Happy Turkey Day

Dependencies:   mbed GPSINT SDFileSystem1 FATDirHandle1 MPU9250

Committer:
jbeason3
Date:
Thu Nov 28 01:39:19 2019 +0000
Revision:
0:ec36896926be
Happy Turkey Day

Who changed what in which revision?

UserRevisionLine numberNew contents of line
jbeason3 0:ec36896926be 1 #include "mbed.h"
jbeason3 0:ec36896926be 2 #include "MPU9250.h"
jbeason3 0:ec36896926be 3 #include "SDFileSystem.h"
jbeason3 0:ec36896926be 4 #include "GPSINT.h"
jbeason3 0:ec36896926be 5 DigitalOut myled(LED1);
jbeason3 0:ec36896926be 6 MPU9250 mpu9250(p28,p27); // IMU
jbeason3 0:ec36896926be 7 GPSINT gps(p13,p14); // GPS
jbeason3 0:ec36896926be 8 Serial pc(USBTX, USBRX); // tx, rx
jbeason3 0:ec36896926be 9 SDFileSystem sd(p5, p6, p7, p8, "sd"); // defines sd system
jbeason3 0:ec36896926be 10 Timer t;
jbeason3 0:ec36896926be 11 float sum = 0;
jbeason3 0:ec36896926be 12 uint32_t sumCount = 0;
jbeason3 0:ec36896926be 13
jbeason3 0:ec36896926be 14 Ticker log_ticker; // creates ticker
jbeason3 0:ec36896926be 15 FILE *fp; // defines file
jbeason3 0:ec36896926be 16 char file_name[100]; // creates file name character
jbeason3 0:ec36896926be 17
jbeason3 0:ec36896926be 18 void mpu9250_initialization(){
jbeason3 0:ec36896926be 19 pc.printf("####CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
jbeason3 0:ec36896926be 20 //initial com check
jbeason3 0:ec36896926be 21 uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
jbeason3 0:ec36896926be 22 pc.printf("####I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
jbeason3 0:ec36896926be 23 if (whoami == 0x71) // WHO_AM_I should always be 0x68
jbeason3 0:ec36896926be 24 {
jbeason3 0:ec36896926be 25 pc.printf("####MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
jbeason3 0:ec36896926be 26 pc.printf("####MPU9250 is online...\n\r");
jbeason3 0:ec36896926be 27 wait(1);
jbeason3 0:ec36896926be 28 //reset MPU and conduct self test//
jbeason3 0:ec36896926be 29 pc.printf("####Please wait,IMU Resetting####\r\n");
jbeason3 0:ec36896926be 30 mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
jbeason3 0:ec36896926be 31 pc.printf("####Self Test####\r\n");
jbeason3 0:ec36896926be 32 //initial MPU9250 Parameters
jbeason3 0:ec36896926be 33 mpu9250.Ascale = AFS_2G;
jbeason3 0:ec36896926be 34 mpu9250.Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
jbeason3 0:ec36896926be 35 mpu9250.Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
jbeason3 0:ec36896926be 36 mpu9250.Mmode = 0x06;
jbeason3 0:ec36896926be 37 mpu9250.delt_t=0;
jbeason3 0:ec36896926be 38 mpu9250.deltat=0.0f;
jbeason3 0:ec36896926be 39 mpu9250.lastUpdate = 0;
jbeason3 0:ec36896926be 40 mpu9250.firstUpdate = 0;
jbeason3 0:ec36896926be 41 mpu9250.Now = 0;
jbeason3 0:ec36896926be 42 mpu9250.count=0;
jbeason3 0:ec36896926be 43 mpu9250.q[0] = 1.0f;
jbeason3 0:ec36896926be 44 mpu9250.q[1] = 0.0f;
jbeason3 0:ec36896926be 45 mpu9250.q[2] = 0.0f;
jbeason3 0:ec36896926be 46 mpu9250.q[3] = 0.0f;
jbeason3 0:ec36896926be 47 // mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
jbeason3 0:ec36896926be 48 //pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
jbeason3 0:ec36896926be 49 // pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
