Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of Email2Screen by
mem.c
00001 #pragma diag_remark 177 00002 /** 00003 * @file 00004 * Dynamic memory manager 00005 * 00006 * This is a lightweight replacement for the standard C library malloc(). 00007 * 00008 * If you want to use the standard C library malloc() instead, define 00009 * MEM_LIBC_MALLOC to 1 in your lwipopts.h 00010 * 00011 * To let mem_malloc() use pools (prevents fragmentation and is much faster than 00012 * a heap but might waste some memory), define MEM_USE_POOLS to 1, define 00013 * MEM_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list 00014 * of pools like this (more pools can be added between _START and _END): 00015 * 00016 * Define three pools with sizes 256, 512, and 1512 bytes 00017 * LWIP_MALLOC_MEMPOOL_START 00018 * LWIP_MALLOC_MEMPOOL(20, 256) 00019 * LWIP_MALLOC_MEMPOOL(10, 512) 00020 * LWIP_MALLOC_MEMPOOL(5, 1512) 00021 * LWIP_MALLOC_MEMPOOL_END 00022 */ 00023 00024 /* 00025 * Copyright (c) 2001-2004 Swedish Institute of Computer Science. 00026 * All rights reserved. 00027 * 00028 * Redistribution and use in source and binary forms, with or without modification, 00029 * are permitted provided that the following conditions are met: 00030 * 00031 * 1. Redistributions of source code must retain the above copyright notice, 00032 * this list of conditions and the following disclaimer. 00033 * 2. Redistributions in binary form must reproduce the above copyright notice, 00034 * this list of conditions and the following disclaimer in the documentation 00035 * and/or other materials provided with the distribution. 00036 * 3. The name of the author may not be used to endorse or promote products 00037 * derived from this software without specific prior written permission. 00038 * 00039 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 00040 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 00041 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 00042 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 00043 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 00044 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 00045 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 00046 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 00047 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 00048 * OF SUCH DAMAGE. 00049 * 00050 * This file is part of the lwIP TCP/IP stack. 00051 * 00052 * Author: Adam Dunkels <adam@sics.se> 00053 * Simon Goldschmidt 00054 * 00055 */ 00056 00057 #include "lwip/opt.h" 00058 00059 #if !MEM_LIBC_MALLOC /* don't build if not configured for use in lwipopts.h */ 00060 00061 #include "lwip/def.h" 00062 #include "lwip/mem.h" 00063 #include "lwip/sys.h" 00064 #include "lwip/stats.h" 00065 #include "lwip/err.h" 00066 00067 #include <string.h> 00068 00069 #if MEM_USE_POOLS 00070 /* lwIP head implemented with different sized pools */ 00071 00072 /** 00073 * Allocate memory: determine the smallest pool that is big enough 00074 * to contain an element of 'size' and get an element from that pool. 00075 * 00076 * @param size the size in bytes of the memory needed 00077 * @return a pointer to the allocated memory or NULL if the pool is empty 00078 */ 00079 void * 00080 mem_malloc(mem_size_t size) 00081 { 00082 struct memp_malloc_helper *element; 00083 memp_t poolnr; 00084 mem_size_t required_size = size + sizeof(struct memp_malloc_helper); 00085 00086 for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) { 00087 #if MEM_USE_POOLS_TRY_BIGGER_POOL 00088 again: 00089 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */ 00090 /* is this pool big enough to hold an element of the required size 00091 plus a struct memp_malloc_helper that saves the pool this element came from? */ 00092 if (required_size <= memp_sizes[poolnr]) { 00093 break; 00094 } 00095 } 00096 if (poolnr > MEMP_POOL_LAST) { 00097 LWIP_ASSERT("mem_malloc(): no pool is that big!", 0); 00098 return NULL; 00099 } 00100 element = (struct memp_malloc_helper*)memp_malloc(poolnr); 00101 