      (by Leonid Broukhis).
00025  *         A previous version of this file used a more sophisticated algorithm
00026  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
00027  *      time, but has a larger average cost, uses more memory and is patented.
00028  *      However the F&G algorithm may be faster for some highly redundant
00029  *      files if the parameter max_chain_length (described below) is too large.
00030  *
00031  *  ACKNOWLEDGEMENTS
00032  *
00033  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
00034  *      I found it in 'freeze' written by Leonid Broukhis.
00035  *      Thanks to many people for bug reports and testing.
00036  *
00037  *  REFERENCES
00038  *
00039  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
00040  *      Available in http://tools.ietf.org/html/rfc1951
00041  *
00042  *      A description of the Rabin and Karp algorithm is given in the book
00043  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
00044  *
00045  *      Fiala,E.R., and Greene,D.H.
00046  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
00047  *
00048  */
00049 
00050 /* @(#) $Id$ */
00051 
00052 #include "deflate.h"
00053 
00054 const char deflate_copyright[] =
00055    " deflate 1.2.7 Copyright 1995-2012 Jean-loup Gailly and Mark Adler ";
00056 /*
00057   If you use the zlib library in a product, an acknowledgment is welcome
00058   in the documentation of your product. If for some reason you cannot
00059   include such an acknowledgment, I would appreciate that you keep this
00060   copyright string in the executable of your product.
00061  */
00062 
00063 /* ===========================================================================
00064  *  Function prototypes.
00065  */
00066 typedef enum {
00067     need_more,      /* block not completed, need more input or more output */
00068     block_done,     /* block flush performed */
00069     finish_started, /* finish started, need only more output at next deflate */
00070     finish_done     /* finish done, accept no more input or output */
00071 } block_state;
00072 
00073 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
00074 /* Compression function. Returns the block state after the call. */
00075 
00076 local void fill_window    OF((deflate_state *s));
00077 local block_state deflate_stored OF((deflate_state *s, int flush));
00078 local block_state deflate_fast   OF((deflate_state *s, int flush));
00079 #ifndef FASTEST
00080 local block_state deflate_slow   OF((deflate_state *s, int flush));
00081 #endif
00082 local block_state deflate_rle    OF((deflate_state *s, int flush));
00083 local block_state deflate_huff   OF((deflate_state *s, int flush));
00084 local void lm_init        OF((deflate_state *s));
00085 local void putShortMSB    OF((deflate_state *s, uInt b));
00086 local void flush_pending  OF((z_streamp strm));
00087 local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
00088 #ifdef ASMV
00089       void match_init OF((void)); /* asm code initialization */
00090       uInt longest_match  OF((deflate_state *s, IPos cur_match));
00091 #else
00092 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
00093 #endif
00094 
00095 #ifdef DEBUG
00096 local  void check_match OF((deflate_state *s, IPos start, IPos match,
00097                             int length));
00098 #endif
00099 
00100 /* ===========================================================================
00101  * Local data
00102  */
00103 
00104 #define NIL 0
00105 /* Tail of hash chains */
00106 
00107 #ifndef TOO_FAR
00108 #  define TOO_FAR 4096
00109 #endif
00110 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
00111 
00112 /* Values for max_lazy_match, good_match and max_chain_length, depending on
00113  * the desired pack level (0..9). The values given below have been tuned to
00114  * exclude worst case performance for pathological files. Better values may be
00115  * found for specific files.
00116  */
00117 typedef struct config_s {
00118    ush good_length; /* reduce lazy search above this match length */
00119    ush max_lazy;    /* do not perform lazy search above this match length */
00120    ush nice_length; /* quit search above this match length */
00121    ush max_chain;
00122    compress_func func;
00123 } config;
00124 
00125 #ifdef FASTEST
00126 local const config configuration_table[2] = {
00127 /*      good lazy nice chain */
00128 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
00129 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
00130 #else
00131 local const config configuration_table[10] = {
00132 /*      good lazy nice chain */
00133 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
00134 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
00135 /* 2 */ {4,    5, 16,    8, deflate_fast},
00136 /* 3 */ {4,    6, 32,   32, deflate_fast},
00137 
00138 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
00139 /* 5 */ {8,   16, 32,   32, deflate_slow},
00140 /* 6 */ {8,   16, 128, 128, deflate_slow},
00141 /* 7 */ {8,   32, 128, 256, deflate_slow},
00142 /* 8 */ {32, 128, 258, 1024, deflate_slow},
00143 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
00144 #endif
00145 
00146 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
00147  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
00148  * meaning.
00149  */
00150 
00151 #define EQUAL 0
00152 /* result of memcmp for equal strings */
00153 
00154 #ifndef NO_DUMMY_DECL
00155 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
00156 #endif
00157 
00158 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
00159 #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0))
00160 
00161 /* ===========================================================================
00162  * Update a hash value with the given input byte
00163  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
00164  *    input characters, so that a running hash key can be computed from the
00165  *    previous key instead of complete recalculation each time.
00166  */
00167 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
00168 
00169 
00170 /* ===========================================================================
00171  * Insert string str in the dictionary and set match_head to the previous head
00172  * of the hash chain (the most recent string with same hash key). Return
00173  * the previous length of the hash chain.
00174  * If this file is compiled with -DFASTEST, the compression level is forced
00175  * to 1, and no hash chains are maintained.
00176  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
00177  *    input characters and the first MIN_MATCH bytes of str are valid
00178  *    (except for the last MIN_MATCH-1 bytes of the input file).
00179  */
00180 #ifdef FASTEST
00181 #define INSERT_STRING(s, str, match_head) \
00182    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
00183     match_head = s->head[s->ins_h], \
00184     s->head[s->ins_h] = (Pos)(str))
00185 #else
00186 #define INSERT_STRING(s, str, match_head) \
00187    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
00188     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
00189     s->head[s->ins_h] = (Pos)(str))
00190 #endif
00191 
00192 /* ===========================================================================
00193  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
00194  * prev[] will be initialized on the fly.
00195  */
00196 #define CLEAR_HASH(s) \
00197     s->head[s->hash_size-1] = NIL; \
00198     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
00199 
00200 /* ========================================================================= */
00201 int ZEXPORT deflateInit_(strm, level, version, stream_size)
00202     z_streamp strm;
00203     int level;
00204     const char *version;
00205     int stream_size;
00206 {
00207     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
00208                          Z_DEFAULT_STRATEGY, version, stream_size);
00209     /* To do: ignore strm->next_in if we use it as window */
00210 }
00211 
00212 /* ========================================================================= */
00213 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
00214                   version, stream_size)
00215     z_streamp strm;
00216     int  level;
00217     int  method;
00218     int  windowBits;
00219     int  memLevel;
00220     int  strategy;
00221     const char *version;
00222     int stream_size;
00223 {
00224     deflate_state *s;
00225     int wrap = 1;
00226     static const char my_version[] = ZLIB_VERSION;
00227 
00228     ushf *overlay;
00229     /* We overlay pending_buf and d_buf+l_buf. This works since the average
00230      * output size for (length,distance) codes is <= 24 bits.