jbeason3 0:ec36896926be 50 //pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
jbeason3 0:ec36896926be 51 //pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
jbeason3 0:ec36896926be 52 //pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
jbeason3 0:ec36896926be 53 //pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
jbeason3 0:ec36896926be 54 pc.printf("####Gyro and accelerometer Calibration will start in 5 seconds####\r\n");
jbeason3 0:ec36896926be 55 pc.printf("####Please keep the IMU still\r\n");
jbeason3 0:ec36896926be 56 wait(5);
jbeason3 0:ec36896926be 57 pc.printf("####Calibration starts\r\n");
jbeason3 0:ec36896926be 58 mpu9250.calibrateMPU9250(mpu9250.gyroBias, mpu9250.accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
jbeason3 0:ec36896926be 59 pc.printf("x gyro bias = %f\n\r", mpu9250.gyroBias[0]);
jbeason3 0:ec36896926be 60 pc.printf("y gyro bias = %f\n\r", mpu9250.gyroBias[1]);
jbeason3 0:ec36896926be 61 pc.printf("z gyro bias = %f\n\r", mpu9250.gyroBias[2]);
jbeason3 0:ec36896926be 62 pc.printf("x accel bias = %f\n\r", mpu9250.accelBias[0]);
jbeason3 0:ec36896926be 63 pc.printf("y accel bias = %f\n\r", mpu9250.accelBias[1]);
jbeason3 0:ec36896926be 64 pc.printf("z accel bias = %f\n\r", mpu9250.accelBias[2]);
jbeason3 0:ec36896926be 65 wait(2);
jbeason3 0:ec36896926be 66 ///initialization
jbeason3 0:ec36896926be 67 mpu9250.initMPU9250();
jbeason3 0:ec36896926be 68 pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
jbeason3 0:ec36896926be 69 mpu9250.initAK8963(mpu9250.magCalibration);
jbeason3 0:ec36896926be 70 pc.printf("Magnetometer initilized\r\n");
jbeason3 0:ec36896926be 71 // pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
jbeason3 0:ec36896926be 72 // pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
jbeason3 0:ec36896926be 73 // pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
jbeason3 0:ec36896926be 74 if(mpu9250.Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r");
jbeason3 0:ec36896926be 75 if(mpu9250.Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r");
jbeason3 0:ec36896926be 76 if(mpu9250.Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
jbeason3 0:ec36896926be 77 if(mpu9250.Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
jbeason3 0:ec36896926be 78 }
jbeason3 0:ec36896926be 79 else
jbeason3 0:ec36896926be 80 {
jbeason3 0:ec36896926be 81 pc.printf("Could not connect to MPU9250: \n\r");
jbeason3 0:ec36896926be 82 pc.printf("%#x \n", whoami);
jbeason3 0:ec36896926be 83 while(1) ; // Loop forever if communication doesn't happen
jbeason3 0:ec36896926be 84 }
jbeason3 0:ec36896926be 85 mpu9250.getAres(); // Get accelerometer sensitivity
jbeason3 0:ec36896926be 86 mpu9250.getGres(); // Get gyro sensitivity
jbeason3 0:ec36896926be 87 mpu9250.getMres(); // Get magnetometer sensitivity
jbeason3 0:ec36896926be 88 pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/mpu9250.aRes);
jbeason3 0:ec36896926be 89 pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/mpu9250.gRes);
jbeason3 0:ec36896926be 90 pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mpu9250.mRes);
jbeason3 0:ec36896926be 91 pc.printf("####IMU initialization done####\r\n");
jbeason3 0:ec36896926be 92 wait(1);
jbeason3 0:ec36896926be 93 }