if (element == NULL) { 00102 /* No need to DEBUGF or ASSERT: This error is already 00103 taken care of in memp.c */ 00104 #if MEM_USE_POOLS_TRY_BIGGER_POOL 00105 /** Try a bigger pool if this one is empty! */ 00106 if (poolnr < MEMP_POOL_LAST) { 00107 poolnr++; 00108 goto again; 00109 } 00110 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */ 00111 return NULL; 00112 } 00113 00114 /* save the pool number this element came from */ 00115 element->poolnr = poolnr; 00116 /* and return a pointer to the memory directly after the struct memp_malloc_helper */ 00117 element++; 00118 00119 return element; 00120 } 00121 00122 /** 00123 * Free memory previously allocated by mem_malloc. Loads the pool number 00124 * and calls memp_free with that pool number to put the element back into 00125 * its pool 00126 * 00127 * @param rmem the memory element to free 00128 */ 00129 void 00130 mem_free(void *rmem) 00131 { 00132 struct memp_malloc_helper *hmem = (struct memp_malloc_helper*)rmem; 00133 00134 LWIP_ASSERT("rmem != NULL", (rmem != NULL)); 00135 LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem))); 00136 00137 /* get the original struct memp_malloc_helper */ 00138 hmem--; 00139 00140 LWIP_ASSERT("hmem != NULL", (hmem != NULL)); 00141 LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem))); 00142 LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX)); 00143 00144 /* and put it in the pool we saved earlier */ 00145 memp_free(hmem->poolnr, hmem); 00146 } 00147 00148 #else /* MEM_USE_POOLS */ 00149 /* lwIP replacement for your libc malloc() */ 00150 00151 /** 00152 * The heap is made up as a list of structs of this type. 00153 * This does not have to be aligned since for getting its size, 00154 * we only use the macro SIZEOF_STRUCT_MEM, which automatically alignes. 00155 */ 00156 struct mem { 00157 /** index (-> ram[next]) of the next struct */ 00158 mem_size_t next; 00159 /** index (-> ram[prev]) of the previous struct */ 00160 mem_size_t prev; 00161 /** 1: this area is used; 0: this area is unused */ 00162 u8_t used; 00163 }; 00164 00165 /** All allocated blocks will be MIN_SIZE bytes big, at least! 00166 * MIN_SIZE can be overridden to suit your needs. Smaller values save space, 00167 * larger values could prevent too small blocks to fragment the RAM too much. */ 00168 #ifndef MIN_SIZE 00169 #define MIN_SIZE 12 00170 #endif /* MIN_SIZE */ 00171 /* some alignment macros: we define them here for better source code layout */ 00172 #define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE) 00173 #define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem)) 00174 #define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE) 00175 00176 /** If you want to relocate the heap to external memory, simply define 00177 * LWIP_RAM_HEAP_POINTER as a void-pointer to that location. 00178 * If so, make sure the memory at that location is big enough (see below on 00179 * how that space is calculated). */ 00180 #ifndef LWIP_RAM_HEAP_POINTER 00181 /** the heap. we need one struct mem at the end and some room for alignment */ 00182 u8_t ram_heap[MEM_SIZE_ALIGNED + (2*SIZEOF_STRUCT_MEM) + MEM_ALIGNMENT] MEM_POSITION; 00183 #define LWIP_RAM_HEAP_POINTER ram_heap 00184 #endif /* LWIP_RAM_HEAP_POINTER */ 00185 00186 /** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */ 00187 static u8_t *ram; 00188 /** the last entry, always unused! */ 00189 static struct mem *ram_end; 00190 /** pointer to the lowest free block, this is used for faster search */ 00191 static struct mem *lfree; 00192 00193 /** concurrent access protection */ 00194 static sys_mutex_t mem_mutex; 00195 00196 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00197 00198 static volatile u8_t mem_free_count; 00199 00200 /* Allow mem_free from other (e.g. interrupt) context */ 00201 #define LWIP_MEM_FREE_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_free) 00202 #define LWIP_MEM_FREE_PROTECT() SYS_ARCH_PROTECT(lev_free) 00203 #define LWIP_MEM_FREE_UNPROTECT() SYS_ARCH_UNPROTECT(lev_free) 00204 #define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc) 00205 #define LWIP_MEM_ALLOC_PROTECT() SYS_ARCH_PROTECT(lev_alloc) 00206 #define LWIP_MEM_ALLOC_UNPROTECT() SYS_ARCH_UNPROTECT(lev_alloc) 00207 00208 #else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00209 00210 /* Protect the heap only by using a semaphore */ 00211 #define LWIP_MEM_FREE_DECL_PROTECT() 00212 #define LWIP_MEM_FREE_PROTECT() sys_mutex_lock(&mem_mutex) 00213 #define LWIP_MEM_FREE_UNPROTECT() sys_mutex_unlock(&mem_mutex) 00214 /* mem_malloc is protected using semaphore AND LWIP_MEM_ALLOC_PROTECT */ 00215 #define LWIP_MEM_ALLOC_DECL_PROTECT() 00216 #define LWIP_MEM_ALLOC_PROTECT() 00217 #define LWIP_MEM_ALLOC_UNPROTECT() 00218 00219 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00220 00221 00222 /** 00223 * "Plug holes" by combining adjacent empty struct mems. 00224 * After this function is through, there should not exist 00225 * one empty struct mem pointing to another empty struct mem. 00226 * 00227 * @param mem this points to a struct mem which just has been freed 00228 * @internal this function is only called by mem_free() and mem_trim() 00229 * 00230 * This assumes access to the heap is protected by the calling function 00231 * already. 00232 */ 00233 static void 00234 plug_holes(struct mem *mem) 00235 { 00236 struct mem *nmem; 00237 struct mem *pmem; 00238 00239 LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram); 00240 LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end); 00241 LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0); 00242 00243 /* plug hole forward */ 00244 LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED); 00245 00246 nmem = (struct mem *)(void *)&ram[mem->next]; 00247 if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) { 00248 /* if mem->next is unused and not end of ram, combine mem and mem->next */ 00249 if (lfree == nmem) { 00250 lfree = mem; 00251 } 00252 mem->next = nmem->next; 00253 ((struct mem *)(void *)&ram[nmem->next])->prev = (mem_size_t)((u8_t *)mem - ram); 00254 } 00255 00256 /* plug hole backward */ 00257 pmem = (struct mem *)(void *)&ram[mem->prev]; 00258 if (pmem != mem && pmem->used == 0) { 00259 /* if mem->prev is unused, combine mem and mem->prev */ 00260 if (lfree == mem) { 00261 lfree = pmem; 00262 } 00263 pmem->next = mem->next; 00264 ((struct mem *)(void *)&ram[mem->next])->prev = (mem_size_t)((u8_t *)pmem - ram); 00265 } 00266 } 00267 00268 /** 00269 * Zero the heap and initialize start, end and lowest-free 00270 */ 00271 void 00272 mem_init(void) 00273 { 00274 struct mem *mem; 00275 00276 LWIP_ASSERT("Sanity check alignment", 00277 (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0); 00278 00279 /* align the heap */ 00280 ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER); 00281 /* initialize the start of the heap */ 00282 mem = (struct mem *)(void *)ram; 00283 mem->next = MEM_SIZE_ALIGNED; 00284 mem->prev = 0; 00285 mem->used = 0; 00286 /* initialize the end of the heap */ 00287 ram_end = (struct mem *)(void *)&ram[MEM_SIZE_ALIGNED]; 00288 ram_end->used = 1; 00289 ram_end->next = MEM_SIZE_ALIGNED; 00290 ram_end->prev = MEM_SIZE_ALIGNED; 00291 00292 /* initialize the lowest-free pointer to the start of the heap */ 00293 lfree = (struct mem *)(void *)ram; 00294 00295 MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED); 00296 00297 if(sys_mutex_new(&mem_mutex) != ERR_OK) { 00298 LWIP_ASSERT("failed to create mem_mutex", 0); 00299 } 00300 } 00301 00302 /** 00303 * Put a struct mem back on the heap 00304 * 00305 * @param rmem is the data portion of a struct mem as returned by a previous 00306 * call to mem_malloc() 00307 */ 00308 void 00309 mem_free(void *rmem) 00310 { 00311 struct mem *mem; 00312 LWIP_MEM_FREE_DECL_PROTECT(); 00313 00314 if (rmem == NULL) { 00315 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n")); 00316 return; 00317 } 00318 LWIP_ASSERT("mem_free: sanity check alignment", (((mem_ptr_t)rmem) & (MEM_ALIGNMENT-1)) == 0); 00319 00320 LWIP_ASSERT("mem_free: legal