00231      */
00232 
00233     if (version == Z_NULL || version[0] != my_version[0] ||
00234         stream_size != sizeof(z_stream)) {
00235         return Z_VERSION_ERROR;
00236     }
00237     if (strm == Z_NULL) return Z_STREAM_ERROR;
00238 
00239     strm->msg = Z_NULL;
00240     if (strm->zalloc == (alloc_func)0) {
00241 #ifdef Z_SOLO
00242         return Z_STREAM_ERROR;
00243 #else
00244         strm->zalloc = zcalloc;
00245         strm->opaque = (voidpf)0;
00246 #endif
00247     }
00248     if (strm->zfree == (free_func)0)
00249 #ifdef Z_SOLO
00250         return Z_STREAM_ERROR;
00251 #else
00252         strm->zfree = zcfree;
00253 #endif
00254 
00255 #ifdef FASTEST
00256     if (level != 0) level = 1;
00257 #else
00258     if (level == Z_DEFAULT_COMPRESSION) level = 6;
00259 #endif
00260 
00261     if (windowBits < 0) { /* suppress zlib wrapper */
00262         wrap = 0;
00263         windowBits = -windowBits;
00264     }
00265 #ifdef GZIP
00266     else if (windowBits > 15) {
00267         wrap = 2;       /* write gzip wrapper instead */
00268         windowBits -= 16;
00269     }
00270 #endif
00271     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
00272         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
00273         strategy < 0 || strategy > Z_FIXED) {
00274         return Z_STREAM_ERROR;
00275     }
00276     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
00277     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
00278     if (s == Z_NULL) return Z_MEM_ERROR;
00279     strm->state = (struct internal_state FAR *)s;
00280     s->strm = strm;
00281 
00282     s->wrap = wrap;
00283     s->gzhead = Z_NULL;
00284     s->w_bits = windowBits;
00285     s->w_size = 1 << s->w_bits;
00286     s->w_mask = s->w_size - 1;
00287 
00288     s->hash_bits = memLevel + 7;
00289     s->hash_size = 1 << s->hash_bits;
00290     s->hash_mask = s->hash_size - 1;
00291     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
00292 
00293     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
00294     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
00295     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
00296 
00297     s->high_water = 0;      /* nothing written to s->window yet */
00298 
00299     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
00300 
00301     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
00302     s->pending_buf = (uchf *) overlay;
00303     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
00304 
00305     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
00306         s->pending_buf == Z_NULL) {
00307         s->status = FINISH_STATE;
00308         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
00309         deflateEnd (strm);
00310         return Z_MEM_ERROR;
00311     }
00312     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
00313     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
00314 
00315     s->level = level;
00316     s->strategy = strategy;
00317     s->method = (Byte)method;
00318 
00319     return deflateReset(strm);
00320 }
00321 
00322 /* ========================================================================= */
00323 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
00324     z_streamp strm;
00325     const Bytef *dictionary;
00326     uInt  dictLength;
00327 {
00328     deflate_state *s;
00329     uInt str, n;
00330     int wrap;
00331     unsigned avail;
00332     unsigned char *next;
00333 
00334     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
00335         return Z_STREAM_ERROR;
00336     s = strm->state;
00337     wrap = s->wrap;
00338     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
00339         return Z_STREAM_ERROR;
00340 
00341     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
00342     if (wrap == 1)
00343         strm->adler = adler32(strm->adler, dictionary, dictLength);
00344     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
00345 
00346     /* if dictionary would fill window, just replace the history */
00347     if (dictLength >= s->w_size) {
00348         if (wrap == 0) {            /* already empty otherwise */
00349             CLEAR_HASH(s);
00350             s->strstart = 0;
00351             s->block_start = 0L;
00352             s->insert = 0;
00353         }
00354         dictionary += dictLength - s->w_size;  /* use the tail */
00355         dictLength = s->w_size;
00356     }
00357 
00358     /* insert dictionary into window and hash */
00359     avail = strm->avail_in;
00360     next = strm->next_in;
00361     strm->avail_in = dictLength;
00362     strm->next_in = (Bytef *)dictionary;
00363     fill_window(s);
00364     while (s->lookahead >= MIN_MATCH) {
00365         str = s->strstart;
00366         n = s->lookahead - (MIN_MATCH-1);
00367         do {
00368             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
00369 #ifndef FASTEST
00370             s->prev[str & s->w_mask] = s->head[s->ins_h];
00371 #endif
00372             s->head[s->ins_h] = (Pos)str;
00373             str++;
00374         } while (--n);
00375         s->strstart = str;
00376         s->lookahead = MIN_MATCH-1;
00377         fill_window(s);
00378     }
00379     s->strstart += s->lookahead;
00380     s->block_start = (long)s->strstart;
00381     s->insert = s->lookahead;
00382     s->lookahead = 0;
00383     s->match_length = s->prev_length = MIN_MATCH-1;
00384     s->match_available = 0;
00385     strm->next_in = next;
00386     strm->avail_in = avail;
00387     s->wrap = wrap;
00388     return Z_OK;
00389 }
00390 
00391 /* ========================================================================= */
00392 int ZEXPORT deflateResetKeep (strm)
00393     z_streamp strm;
00394 {
00395     deflate_state *s;
00396 
00397     if (strm == Z_NULL || strm->state == Z_NULL ||
00398         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
00399         return Z_STREAM_ERROR;
00400     }
00401 
00402     strm->total_in = strm->total_out = 0;
00403     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
00404     strm->data_type = Z_UNKNOWN;
00405 
00406     s = (deflate_state *)strm->state;
00407     s->pending = 0;
00408     s->pending_out = s->pending_buf;
00409 
00410     if (s->wrap < 0) {
00411         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
00412     }
00413     s->status = s->wrap ? INIT_STATE : BUSY_STATE;
00414     strm->adler =
00415 #ifdef GZIP
00416         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
00417 #endif
00418         adler32(0L, Z_NULL, 0);
00419     s->last_flush = Z_NO_FLUSH;
00420 
00421     _tr_init(s);
00422 
00423     return Z_OK;
00424 }
00425 
00426 /* ========================================================================= */
00427 int ZEXPORT deflateReset (strm)
00428     z_streamp strm;
00429 {
00430     int ret;
00431 
00432     ret = deflateResetKeep(strm);
00433     if (ret == Z_OK)
00434         lm_init(strm->state);
00435     return ret;
00436 }
00437 
00438 /* ========================================================================= */
00439 int ZEXPORT deflateSetHeader (strm, head)
00440     z_streamp strm;
00441     gz_headerp head;
00442 {
00443     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
00444     if (strm->state->wrap != 2) return Z_STREAM_ERROR;
00445     strm->state->gzhead = head;
00446     return Z_OK;
00447 }
00448 
00449 /* ========================================================================= */
00450 int ZEXPORT deflatePending (strm, pending, bits)
00451     unsigned *pending;
00452     int *bits;
00453     z_streamp strm;
00454 {
00455     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
00456     if (pending != Z_NULL)
00457         *pending = strm->state->pending;
00458     if (bits != Z_NULL)
00459         *bits = strm->state->bi_valid;
00460     return Z_OK;
00461 }
00462 
00463 /* ========================================================================= */
00464 int ZEXPORT deflatePrime (strm, bits, value)
00465     z_streamp strm;
00466     int bits;
00467     int value;
00468 {
00469     deflate_state *s;
00470     int put;
00471 
00472     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
00473     s = strm->state;
00474     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
00475         return Z_BUF_ERROR;
00476     do {
00477         put = Buf_size - s->bi_valid;
00478         if (put > bits)
00479             put = bits;
00480         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
00481         s->bi_valid += put;
00482         _tr_flush_bits(s);
00483         value >>= put;
00484         bits -= put;
00485     } while (bits);
00486     return Z_OK;
00487 }
00488 
00489 /* ========================================================================= */
00490 int ZEXPORT deflateParams(strm, level, strategy)
00491     z_streamp strm;
00492     int level;
00493     int strategy;
00494 {
00495     deflate_state *s;
00496     compress_func func;
00497     int err = Z_OK;
00498 
00499     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
00500     s = strm->state;
00501 
00502 #ifdef FASTEST
00503     if (level != 0) level = 1;
00504 #else
00505     if (level == Z_DEFAULT_COMPRESSION) level = 6;
00506 #endif
00507     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
00508         return Z_STREAM_ERROR;
00509     }
00510     func = configuration_table[s->level].func;
00511 
00512     if ((strategy != s->strategy || func != configuration_table[level].func) &&
00513         strm->total_in != 0) {
00514         /* Flush the last buffer: */
00515         err = deflate(strm, Z_BLOCK);
00516     }
00517     if (s->level != level) {
00518         s->level = level;
00519         s->max_lazy_match   = configuration_table[level].max_lazy;
00520         s->good_match       = configuration_table[level].good_length;
00521         s->nice_match       = configuration_table[level].nice_length;
00522         s->max_chain_length = configuration_table[level].max_chain;
00523     }
00524     s->strategy = strategy;
00525     return err;
00526 }
00527 
00528 /* ========================================================================= */
00529 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
00530     z_streamp strm;
00531     int good_length;
00532     int max_lazy;
00533     int nice_length;
00534     int max_chain;
00535 {
00536     deflate_state *s;
00537 
00538     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
00539     s = strm->state;
00540     s->good_match = good_length;
00541     s->max_lazy_match = max_lazy;
00542     s->nice_match = nice_length;
00543     s->max_chain_length = max_chain;
00544     return Z_OK;
00545 }
00546 
00547 /* =========================================================================
00548  * For the default windowBits of 15 and memLevel of 8, this function returns
00549  * a close to exact, as well as small, upper bound on the compressed size.
