Basic gzip/gunzip in memory buffer examples using zlib code.
Embed:
(wiki syntax)
Show/hide line numbers
adler32.c
00001 /* adler32.c -- compute the Adler-32 checksum of a data stream 00002 * Copyright (C) 1995-2011 Mark Adler 00003 * For conditions of distribution and use, see copyright notice in zlib.h 00004 */ 00005 00006 /* @(#) $Id$ */ 00007 00008 #include "zutil.h" 00009 00010 #define local static 00011 00012 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); 00013 00014 #define BASE 65521 /* largest prime smaller than 65536 */ 00015 #define NMAX 5552 00016 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ 00017 00018 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} 00019 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); 00020 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); 00021 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); 00022 #define DO16(buf) DO8(buf,0); DO8(buf,8); 00023 00024 /* use NO_DIVIDE if your processor does not do division in hardware -- 00025 try it both ways to see which is faster */ 00026 #ifdef NO_DIVIDE 00027 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 00028 (thank you to John Reiser for pointing this out) */ 00029 # define CHOP(a) \ 00030 do { \ 00031 unsigned long tmp = a >> 16; \ 00032 a &= 0xffffUL; \ 00033 a += (tmp << 4) - tmp; \ 00034 } while (0) 00035 # define MOD28(a) \ 00036 do { \ 00037 CHOP(a); \ 00038 if (a >= BASE) a -= BASE; \ 00039 } while (0) 00040 # define MOD(a) \ 00041 do { \ 00042 CHOP(a); \ 00043 MOD28(a); \ 00044 } while (0) 00045 # define MOD63(a) \ 00046 do { /* this assumes a is not negative */ \ 00047 z_off64_t tmp = a >> 32; \ 00048 a &= 0xffffffffL; \ 00049 a += (tmp << 8) - (tmp << 5) + tmp; \ 00050 tmp = a >> 16; \ 00051 a &= 0xffffL; \ 00052 a += (tmp << 4) - tmp; \ 00053 tmp = a >> 16; \ 00054 a &= 0xffffL; \ 00055 a += (tmp << 4) - tmp; \ 00056 if (a >= BASE) a -= BASE; \ 00057 } while (0) 00058 #else 00059 # define MOD(a) a %= BASE 00060 # define MOD28(a) a %= BASE 00061 # define MOD63(a) a %= BASE 00062 #endif 00063 00064 /* ========================================================================= */ 00065 uLong ZEXPORT adler32(adler, buf, len) 00066 uLong adler; 00067 const Bytef *buf; 00068 uInt len; 00069 { 00070 unsigned long sum2; 00071 unsigned n; 00072 00073 /* split Adler-32 into component sums */ 00074 sum2 = (adler >> 16) & 0xffff; 00075 adler &= 0xffff; 00076 00077 /* in case user likes doing a byte at a time, keep it fast */ 00078 if (len == 1) { 00079 adler += buf[0]; 00080 if (adler >= BASE) 00081 adler -= BASE; 00082 sum2 += adler; 00083 if (sum2 >= BASE) 00084 sum2 -= BASE; 00085 return adler | (sum2 << 16); 00086 } 00087 00088 /* initial Adler-32 value (deferred check for len == 1 speed) */ 00089 if (buf == Z_NULL) 00090 return 1L; 00091 00092 /* in case short lengths are provided, keep it somewhat fast */ 00093 if (len < 16) { 00094 while (len--) { 00095 adler += *buf++; 00096 sum2 += adler; 00097 } 00098 if (adler >= BASE) 00099 adler -= BASE; 00100 MOD28(sum2); /* only added so many BASE's */ 00101 return adler | (sum2 << 16); 00102 } 00103 00104 /* do length NMAX blocks -- requires just one modulo operation */ 00105 while (len >= NMAX) { 00106 len -= NMAX; 00107 n = NMAX / 16; /* NMAX is divisible by 16 */ 00108 do { 00109 DO16(buf); /* 16 sums unrolled */ 00110 buf += 16; 00111 } while (--n); 00112 MOD(adler); 00113 MOD(sum2); 00114 } 00115 00116 /* do remaining bytes (less than NMAX, still just one modulo) */ 00117 if (len) { /* avoid modulos if none remaining */ 00118 while (len >= 16) { 00119 len -= 16; 00120 DO16(buf); 00121 buf += 16; 00122 } 00123 while (len--) { 00124 adler += *buf++; 00125 sum2 += adler; 00126 } 00127 MOD(adler); 00128 MOD(sum2); 00129 } 00130 00131 /* return recombined sums */ 00132 return adler | (sum2 << 16); 00133 } 00134 00135 /* ========================================================================= */ 00136 local uLong adler32_combine_(adler1, adler2, len2) 00137 uLong adler1; 00138 uLong adler2; 00139 z_off64_t len2; 00140 { 00141 unsigned long sum1; 00142 unsigned long sum2; 00143 unsigned rem; 00144 00145 /* for negative len, return invalid adler32 as a clue for debugging */ 00146 if (len2 < 0) 00147 return 0xffffffffUL; 00148 00149 /* the derivation of this formula is left as an exercise for the reader */ 00150 MOD63(len2); /* assumes len2 >= 0 */ 00151 rem = (unsigned)len2; 00152 sum1 = adler1 & 0xffff; 00153 sum2 = rem * sum1; 00154 MOD(sum2); 00155 sum1 += (adler2 & 0xffff) + BASE - 1; 00156 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; 00157 if (sum1 >= BASE) sum1 -= BASE; 00158 if (sum1 >= BASE) sum1 -= BASE; 00159 if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); 00160 if (sum2 >= BASE) sum2 -= BASE; 00161 return sum1 | (sum2 << 16); 00162 } 00163 00164 /* ========================================================================= */ 00165 uLong ZEXPORT adler32_combine(adler1, adler2, len2) 00166 uLong adler1; 00167 uLong adler2; 00168 z_off_t len2; 00169 { 00170 return adler32_combine_(adler1, adler2, len2); 00171 } 00172 00173 uLong ZEXPORT adler32_combine64(adler1, adler2, len2) 00174 uLong adler1; 00175 uLong adler2; 00176 z_off64_t len2; 00177 { 00178 return adler32_combine_(adler1, adler2, len2); 00179 }
Generated on Wed Jul 13 2022 09:05:31 by
1.7.2