memory", (u8_t *)rmem >= (u8_t *)ram && 00321 (u8_t *)rmem < (u8_t *)ram_end); 00322 00323 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) { 00324 SYS_ARCH_DECL_PROTECT(lev); 00325 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n")); 00326 /* protect mem stats from concurrent access */ 00327 SYS_ARCH_PROTECT(lev); 00328 MEM_STATS_INC(illegal); 00329 SYS_ARCH_UNPROTECT(lev); 00330 return; 00331 } 00332 /* protect the heap from concurrent access */ 00333 LWIP_MEM_FREE_PROTECT(); 00334 /* Get the corresponding struct mem ... */ 00335 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM); 00336 /* ... which has to be in a used state ... */ 00337 LWIP_ASSERT("mem_free: mem->used", mem->used); 00338 /* ... and is now unused. */ 00339 mem->used = 0; 00340 00341 if (mem < lfree) { 00342 /* the newly freed struct is now the lowest */ 00343 lfree = mem; 00344 } 00345 00346 MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram))); 00347 00348 /* finally, see if prev or next are free also */ 00349 plug_holes(mem); 00350 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00351 mem_free_count = 1; 00352 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00353 LWIP_MEM_FREE_UNPROTECT(); 00354 } 00355 00356 /** 00357 * Shrink memory returned by mem_malloc(). 00358 * 00359 * @param rmem pointer to memory allocated by mem_malloc the is to be shrinked 00360 * @param newsize required size after shrinking (needs to be smaller than or 00361 * equal to the previous size) 00362 * @return for compatibility reasons: is always == rmem, at the moment 00363 * or NULL if newsize is > old size, in which case rmem is NOT touched 00364 * or freed! 00365 */ 00366 void * 00367 mem_trim(void *rmem, mem_size_t newsize) 00368 { 00369 mem_size_t size; 00370 mem_size_t ptr, ptr2; 00371 struct mem *mem, *mem2; 00372 /* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */ 00373 LWIP_MEM_FREE_DECL_PROTECT(); 00374 00375 /* Expand the size of the allocated memory region so that we can 00376 adjust for alignment. */ 00377 newsize = LWIP_MEM_ALIGN_SIZE(newsize); 00378 00379 if(newsize < MIN_SIZE_ALIGNED) { 00380 /* every data block must be at least MIN_SIZE_ALIGNED long */ 00381 newsize = MIN_SIZE_ALIGNED; 00382 } 00383 00384 if (newsize > MEM_SIZE_ALIGNED) { 00385 return NULL; 00386 } 00387 00388 LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram && 00389 (u8_t *)rmem < (u8_t *)ram_end); 00390 00391 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) { 00392 SYS_ARCH_DECL_PROTECT(lev); 00393 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n")); 00394 /* protect mem stats from concurrent access */ 00395 SYS_ARCH_PROTECT(lev); 00396 MEM_STATS_INC(illegal); 00397 SYS_ARCH_UNPROTECT(lev); 00398 return rmem; 00399 } 00400 /* Get the corresponding struct mem ... */ 00401 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM); 00402 /* ... and its offset pointer */ 00403 ptr = (mem_size_t)((u8_t *)mem - ram); 00404 00405 size = mem->next - ptr - SIZEOF_STRUCT_MEM; 00406 LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size); 00407 if (newsize > size) { 00408 /* not supported */ 00409 return NULL; 00410 } 00411 if (newsize == size) { 00412 /* No change in size, simply return */ 00413 return rmem; 00414 } 00415 00416 /* protect the heap from concurrent access */ 00417 LWIP_MEM_FREE_PROTECT(); 00418 00419 mem2 = (struct mem *)(void *)&ram[mem->next]; 00420 if(mem2->used == 0) { 00421 /* The next struct is unused, we can simply move it at little */ 00422 mem_size_t next; 00423 /* remember the old next pointer */ 00424 next = mem2->next; 00425 /* create new struct mem which is moved directly after the shrinked mem */ 00426 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize; 00427 if (lfree == mem2) { 00428 lfree = (struct mem *)(void *)&ram[ptr2]; 00429 } 00430 mem2 = (struct mem *)(void *)&ram[ptr2]; 00431 mem2->used = 0; 00432 /* restore the next pointer */ 00433 mem2->next = next; 00434 /* link it back to mem */ 00435 mem2->prev = ptr; 00436 /* link mem to it */ 00437 