00550  * They are coded as constants here for a reason--if the #define's are
00551  * changed, then this function needs to be changed as well.  The return
00552  * value for 15 and 8 only works for those exact settings.
00553  *
00554  * For any setting other than those defaults for windowBits and memLevel,
00555  * the value returned is a conservative worst case for the maximum expansion
00556  * resulting from using fixed blocks instead of stored blocks, which deflate
00557  * can emit on compressed data for some combinations of the parameters.
00558  *
00559  * This function could be more sophisticated to provide closer upper bounds for
00560  * every combination of windowBits and memLevel.  But even the conservative
00561  * upper bound of about 14% expansion does not seem onerous for output buffer
00562  * allocation.
00563  */
00564 uLong ZEXPORT deflateBound(strm, sourceLen)
00565     z_streamp strm;
00566     uLong sourceLen;
00567 {
00568     deflate_state *s;
00569     uLong complen, wraplen;
00570     Bytef *str;
00571 
00572     /* conservative upper bound for compressed data */
00573     complen = sourceLen +
00574               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
00575 
00576     /* if can't get parameters, return conservative bound plus zlib wrapper */
00577     if (strm == Z_NULL || strm->state == Z_NULL)
00578         return complen + 6;
00579 
00580     /* compute wrapper length */
00581     s = strm->state;
00582     switch (s->wrap) {
00583     case 0:                                 /* raw deflate */
00584         wraplen = 0;
00585         break;
00586     case 1:                                 /* zlib wrapper */
00587         wraplen = 6 + (s->strstart ? 4 : 0);
00588         break;
00589     case 2:                                 /* gzip wrapper */
00590         wraplen = 18;
00591         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
00592             if (s->gzhead->extra != Z_NULL)
00593                 wraplen += 2 + s->gzhead->extra_len;
00594             str = s->gzhead->name;
00595             if (str != Z_NULL)
00596                 do {
00597                     wraplen++;
00598                 } while (*str++);
00599             str = s->gzhead->comment;
00600             if (str != Z_NULL)
00601                 do {
00602                     wraplen++;
00603                 } while (*str++);
00604             if (s->gzhead->hcrc)
00605                 wraplen += 2;
00606         }
00607         break;
00608     default:                                /* for compiler happiness */
00609         wraplen = 6;
00610     }
00611 
00612     /* if not default parameters, return conservative bound */
00613     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
00614         return complen + wraplen;
00615 
00616     /* default settings: return tight bound for that case */
00617     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
00618            (sourceLen >> 25) + 13 - 6 + wraplen;
00619 }
00620 
00621 /* =========================================================================
00622  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
00623  * IN assertion: the stream state is correct and there is enough room in
00624  * pending_buf.
00625  */
00626 local void putShortMSB (s, b)
00627     deflate_state *s;
00628     uInt b;
00629 {
00630     put_byte(s, (Byte)(b >> 8));
00631     put_byte(s, (Byte)(b & 0xff));
00632 }
00633 
00634 /* =========================================================================
00635  * Flush as much pending output as possible. All deflate() output goes
00636  * through this function so some applications may wish to modify it
00637  * to avoid allocating a large strm->next_out buffer and copying into it.
00638  * (See also read_buf()).
00639  */
00640 local void flush_pending(strm)
00641     z_streamp strm;
00642 {
00643     unsigned len;
00644     deflate_state *s = strm->state;
00645 
00646     _tr_flush_bits(s);
00647     len = s->pending;
00648     if (len > strm->avail_out) len = strm->avail_out;
00649     if (len == 0) return;
00650 
00651     zmemcpy(strm->next_out, s->pending_out, len);
00652     strm->next_out  += len;
00653     s->pending_out  += len;
00654     strm->total_out += len;
00655     strm->avail_out  -= len;
00656     s->pending -= len;
00657     if (s->pending == 0) {
00658         s->pending_out = s->pending_buf;
00659     }
00660 }
00661 
00662 /* ========================================================================= */
00663 int ZEXPORT deflate (strm, flush)
00664     z_streamp strm;
00665     int flush;
00666 {
00667     int old_flush; /* value of flush param for previous deflate call */
00668     deflate_state *s;
00669 
00670     if (strm == Z_NULL || strm->state == Z_NULL ||
00671         flush > Z_BLOCK || flush < 0) {
00672         return Z_STREAM_ERROR;
00673     }
00674     s = strm->state;
00675 
00676     if (strm->next_out == Z_NULL ||
00677         (strm->next_in == Z_NULL && strm->avail_in != 0) ||
00678         (s->status == FINISH_STATE && flush != Z_FINISH)) {
00679         ERR_RETURN(strm, Z_STREAM_ERROR);
00680     }
00681     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
00682 
00683     s->strm = strm; /* just in case */
00684     old_flush = s->last_flush;
00685     s->last_flush = flush;
00686 
00687     /* Write the header */
00688     if (s->status == INIT_STATE) {
00689 #ifdef GZIP
00690         if (s->wrap == 2) {
00691             strm->adler = crc32(0L, Z_NULL, 0);
00692             put_byte(s, 31);
00693             put_byte(s, 139);
00694             put_byte(s, 8);
00695             if (s->gzhead == Z_NULL) {
00696                 put_byte(s, 0);
00697                 put_byte(s, 0);
00698                 put_byte(s, 0);
00699                 put_byte(s, 0);
00700                 put_byte(s, 0);
00701                 put_byte(s, s->level == 9 ? 2 :
00702                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
00703                              4 : 0));
00704                 put_byte(s, OS_CODE);
00705                 s->status = BUSY_STATE;
00706             }
00707             else {
00708                 put_byte(s, (s->gzhead->text ? 1 : 0) +
00709                             (s->gzhead->hcrc ? 2 : 0) +
00710                             (s->gzhead->extra == Z_NULL ? 0 : 4) +
00711                             (s->gzhead->name == Z_NULL ? 0 : 8) +
00712                             (s->gzhead->comment == Z_NULL ? 0 : 16)
00713                         );
00714                 put_byte(s, (Byte)(s->gzhead->time & 0xff));
00715                 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
00716                 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
00717                 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
00718                 put_byte(s, s->level == 9 ? 2 :
00719                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
00720                              4 : 0));
00721                 put_byte(s, s->gzhead->os & 0xff);
00722                 if (s->gzhead->extra != Z_NULL) {
00723                     put_byte(s, s->gzhead->extra_len & 0xff);
00724                     put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
00725                 }
00726                 if (s->gzhead->hcrc)
00727                     strm->adler = crc32(strm->adler, s->pending_buf,
00728                                         s->pending);
00729                 s->gzindex = 0;
00730                 s->status = EXTRA_STATE;
00731             }
00732         }
00733         else
00734 #endif
00735         {
00736             uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
00737             uInt level_flags;
00738 
00739             if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
00740                 level_flags = 0;
00741             else if (s->level < 6)
00742                 level_flags = 1;
00743             else if (s->level == 6)
00744                 level_flags = 2;
00745             else
00746                 level_flags = 3;
00747             header |= (level_flags << 6);
00748             if (s->strstart != 0) header |= PRESET_DICT;
00749             header += 31 - (header % 31);
00750 
00751             s->status = BUSY_STATE;
00752             putShortMSB(s, header);
00753 
00754             /* Save the adler32 of the preset dictionary: */
00755             if (s->strstart != 0) {
00756                 putShortMSB(s, (uInt)(strm->adler >> 16));
00757                 putShortMSB(s, (uInt)(strm->adler & 0xffff));
00758             }
00759             strm->adler = adler32(0L, Z_NULL, 0);
00760         }
00761     }
00762 #ifdef GZIP
00763     if (s->status == EXTRA_STATE) {
00764         if (s->gzhead->extra != Z_NULL) {
00765             uInt beg = s->pending;  /* start of bytes to update crc */
00766 
00767             while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
00768                 if (s->pending == s->pending_buf_size) {
00769                     if (s->gzhead->hcrc && s->pending > beg)
00770                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
00771                                             s->pending - beg);
00772                     flush_pending(strm);
00773                     beg = s->pending;
00774                     if (s->pending == s->pending_buf_size)
00775                         break;
00776                 }
00777                 put_byte(s, s->gzhead->extra[s->gzindex]);
00778                 s->gzindex++;
00779             }
00780             if (s->gzhead->hcrc && s->pending > beg)
00781                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
00782                                     s->pending - beg);
00783             if (s->gzindex == s->gzhead->extra_len) {
00784                 s->gzindex = 0;
00785                 s->status = NAME_STATE;
00786             }
00787         }
00788         else
00789             s->status = NAME_STATE;
00790     }
00791     if (s->status == NAME_STATE) {
00792         if (s->gzhead->name != Z_NULL) {
00793             uInt beg = s->pending;  /* start of bytes to update crc */
00794             int val;
00795 
00796             do {
00797                 if (s->pending == s->pending_buf_size) {
00798                     if (s->gzhead->hcrc && s->pending > beg)
00799                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
00800                                             s->pending - beg);
00801                     flush_pending(strm);
00802                     beg = s->pending;
00803                     if (s->pending == s->pending_buf_size) {
00804                         val = 1;
00805                         break;
00806                     }
00807                 }
00808                 val = s->gzhead->name[s->gzindex++];
00809                 put_byte(s, val);
00810             } while (val != 0);
00811             if (s->gzhead->hcrc && s->pending > beg)
00812                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
00813                                     s->pending - beg);
00814             if (val == 0) {
00815                 s->gzindex = 0;
00816                 s->status = COMMENT_STATE;
00817             }
00818         }
00819         else
00820             s->status = COMMENT_STATE;
00821     }
00822     if (s->status == COMMENT_STATE) {
00823         if (s->gzhead->comment != Z_NULL) {
00824             uInt beg = s->pending;  /* start of bytes to update crc */
00825             int val;
00826 
00827             do {
00828                 if (s->pending == s->pending_buf_size) {
00829                     if (s->gzhead->hcrc && s->pending > beg)
00830                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
00831                                             s->pending - beg);
00832                     flush_pending(strm);
00833                     beg = s->pending;
00834                     if (s->pending == s->pending_buf_size) {
00835                         val = 1;
00836                         break;
00837                     }
00838                 }
00839                 val = s->gzhead->comment[s->gzindex++];
00840                 put_byte(s, val);
00841             } while (val != 0);
00842             if (s->gzhead->hcrc && s->pending > beg)
00843                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
00844                                     s->pending - beg);
00845             if (val == 0)
00846                 s->status = HCRC_STATE;
00847         }
00848         else
00849             s->status = HCRC_STATE;
00850     }
00851     if (s->status == HCRC_STATE) {
00852         if (s->gzhead->hcrc) {
00853             if (s->pending + 2 > s->pending_buf_size)
00854                 flush_pending(strm);
00855             if (s->pending + 2 <= s->pending_buf_size) {
00856                 put_byte(s, (Byte)(strm->adler & 0xff));
00857                 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
00858                 strm->adler = crc32(0L, Z_NULL, 0);
00859                 s->status = BUSY_STATE;
00860             }
00861         }
00862         else
00863             s->status = BUSY_STATE;
00864     }
00865 #endif
00866 
00867     /* Flush as much pending output as possible */
00868     if (s->pending != 0) {
00869         flush_pending(strm);
00870         if (strm->avail_out == 0) {
00871             /* Since avail_out is 0, deflate will be called again with
00872              * more output space, but possibly with both pending and
00873              * avail_in equal to zero. There won't be anything to do,
00874              * but this is not an error situation so make sure we
00875              * return OK instead of BUF_ERROR at next call of deflate:
00876              */
00877             s->last_flush = -1;
00878             return Z_OK;
00879         }
00880 
00881     /* Make sure there is something to do and avoid duplicate consecutive
00882      * flushes. For repeated and useless calls with Z_FINISH, we keep
00883      * returning Z_STREAM_END instead of Z_BUF_ERROR.
00884      */
00885     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
00886                flush != Z_FINISH) {
00887         ERR_RETURN(strm, Z_BUF_ERROR);
00888     }
00889 
00890     /* User must not provide more input after the first FINISH: */
00891     if (s->status == FINISH_STATE && strm->avail_in != 0) {
00892         ERR_RETURN(strm, Z_BUF_ERROR);
00893     }
00894 
00895     /* Start a new block or continue the current one.
00896      */
00897     if (strm->avail_in != 0 || s->lookahead != 0 ||
00898         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
00899         block_state bstate;
00900 
00901         bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
00902                     (s->strategy == Z_RLE ? deflate_rle(s, flush) :
00903                         (*(configuration_table[s->level].func))(s, flush));
00904 
00905         if (bstate == finish_started || bstate == finish_done) {
00906             s->status = FINISH_STATE;
00907         }
00908         if (bstate == need_more || bstate == finish_started) {
00909             if (strm->avail_out == 0) {
00910                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
00911             }
00912             return Z_OK;
00913             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
00914              * of deflate should use the same flush parameter to make sure
00915              * that the flush is complete. So we don't have to output an
00916              * empty block here, this will be done at next call. This also
00917              * ensures that for a very small output buffer, we emit at most
00918              * one empty block.
00919              */
00920         }
00921         if (bstate == block_done) {
00922             if (flush == Z_PARTIAL_FLUSH) {
00923                 _tr_align(s);
00924             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
00925                 _tr_stored_block(s, (char*)0, 0L, 0);
00926                 /* For a full flush, this empty block will be recognized
00927                  * as a special marker by inflate_sync().
00928                  */
00929                 if (flush == Z_FULL_FLUSH) {
00930                     CLEAR_HASH(s);             /* forget history */
00931                     if (s->lookahead == 0) {
00932                         s->strstart = 0;
00933                         s->block_start = 0L;
00934                         s->insert = 0;
00935                     }
00936                 }
00937             }
00938             flush_pending(strm);
00939             if (strm->avail_out == 0) {
00940               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
00941               return Z_OK;
00942             }
00943         }
00944     }
00945     Assert(strm->avail_out > 0, "bug2");
00946 
00947     if (flush != Z_FINISH) return Z_OK;
00948     if (s->wrap <= 0) return Z_STREAM_END;
00949 
00950     /* Write the trailer */
00951 #ifdef GZIP
00952     if (s->wrap == 2) {
00953         put_byte(s, (Byte)(strm->adler & 0xff));
00954         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
00955         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
00956         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
00957         put_byte(s, (Byte)(strm->total_in & 0xff));
00958         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
00959         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
00960         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
00961     }
00962     else
00963 #endif
00964     {
00965         putShortMSB(s, (uInt)(strm->adler >> 16));
00966         putShortMSB(s, (uInt)(strm->adler & 0xffff));
00967     }
00968     flush_pending(strm);
00969     /* If avail_out is zero, the application will call deflate again
00970      * to flush the rest.
00971      */
00972     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
00973     return s->pending != 0 ? Z_OK : Z_STREAM_END;
00974 }
00975 
00976 /* ========================================================================= */
00977 int ZEXPORT deflateEnd (strm)
00978     z_streamp strm;
00979 {
00980     int status;
00981 
00982     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
00983 
00984     status = strm->state->status;
00985     if (status != INIT_STATE &&
00986         status != EXTRA_STATE &&
00987         status != NAME_STATE &&
00988         status != COMMENT_STATE &&
00989         status != HCRC_STATE &&
00990         status != BUSY_STATE &&
00991         status != FINISH_STATE) {
00992       return Z_STREAM_ERROR;
00993     }
00994 
00995     /* Deallocate in reverse order of allocations: */
00996     TRY_FREE(strm, strm->state->pending_buf);
00997     TRY_FREE(strm, strm->state->head);
00998     TRY_FREE(strm, strm->state->prev);
00999     TRY_FREE(strm, strm->state->window);
01000 
01001     ZFREE(strm, strm->state);
01002     strm->state = Z_NULL;
01003 
01004     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
01005 }
01006 
01007 /* =========================================================================
01008  * Copy the source state to the destination state.