mem->next = ptr2; 00438 /* last thing to restore linked list: as we have moved mem2, 00439 * let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not 00440 * the end of the heap */ 00441 if (mem2->next != MEM_SIZE_ALIGNED) { 00442 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00443 } 00444 MEM_STATS_DEC_USED(used, (size - newsize)); 00445 /* no need to plug holes, we've already done that */ 00446 } else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) { 00447 /* Next struct is used but there's room for another struct mem with 00448 * at least MIN_SIZE_ALIGNED of data. 00449 * Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem 00450 * ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED'). 00451 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty 00452 * region that couldn't hold data, but when mem->next gets freed, 00453 * the 2 regions would be combined, resulting in more free memory */ 00454 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize; 00455 mem2 = (struct mem *)(void *)&ram[ptr2]; 00456 if (mem2 < lfree) { 00457 lfree = mem2; 00458 } 00459 mem2->used = 0; 00460 mem2->next = mem->next; 00461 mem2->prev = ptr; 00462 mem->next = ptr2; 00463 if (mem2->next != MEM_SIZE_ALIGNED) { 00464 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00465 } 00466 MEM_STATS_DEC_USED(used, (size - newsize)); 00467 /* the original mem->next is used, so no need to plug holes! */ 00468 } 00469 /* else { 00470 next struct mem is used but size between mem and mem2 is not big enough 00471 to create another struct mem 00472 -> don't do anyhting. 00473 -> the remaining space stays unused since it is too small 00474 } */ 00475 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00476 mem_free_count = 1; 00477 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00478 LWIP_MEM_FREE_UNPROTECT(); 00479 return rmem; 00480 } 00481 00482 /** 00483 * Adam's mem_malloc() plus solution for bug #17922 00484 * Allocate a block of memory with a minimum of 'size' bytes. 00485 * 00486 * @param size is the minimum size of the requested block in bytes. 00487 * @return pointer to allocated memory or NULL if no free memory was found. 00488 * 00489 * Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT). 00490 */ 00491 void * 00492 mem_malloc(mem_size_t size) 00493 { 00494 mem_size_t ptr, ptr2; 00495 struct mem *mem, *mem2; 00496 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00497 u8_t local_mem_free_count = 0; 00498 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00499 LWIP_MEM_ALLOC_DECL_PROTECT(); 00500 00501 if (size == 0) { 00502 return NULL; 00503 } 00504 00505 /* Expand the size of the allocated memory region so that we can 00506 adjust for alignment. */ 00507 size = LWIP_MEM_ALIGN_SIZE(size); 00508 00509 if(size < MIN_SIZE_ALIGNED) { 00510 /* every data block must be at least MIN_SIZE_ALIGNED long */ 00511 size = MIN_SIZE_ALIGNED; 00512 } 00513 00514 if (size > MEM_SIZE_ALIGNED) { 00515 return NULL; 00516 } 00517 00518 /* protect the heap from concurrent access */ 00519 sys_mutex_lock(&mem_mutex); 00520 LWIP_MEM_ALLOC_PROTECT(); 00521 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00522 /* run as long as a mem_free disturbed mem_malloc */ 00523 do { 00524 local_mem_free_count = 0; 00525 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00526 00527 /* Scan through the heap searching for a free block that is big enough, 00528 * beginning with the lowest free block. 