01009  * To simplify the source, this is not supported for 16-bit MSDOS (which
01010  * doesn't have enough memory anyway to duplicate compression states).
01011  */
01012 int ZEXPORT deflateCopy (dest, source)
01013     z_streamp dest;
01014     z_streamp source;
01015 {
01016 #ifdef MAXSEG_64K
01017     return Z_STREAM_ERROR;
01018 #else
01019     deflate_state *ds;
01020     deflate_state *ss;
01021     ushf *overlay;
01022 
01023 
01024     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
01025         return Z_STREAM_ERROR;
01026     }
01027 
01028     ss = source->state;
01029 
01030     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
01031 
01032     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
01033     if (ds == Z_NULL) return Z_MEM_ERROR;
01034     dest->state = (struct internal_state FAR *) ds;
01035     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
01036     ds->strm = dest;
01037 
01038     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
01039     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
01040     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
01041     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
01042     ds->pending_buf = (uchf *) overlay;
01043 
01044     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
01045         ds->pending_buf == Z_NULL) {
01046         deflateEnd (dest);
01047         return Z_MEM_ERROR;
01048     }
01049     /* following zmemcpy do not work for 16-bit MSDOS */
01050     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
01051     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
01052     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
01053     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
01054 
01055     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
01056     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
01057     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
01058 
01059     ds->l_desc.dyn_tree = ds->dyn_ltree;
01060     ds->d_desc.dyn_tree = ds->dyn_dtree;
01061     ds->bl_desc.dyn_tree = ds->bl_tree;
01062 
01063     return Z_OK;
01064 #endif /* MAXSEG_64K */
01065 }
01066 
01067 /* ===========================================================================
01068  * Read a new buffer from the current input stream, update the adler32
01069  * and total number of bytes read.  All deflate() input goes through
01070  * this function so some applications may wish to modify it to avoid
01071  * allocating a large strm->next_in buffer and copying from it.
01072  * (See also flush_pending()).
01073  */
01074 local int read_buf(strm, buf, size)
01075     z_streamp strm;
01076     Bytef *buf;
01077     unsigned size;
01078 {
01079     unsigned len = strm->avail_in;
01080 
01081     if (len > size) len = size;
01082     if (len == 0) return 0;
01083 
01084     strm->avail_in  -= len;
01085 
01086     zmemcpy(buf, strm->next_in, len);
01087     if (strm->state->wrap == 1) {
01088         strm->adler = adler32(strm->adler, buf, len);
01089     }
01090 #ifdef GZIP
01091     else if (strm->state->wrap == 2) {
01092         strm->adler = crc32(strm->adler, buf, len);
01093     }
01094 #endif
01095     strm->next_in  += len;
01096     strm->total_in += len;
01097 
01098     return (int)len;
01099 }
01100 
01101 /* ===========================================================================
01102  * Initialize the "longest match" routines for a new zlib stream
01103  */
01104 local void lm_init (s)
01105     deflate_state *s;
01106 {
01107     s->window_size = (ulg)2L*s->w_size;
01108 
01109     CLEAR_HASH(s);
01110 
01111     /* Set the default configuration parameters:
01112      */
01113     s->max_lazy_match   = configuration_table[s->level].max_lazy;
01114     s->good_match       = configuration_table[s->level].good_length;
01115     s->nice_match       = configuration_table[s->level].nice_length;
01116     s->max_chain_length = configuration_table[s->level].max_chain;
01117 
01118     s->strstart = 0;
01119     s->block_start = 0L;
01120     s->lookahead = 0;
01121     s->insert = 0;
01122     s->match_length = s->prev_length = MIN_MATCH-1;
01123     s->match_available = 0;
01124     s->ins_h = 0;
01125 #ifndef FASTEST
01126 #ifdef ASMV
01127     match_init(); /* initialize the asm code */
01128 #endif
01129 #endif
01130 }
01131 
01132 #ifndef FASTEST
01133 /* ===========================================================================
01134  * Set match_start to the longest match starting at the given string and
01135  * return its length. Matches shorter or equal to prev_length are discarded,
01136  * in which case the result is equal to prev_length and match_start is
01137  * garbage.
01138  * IN assertions: cur_match is the head of the hash chain for the current
01139  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
01140  * OUT assertion: the match length is not greater than s->lookahead.
01141  */
01142 #ifndef ASMV
01143 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
01144  * match.S. The code will be functionally equivalent.
01145  */
01146 local uInt longest_match(s, cur_match)
01147     deflate_state *s;
01148     IPos cur_match;                             /* current match */
01149 {
01150     unsigned chain_length = s->max_chain_length;/* max hash chain length */
01151     register Bytef *scan = s->window + s->strstart; /* current string */
01152     register Bytef *match;                       /* matched string */
01153     register int len;                           /* length of current match */
01154     int best_len = s->prev_length;              /* best match length so far */
01155     int nice_match = s->nice_match;             /* stop if match long enough */
01156     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
01157         s->strstart - (IPos)MAX_DIST(s) : NIL;
01158     /* Stop when cur_match becomes <= limit. To simplify the code,
01159      * we prevent matches with the string of window index 0.
01160      */
01161     Posf *prev = s->prev;
01162     uInt wmask = s->w_mask;
01163 
01164 #ifdef UNALIGNED_OK
01165     /* Compare two bytes at a time. Note: this is not always beneficial.
01166      * Try with and without -DUNALIGNED_OK to check.
01167      */
01168     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
01169     register ush scan_start = *(ushf*)scan;
01170     register ush scan_end   = *(ushf*)(scan+best_len-1);
01171 #else
01172     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
01173     register Byte scan_end1  = scan[best_len-1];
01174     register Byte scan_end   = scan[best_len];
01175 #endif
01176 
01177     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
01178      * It is easy to get rid of this optimization if necessary.
01179      */
01180     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
01181 
01182     /* Do not waste too much time if we already have a good match: */
01183     if (s->prev_length >= s->good_match) {
01184         chain_length >>= 2;
01185     }
01186     /* Do not look for matches beyond the end of the input. This is necessary
01187      * to make deflate deterministic.
01188      */
01189     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
01190 
01191     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
01192 
01193     do {
01194         Assert(cur_match < s->strstart, "no future");
01195         match = s->window + cur_match;
01196 
01197         /* Skip to next match if the match length cannot increase
01198          * or if the match length is less than 2.  Note that the checks below
01199          * for insufficient lookahead only occur occasionally for performance
01200          * reasons.  Therefore uninitialized memory will be accessed, and
01201          * conditional jumps will be made that depend on those values.
01202          * However the length of the match is limited to the lookahead, so
01203          * the output of deflate is not affected by the uninitialized values.
01204          */
01205 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
01206         /* This code assumes sizeof(unsigned short) == 2. Do not use
01207          * UNALIGNED_OK if your compiler uses a different size.
01208          */
01209         if (*(ushf*)(match+best_len-1) != scan_end ||
01210             *(ushf*)match != scan_start) continue;
01211 
01212         /* It is not necessary to compare scan[2] and match[2] since they are
01213          * always equal when the other bytes match, given that the hash keys
01214          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
01215          * strstart+3, +5, ... up to strstart+257. We check for insufficient
01216          * lookahead only every 4th comparison; the 128th check will be made
01217          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
01218          * necessary to put more guard bytes at the end of the window, or
01219          * to check more often for insufficient lookahead.
01220          */
01221         Assert(scan[2] == match[2], "scan[2]?");
01222         scan++, match++;
01223         do {
01224         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
01225                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
01226                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
01227                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
01228                  scan < strend);
01229         /* The funny "do {}" generates better code on most compilers */
01230 
01231         /* Here, scan <= window+strstart+257 */
01232         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
01233         if (*scan == *match) scan++;
01234 
01235         len = (MAX_MATCH - 1) - (int)(strend-scan);
01236         scan = strend - (MAX_MATCH-1);
01237 
01238 #else /* UNALIGNED_OK */
01239 
01240         if (match[best_len]   != scan_end  ||
01241             match[best_len-1] != scan_end1 ||
01242             *match            != *scan     ||
01243             *++match          != scan[1])      continue;
01244 
01245         /* The check at best_len-1 can be removed because it will be made
01246          * again later. (This heuristic is not always a win.)
01247          * It is not necessary to compare scan[2] and match[2] since they
01248          * are always equal when the other bytes match, given that
01249          * the hash keys are equal and that HASH_BITS >= 8.
01250          */
01251         scan += 2, match++;
01252         Assert(*scan == *match, "match[2]?");
01253 
01254         /* We check for insufficient lookahead only every 8th comparison;
01255          * the 256th check will be made at strstart+258.
01256          */
01257         do {
01258         } while (*++scan == *++match && *++scan == *++match &&
01259                  *++scan == *++match && *++scan == *++match &&
01260                  *++scan == *++match && *++scan == *++match &&
01261                  *++scan == *++match && *++scan == *++match &&
01262                  scan < strend);
01263 
01264         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
01265 
01266         len = MAX_MATCH - (int)(strend - scan);
01267         scan = strend - MAX_MATCH;
01268 
01269 #endif /* UNALIGNED_OK */
01270 
01271         if (len > best_len) {
01272             s->match_start = cur_match;
01273             best_len = len;
01274             if (len >= nice_match) break;
01275 #ifdef UNALIGNED_OK
01276             scan_end = *(ushf*)(scan+best_len-1);
01277 #else
01278             scan_end1  = scan[best_len-1];
01279             scan_end   = scan[best_len];
01280 #endif
01281         }
01282     } while ((cur_match = prev[cur_match & wmask]) > limit
01283              && --chain_length != 0);
01284 
01285     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
01286     return s->lookahead;
01287 }
01288 #endif /* ASMV */
01289 
01290 #else /* FASTEST */
01291 
01292 /* ---------------------------------------------------------------------------
01293  * Optimized version for FASTEST only
01294  */
01295 local uInt longest_match(s, cur_match)
01296     deflate_state *s;
01297     IPos cur_match;                             /* current match */
01298 {
01299     register Bytef *scan = s->window + s->strstart; /* current string */
01300     register Bytef *match;                       /* matched string */
01301     register int len;                           /* length of current match */
01302     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
01303 
01304     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
01305      * It is easy to get rid of this optimization if necessary.
01306      */
01307     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
01308 
01309     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
01310 
01311     Assert(cur_match < s->strstart, "no future");
01312 
01313     match = s->window + cur_match;
01314 
01315     /* Return failure if the match length is less than 2:
01316      */
01317     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
01318 
01319     /* The check at best_len-1 can be removed because it will be made
01320      * again later. (This heuristic is not always a win.)
01321      * It is not necessary to compare scan[2] and match[2] since they
01322      * are always equal when the other bytes match, given that
01323      * the hash keys are equal and that HASH_BITS >= 8.
01324      */
01325     scan += 2, match += 2;
01326     Assert(*scan == *match, "match[2]?");
01327 
01328     /* We check for insufficient lookahead only every 8th comparison;
01329      * the 256th check will be made at strstart+258.
01330      */
01331     do {
01332     } while (*++scan == *++match && *++scan == *++match &&
01333              *++scan == *++match && *++scan == *++match &&
01334              *++scan == *++match && *++scan == *++match &&
01335              *++scan == *++match && *++scan == *++match &&
01336              scan < strend);
01337 
01338     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
01339 
01340     len = MAX_MATCH - (int)(strend - scan);
01341 
01342     if (len < MIN_MATCH) return MIN_MATCH - 1;
01343 
01344     s->match_start = cur_match;
01345     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
01346 }
01347 
01348 #endif /* FASTEST */
01349 
01350 #ifdef DEBUG
01351 /* ===========================================================================
01352  * Check that the match at match_start is indeed a match.
01353  */
01354 local void check_match(s, start, match, length)
01355     deflate_state *s;
01356     IPos start, match;
01357     int length;
01358 {
01359     /* check that the match is indeed a match */
01360     if (zmemcmp(s->window + match,
01361                 s->window + start, length) != EQUAL) {
01362         fprintf(stderr, " start %u, match %u, length %d\n",
01363                 start, match, length);
01364         do {
01365             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
01366         } while (--length != 0);
01367         z_error("invalid match");
01368     }
01369     if (z_verbose > 1) {
01370         fprintf(stderr,"\\[%d,%d]", start-match, length);
01371         do { putc(s->window[start++], stderr); } while (--length != 0);
01372     }
01373 }
01374 #else
01375 #  define check_match(s, start, match, length)
01376 #endif /* DEBUG */
01377 
01378 /* ===========================================================================
01379  * Fill the window when the lookahead becomes insufficient.
01380  * Updates strstart and lookahead.
01381  *
01382  * IN assertion: lookahead < MIN_LOOKAHEAD
01383  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
01384  *    At least one byte has been read, or avail_in == 0; reads are
01385  *    performed for at least two bytes (required for the zip translate_eol
01386  *    option -- not supported here).
01387  */
01388 local void fill_window(s)
01389     deflate_state *s;
01390 {
01391     register unsigned n, m;
01392     register Posf *p;
01393     unsigned more;    /* Amount of free space at the end of the window. */
01394     uInt wsize = s->w_size;
01395 
01396     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
01397 
01398     do {
01399         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
01400 
01401         /* Deal with !@#$% 64K limit: */
01402         if (sizeof(int) <= 2) {
01403             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
01404                 more = wsize;
01405 
01406             } else if (more == (unsigned)(-1)) {
01407                 /* Very unlikely, but possible on 16 bit machine if
01408                  * strstart == 0 && lookahead == 1 (input done a byte at time)
01409                  */
01410                 more--;
01411             }
01412         }
01413 
01414         /* If the window is almost full and there is insufficient lookahead,
01415          * move the upper half to the lower one to make room in the upper half.
01416          */
01417         if (s->strstart >= wsize+MAX_DIST(s)) {
01418 
01419             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
01420             s->match_start -= wsize;
01421             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
01422             s->block_start -= (long) wsize;
01423 
01424             /* Slide the hash table (could be avoided with 32 bit values
01425                at the expense of memory usage). We slide even when level == 0
01426                to keep the hash table consistent if we switch back to level > 0
01427                later. (Using level 0 permanently is not an optimal usage of
01428                zlib, so we don't care about this pathological case.)
01429              */
01430             n = s->hash_size;
01431             p = &s->head[n];
01432             do {
01433                 m = *--p;
01434                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
01435             } while (--n);
01436 
01437             n = wsize;
01438 #ifndef FASTEST
01439             p = &s->prev[n];
01440             do {
01441                 m = *--p;
01442                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
01443                 /* If n is not on any hash chain, prev[n] is garbage but
01444                  * its value will never be used.
01445                  */
01446             } while (--n);
01447 #endif
01448             more += wsize;
01449         }
01450         if (s->strm->avail_in == 0) break;
01451 
01452         /* If there was no sliding:
01453          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
01454          *    more == window_size - lookahead - strstart
01455          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
01456          * => more >= window_size - 2*WSIZE + 2
01457          * In the BIG_MEM or MMAP case (not yet supported),
01458          *   window_size == input_size + MIN_LOOKAHEAD  &&
01459          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
01460          * Otherwise, window_size == 2*WSIZE so more >= 2.
01461          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
01462          */
01463         Assert(more >= 2, "more < 2");
01464 
01465         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
01466         s->lookahead += n;
01467 
01468         /* Initialize the hash value now that we have some input: */
01469         if (s->lookahead + s->insert >= MIN_MATCH) {
01470             uInt str = s->strstart - s->insert;
01471             s->ins_h = s->window[str];
01472             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
01473 #if MIN_MATCH != 3
01474             Call UPDATE_HASH() MIN_MATCH-3 more times
01475 #endif
01476             while (s->insert) {
01477                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
01478 #ifndef FASTEST
01479                 s->prev[str & s->w_mask] = s->head[s->ins_h];
01480 #endif
01481                 s->head[s->ins_h] = (Pos)str;
01482                 str++;
01483                 s->insert--;
01484                 if (s->lookahead + s->insert < MIN_MATCH)
01485                     break;
01486             }
01487         }
01488         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
01489          * but this is not important since only literal bytes will be emitted.