00529 */ 00530 for (ptr = (mem_size_t)((u8_t *)lfree - ram); ptr < MEM_SIZE_ALIGNED - size; 00531 ptr = ((struct mem *)(void *)&ram[ptr])->next) { 00532 mem = (struct mem *)(void *)&ram[ptr]; 00533 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00534 mem_free_count = 0; 00535 LWIP_MEM_ALLOC_UNPROTECT(); 00536 /* allow mem_free to run */ 00537 LWIP_MEM_ALLOC_PROTECT(); 00538 if (mem_free_count != 0) { 00539 local_mem_free_count = mem_free_count; 00540 } 00541 mem_free_count = 0; 00542 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00543 00544 if ((!mem->used) && 00545 (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) { 00546 /* mem is not used and at least perfect fit is possible: 00547 * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */ 00548 00549 if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) { 00550 /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing 00551 * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem') 00552 * -> split large block, create empty remainder, 00553 * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if 00554 * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size, 00555 * struct mem would fit in but no data between mem2 and mem2->next 00556 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty 00557 * region that couldn't hold data, but when mem->next gets freed, 00558 * the 2 regions would be combined, resulting in more free memory 00559 */ 00560 ptr2 = ptr + SIZEOF_STRUCT_MEM + size; 00561 /* create mem2 struct */ 00562 mem2 = (struct mem *)(void *)&ram[ptr2]; 00563 mem2->used = 0; 00564 mem2->next = mem->next; 00565 mem2->prev = ptr; 00566 /* and insert it between mem and mem->next */ 00567 mem->next = ptr2; 00568 mem->used = 1; 00569 00570 if (mem2->next != MEM_SIZE_ALIGNED) { 00571 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00572 } 00573 MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM)); 00574 } else { 00575 /* (a mem2 struct does no fit into the user data space of mem and mem->next will always 00576 * be used at this point: if not we have 2 unused structs in a row, plug_holes should have 00577 * take care of this). 00578 * -> near fit or excact fit: do not split, no mem2 creation 00579 * also can't move mem->next directly behind mem, since mem->next 00580 * will always be used at this point! 00581 */ 00582 mem->used = 1; 00583 MEM_STATS_INC_USED(used, mem->next - (mem_size_t)((u8_t *)mem - ram)); 00584 } 00585 00586 if (mem == lfree) { 00587 /* Find next free block after mem and update lowest free pointer */ 00588 while (lfree->used && lfree != ram_end) { 00589 LWIP_MEM_ALLOC_UNPROTECT(); 00590 /* prevent high interrupt latency... */ 00591 LWIP_MEM_ALLOC_PROTECT(); 00592 lfree = (struct mem *)(void *)&ram[lfree->next]; 00593 } 00594 LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used))); 00595 } 00596 LWIP_MEM_ALLOC_UNPROTECT(); 00597 sys_mutex_unlock(&mem_mutex); 00598 LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.", 00599 (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end); 00600 LWIP_ASSERT("mem_malloc: allocated memory properly aligned.", 00601 ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0); 00602 LWIP_ASSERT("mem_malloc: sanity check alignment", 00603 (((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0); 00604 00605 return (u8_t *)mem + SIZEOF_STRUCT_MEM; 00606 } 00607 } 00608 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00609 /* if we got interrupted by a mem_free, try again */ 00610 } while(local_mem_free_count != 0); 00611 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00612 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size)); 00613 MEM_STATS_INC(err); 00614 LWIP_MEM_ALLOC_UNPROTECT(); 00615 sys_mutex_unlock(&mem_mutex); 00616 return NULL; 00617 } 00618 00619 #endif /* MEM_USE_POOLS */ 00620 /** 00621 * Contiguously allocates enough space for count objects that are size bytes 00622 * of memory each and returns a pointer to the allocated memory. 00623 * 00624 * The allocated memory is filled with bytes of value zero. 00625 * 00626 * @param count number of objects to allocate 00627 * @param size size of the objects to allocate 00628 * @return pointer to allocated memory / NULL pointer if there is an error 00629 */ 00630 void *mem_calloc(mem_size_t count, mem_size_t size) 00631 { 00632 void *p; 00633 00634 /* allocate 'count' objects of size 'size' */ 00635 p = mem_malloc(count * size); 00636 if (p) { 00637 /* zero the memory */ 00638 memset(p, 0, count * size); 00639 } 00640 return p; 00641 } 00642 00643 #endif /* !MEM_LIBC_MALLOC */
Generated on Tue Jul 12 2022 14:12:36 by