01490          */
01491 
01492     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
01493 
01494     /* If the WIN_INIT bytes after the end of the current data have never been
01495      * written, then zero those bytes in order to avoid memory check reports of
01496      * the use of uninitialized (or uninitialised as Julian writes) bytes by
01497      * the longest match routines.  Update the high water mark for the next
01498      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
01499      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
01500      */
01501     if (s->high_water < s->window_size) {
01502         ulg curr = s->strstart + (ulg)(s->lookahead);
01503         ulg init;
01504 
01505         if (s->high_water < curr) {
01506             /* Previous high water mark below current data -- zero WIN_INIT
01507              * bytes or up to end of window, whichever is less.
01508              */
01509             init = s->window_size - curr;
01510             if (init > WIN_INIT)
01511                 init = WIN_INIT;
01512             zmemzero(s->window + curr, (unsigned)init);
01513             s->high_water = curr + init;
01514         }
01515         else if (s->high_water < (ulg)curr + WIN_INIT) {
01516             /* High water mark at or above current data, but below current data
01517              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
01518              * to end of window, whichever is less.
01519              */
01520             init = (ulg)curr + WIN_INIT - s->high_water;
01521             if (init > s->window_size - s->high_water)
01522                 init = s->window_size - s->high_water;
01523             zmemzero(s->window + s->high_water, (unsigned)init);
01524             s->high_water += init;
01525         }
01526     }
01527 
01528     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
01529            "not enough room for search");
01530 }
01531 
01532 /* ===========================================================================
01533  * Flush the current block, with given end-of-file flag.
01534  * IN assertion: strstart is set to the end of the current match.
01535  */
01536 #define FLUSH_BLOCK_ONLY(s, last) { \
01537    _tr_flush_block(s, (s->block_start >= 0L ? \
01538                    (charf *)&s->window[(unsigned)s->block_start] : \
01539                    (charf *)Z_NULL), \
01540                 (ulg)((long)s->strstart - s->block_start), \
01541                 (last)); \
01542    s->block_start = s->strstart; \
01543    flush_pending(s->strm); \
01544    Tracev((stderr,"[FLUSH]")); \
01545 }
01546 
01547 /* Same but force premature exit if necessary. */
01548 #define FLUSH_BLOCK(s, last) { \
01549    FLUSH_BLOCK_ONLY(s, last); \
01550    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
01551 }
01552 
01553 /* ===========================================================================
01554  * Copy without compression as much as possible from the input stream, return
01555  * the current block state.
01556  * This function does not insert new strings in the dictionary since
01557  * uncompressible data is probably not useful. This function is used
01558  * only for the level=0 compression option.
01559  * NOTE: this function should be optimized to avoid extra copying from
01560  * window to pending_buf.
01561  */
01562 local block_state deflate_stored(s, flush)
01563     deflate_state *s;
01564     int flush;
01565 {
01566     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
01567      * to pending_buf_size, and each stored block has a 5 byte header:
01568      */
01569     ulg max_block_size = 0xffff;
01570     ulg max_start;
01571 
01572     if (max_block_size > s->pending_buf_size - 5) {
01573         max_block_size = s->pending_buf_size - 5;
01574     }
01575 
01576     /* Copy as much as possible from input to output: */
01577     for (;;) {
01578         /* Fill the window as much as possible: */
01579         if (s->lookahead <= 1) {
01580 
01581             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
01582                    s->block_start >= (long)s->w_size, "slide too late");
01583 
01584             fill_window(s);
01585             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
01586 
01587             if (s->lookahead == 0) break; /* flush the current block */
01588         }
01589         Assert(s->block_start >= 0L, "block gone");
01590 
01591         s->strstart += s->lookahead;
01592         s->lookahead = 0;
01593 
01594         /* Emit a stored block if pending_buf will be full: */
01595         max_start = s->block_start + max_block_size;
01596         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
01597             /* strstart == 0 is possible when wraparound on 16-bit machine */
01598             s->lookahead = (uInt)(s->strstart - max_start);
01599             s->strstart = (uInt)max_start;
01600             FLUSH_BLOCK(s, 0);
01601         }
01602         /* Flush if we may have to slide, otherwise block_start may become
01603          * negative and the data will be gone:
01604          */
01605         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
01606             FLUSH_BLOCK(s, 0);
01607         }
01608     }
01609     s->insert = 0;
01610     if (flush == Z_FINISH) {
01611         FLUSH_BLOCK(s, 1);
01612         return finish_done;
01613     }
01614     if ((long)s->strstart > s->block_start)
01615         FLUSH_BLOCK(s, 0);
01616     return block_done;
01617 }
01618 
01619 /* ===========================================================================
01620  * Compress as much as possible from the input stream, return the current
01621  * block state.
01622  * This function does not perform lazy evaluation of matches and inserts
01623  * new strings in the dictionary only for unmatched strings or for short
01624  * matches. It is used only for the fast compression options.
01625  */
01626 local block_state deflate_fast(s, flush)
01627     deflate_state *s;
01628     int flush;
01629 {
01630     IPos hash_head;       /* head of the hash chain */
01631     int bflush;           /* set if current block must be flushed */
01632 
01633     for (;;) {
01634         /* Make sure that we always have enough lookahead, except
01635          * at the end of the input file. We need MAX_MATCH bytes
01636          * for the next match, plus MIN_MATCH bytes to insert the
01637          * string following the next match.
01638          */
01639         if (s->lookahead < MIN_LOOKAHEAD) {
01640             fill_window(s);
01641             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
01642                 return need_more;
01643             }
01644             if (s->lookahead == 0) break; /* flush the current block */
01645         }
01646 
01647         /* Insert the string window[strstart .. strstart+2] in the
01648          * dictionary, and set hash_head to the head of the hash chain:
01649          */
01650         hash_head = NIL;
01651         if (s->lookahead >= MIN_MATCH) {
01652             INSERT_STRING(s, s->strstart, hash_head);
01653         }
01654 
01655         /* Find the longest match, discarding those <= prev_length.
01656          * At this point we have always match_length < MIN_MATCH
01657          */
01658         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
01659             /* To simplify the code, we prevent matches with the string
01660              * of window index 0 (in particular we have to avoid a match
01661              * of the string with itself at the start of the input file).
01662              */
01663             s->match_length = longest_match (s, hash_head);
01664             /* longest_match() sets match_start */
01665         }
01666         if (s->match_length >= MIN_MATCH) {
01667             check_match(s, s->strstart, s->match_start, s->match_length);
01668 
01669             _tr_tally_dist(s, s->strstart - s->match_start,
01670                            s->match_length - MIN_MATCH, bflush);
01671 
01672             s->lookahead -= s->match_length;
01673 
01674             /* Insert new strings in the hash table only if the match length
01675              * is not too large. This saves time but degrades compression.
01676              */
01677 #ifndef FASTEST
01678             if (s->match_length <= s->max_insert_length &&
01679                 s->lookahead >= MIN_MATCH) {
01680                 s->match_length--; /* string at strstart already in table */
01681                 do {
01682                     s->strstart++;
01683                     INSERT_STRING(s, s->strstart, hash_head);
01684                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
01685                      * always MIN_MATCH bytes ahead.
01686                      */
01687                 } while (--s->match_length != 0);
01688                 s->strstart++;
01689             } else
01690 #endif
01691             {
01692                 s->strstart += s->match_length;
01693                 s->match_length = 0;
01694                 s->ins_h = s->window[s->strstart];
01695                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
01696 #if MIN_MATCH != 3
01697                 Call UPDATE_HASH() MIN_MATCH-3 more times
01698 #endif
01699                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
01700                  * matter since it will be recomputed at next deflate call.
01701                  */
01702             }
01703         } else {
01704             /* No match, output a literal byte */
01705             Tracevv((stderr,"%c", s->window[s->strstart]));
01706             _tr_tally_lit (s, s->window[s->strstart], bflush);
01707             s->lookahead--;
01708             s->strstart++;
01709         }
01710         if (bflush) FLUSH_BLOCK(s, 0);
01711     }
01712     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
01713     if (flush == Z_FINISH) {
01714         FLUSH_BLOCK(s, 1);
01715         return finish_done;
01716     }
01717     if (s->last_lit)
01718         FLUSH_BLOCK(s, 0);
01719     return block_done;
01720 }
01721 
01722 #ifndef FASTEST
01723 /* ===========================================================================
01724  * Same as above, but achieves better compression. We use a lazy
01725  * evaluation for matches: a match is finally adopted only if there is
01726  * no better match at the next window position.
01727  */
01728 local block_state deflate_slow(s, flush)
01729     deflate_state *s;
01730     int flush;
01731 {
01732     IPos hash_head;          /* head of hash chain */
01733     int bflush;              /* set if current block must be flushed */
01734 
01735     /* Process the input block. */
01736     for (;;) {
01737         /* Make sure that we always have enough lookahead, except
01738          * at the end of the input file. We need MAX_MATCH bytes
01739          * for the next match, plus MIN_MATCH bytes to insert the
01740          * string following the next match.
01741          */
01742         if (s->lookahead < MIN_LOOKAHEAD) {
01743             fill_window(s);
01744             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
01745                 return need_more;
01746             }
01747             if (s->lookahead == 0) break; /* flush the current block */
01748         }
01749 
01750         /* Insert the string window[strstart .. strstart+2] in the
01751          * dictionary, and set hash_head to the head of the hash chain:
01752          */
01753         hash_head = NIL;
01754         if (s->lookahead >= MIN_MATCH) {
01755             INSERT_STRING(s, s->strstart, hash_head);
01756         }
01757 
01758         /* Find the longest match, discarding those <= prev_length.
01759          */
01760         s->prev_length = s->match_length, s->prev_match = s->match_start;
01761         s->match_length = MIN_MATCH-1;
01762 
01763         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
01764             s->strstart - hash_head <= MAX_DIST(s)) {
01765             /* To simplify the code, we prevent matches with the string
01766              * of window index 0 (in particular we have to avoid a match
01767              * of the string with itself at the start of the input file).
01768              */
01769             s->match_length = longest_match (s, hash_head);
01770             /* longest_match() sets match_start */
01771 
01772             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
01773 #if TOO_FAR <= 32767
01774                 || (s->match_length == MIN_MATCH &&
01775                     s->strstart - s->match_start > TOO_FAR)
01776 #endif
01777                 )) {
01778 
01779                 /* If prev_match is also MIN_MATCH, match_start is garbage
01780                  * but we will ignore the current match anyway.
01781                  */
01782                 s->match_length = MIN_MATCH-1;
01783             }
01784         }
01785         /* If there was a match at the previous step and the current
01786          * match is not better, output the previous match:
01787          */
01788         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
01789             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
01790             /* Do not insert strings in hash table beyond this. */
01791 
01792             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
01793 
01794             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
01795                            s->prev_length - MIN_MATCH, bflush);
01796 
01797             /* Insert in hash table all strings up to the end of the match.
01798              * strstart-1 and strstart are already inserted. If there is not
01799              * enough lookahead, the last two strings are not inserted in
01800              * the hash table.
01801              */
01802             s->lookahead -= s->prev_length-1;
01803             s->prev_length -= 2;
01804             do {
01805                 if (++s->strstart <= max_insert) {
01806                     INSERT_STRING(s, s->strstart, hash_head);
01807                 }
01808             } while (--s->prev_length != 0);
01809             s->match_available = 0;
01810             s->match_length = MIN_MATCH-1;
01811             s->strstart++;
01812 
01813             if (bflush) FLUSH_BLOCK(s, 0);
01814 
01815         } else if (s->match_available) {
01816             /* If there was no match at the previous position, output a
01817              * single literal. If there was a match but the current match
01818              * is longer, truncate the previous match to a single literal.
01819              */
01820             Tracevv((stderr,"%c", s->window[s->strstart-1]));
01821             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
01822             if (bflush) {
01823                 FLUSH_BLOCK_ONLY(s, 0);
01824             }
01825             s->strstart++;
01826             s->lookahead--;
01827             if (s->strm->avail_out == 0) return need_more;
01828         } else {
01829             /* There is no previous match to compare with, wait for
01830              * the next step to decide.
01831              */
01832             s->match_available = 1;
01833             s->strstart++;
01834             s->lookahead--;
01835         }
01836     }
01837     Assert (flush != Z_NO_FLUSH, "no flush?");
01838     if (s->match_available) {
01839         Tracevv((stderr,"%c", s->window[s->strstart-1]));
01840         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
01841         s->match_available = 0;
01842     }
01843     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
01844     if (flush == Z_FINISH) {
01845         FLUSH_BLOCK(s, 1);
01846         return finish_done;
01847     }
01848     if (s->last_lit)
01849         FLUSH_BLOCK(s, 0);
01850     return block_done;
01851 }
01852 #endif /* FASTEST */
01853 
01854 /* ===========================================================================
01855  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
01856  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
01857  * deflate switches away from Z_RLE.)
01858  */
01859 local block_state deflate_rle(s, flush)
01860     deflate_state *s;
01861     int flush;
01862 {
01863     int bflush;             /* set if current block must be flushed */
01864     uInt prev;              /* byte at distance one to match */
01865     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
01866 
01867     for (;;) {
01868         /* Make sure that we always have enough lookahead, except
01869          * at the end of the input file. We need MAX_MATCH bytes
01870          * for the longest run, plus one for the unrolled loop.
01871          */
01872         if (s->lookahead <= MAX_MATCH) {
01873             fill_window(s);
01874             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
01875                 return need_more;
01876             }
01877             if (s->lookahead == 0) break; /* flush the current block */
01878         }
01879 
01880         /* See how many times the previous byte repeats */
01881         s->match_length = 0;
01882         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
01883             scan = s->window + s->strstart - 1;
01884             prev = *scan;
01885             if (prev == *++scan && prev == *++scan && prev == *++scan) {
01886                 strend = s->window + s->strstart + MAX_MATCH;
01887                 do {
01888                 } while (prev == *++scan && prev == *++scan &&
01889                          prev == *++scan && prev == *++scan &&
01890                          prev == *++scan && prev == *++scan &&
01891                          prev == *++scan && prev == *++scan &&
01892                          scan < strend);
01893                 s->match_length = MAX_MATCH - (int)(strend - scan);
01894                 if (s->match_length > s->lookahead)
01895                     s->match_length = s->lookahead;
01896             }
01897             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
01898         }
01899 
01900         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
01901         if (s->match_length >= MIN_MATCH) {
01902             check_match(s, s->strstart, s->strstart - 1, s->match_length);
01903 
01904             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
01905 
01906             s->lookahead -= s->match_length;
01907             s->strstart += s->match_length;
01908             s->match_length = 0;
01909         } else {
01910             /* No match, output a literal byte */
01911             Tracevv((stderr,"%c", s->window[s->strstart]));
01912             _tr_tally_lit (s, s->window[s->strstart], bflush);
01913             s->lookahead--;
01914             s->strstart++;
01915         }
01916         if (bflush) FLUSH_BLOCK(s, 0);
01917     }
01918     s->insert = 0;
01919     if (flush == Z_FINISH) {
01920         FLUSH_BLOCK(s, 1);
01921         return finish_done;
01922     }
01923     if (s->last_lit)
01924         FLUSH_BLOCK(s, 0);
01925     return block_done;
01926 }
01927 
01928 /* ===========================================================================
01929  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
01930  * (It will be regenerated if this run of deflate switches away from Huffman.)
01931  */
01932 local block_state deflate_huff(s, flush)
01933     deflate_state *s;
01934     int flush;
01935 {
01936     int bflush;             /* set if current block must be flushed */
01937 
01938     for (;;) {
01939         /* Make sure that we have a literal to write. */
01940         if (s->lookahead == 0) {
01941             fill_window(s);
01942             if (s->lookahead == 0) {
01943                 if (flush == Z_NO_FLUSH)
01944                     return need_more;
01945                 break;      /* flush the current block */
01946             }
01947         }
01948 
01949         /* Output a literal byte */
01950         s->match_length = 0;
01951         Tracevv((stderr,"%c", s->window[s->strstart]));
01952         _tr_tally_lit (s, s->window[s->strstart], bflush);
01953         s->lookahead--;
01954         s->strstart++;
01955         if (bflush) FLUSH_BLOCK(s, 0);
01956     }
01957     s->insert = 0;
01958     if (flush == Z_FINISH) {
01959         FLUSH_BLOCK(s, 1);
01960         return finish_done;
01961     }
01962     if (s->last_lit)
01963         FLUSH_BLOCK(s, 0);
01964     return block_done;
01965 }