jbeason3 0:ec36896926be 94
jbeason3 0:ec36896926be 95
jbeason3 0:ec36896926be 96 void mag_cali(){
jbeason3 0:ec36896926be 97 int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0};
jbeason3 0:ec36896926be 98 int16_t mag_max[3] = {-32767, -32767, -32767}, mag_min[3] = {32767, 32767, 32767}, mag_temp[3] = {0, 0, 0};
jbeason3 0:ec36896926be 99 //float dest1[3]={0,0,0}, dest2[3]={0,0,0};
jbeason3 0:ec36896926be 100 pc.printf("####Compass Calibration starts in 5 seconds\r\n");
jbeason3 0:ec36896926be 101 wait(5);
jbeason3 0:ec36896926be 102 pc.printf("###Start moving your imu in figure 8\r\n");
jbeason3 0:ec36896926be 103 for (int i=0;i<1500;i++){ //1500 for 100 Hz
jbeason3 0:ec36896926be 104 mpu9250.readMagData(mag_temp); // Read the x/y/z adc values
jbeason3 0:ec36896926be 105 for(int jj=0; jj<3; jj++){
jbeason3 0:ec36896926be 106 if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
jbeason3 0:ec36896926be 107 if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
jbeason3 0:ec36896926be 108 }
jbeason3 0:ec36896926be 109 wait(0.01);//delay for 10 ms.
jbeason3 0:ec36896926be 110 }
jbeason3 0:ec36896926be 111 //get hard iron correction
jbeason3 0:ec36896926be 112 // Get hard iron correction
jbeason3 0:ec36896926be 113 mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
jbeason3 0:ec36896926be 114 mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
jbeason3 0:ec36896926be 115 mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
jbeason3 0:ec36896926be 116 mpu9250.magbias[0] = (float) mag_bias[0]*mpu9250.mRes*mpu9250.magCalibration[0]; // save mag biases in G for main program
jbeason3 0:ec36896926be 117 mpu9250.magbias[1] = (float) mag_bias[1]*mpu9250.mRes*mpu9250.magCalibration[1];
jbeason3 0:ec36896926be 118 mpu9250.magbias[2] = (float) mag_bias[2]*mpu9250.mRes*mpu9250.magCalibration[2];
jbeason3 0:ec36896926be 119 pc.printf("####Mag bias =%f,%f,%f\r\n",mpu9250.magbias[0],mpu9250.magbias[1],mpu9250.magbias[2]);
jbeason3 0:ec36896926be 120 /*//get soft iron correction
jbeason3 0:ec36896926be 121 // Get soft iron correction estimate
jbeason3 0:ec36896926be 122 mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts
jbeason3 0:ec36896926be 123 mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts
jbeason3 0:ec36896926be 124 mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts
jbeason3 0:ec36896926be 125
jbeason3 0:ec36896926be 126 float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
jbeason3 0:ec36896926be 127 avg_rad /= 3.0;
jbeason3 0:ec36896926be 128
jbeason3 0:ec36896926be 129 dest2[0] = avg_rad/((float)mag_scale[0]);
jbeason3 0:ec36896926be 130 dest2[1] = avg_rad/((float)mag_scale[1]);
jbeason3 0:ec36896926be 131 dest2[2] = avg_rad/((float)mag_scale[2]);
jbeason3 0:ec36896926be 132 */
jbeason3 0:ec36896926be 133 pc.printf("####Mag Calibration done!\r\n");
jbeason3 0:ec36896926be 134 }
jbeason3 0:ec36896926be 135
jbeason3 0:ec36896926be 136 void sdwrite1(){ // Writes first set to SD & to Coolterm to confirm data
jbeason3 0:ec36896926be 137 fprintf(fp,"$IMUPS,%f,%f,%f,%f\r\n",t.read(),mpu9250.roll,mpu9250.pitch,mpu9250.yaw);
jbeason3 0:ec36896926be 138 pc.printf("$IMUPS,%f,%f,%f,%f\r\n",t.read(),mpu9250.roll,mpu9250.pitch,mpu9250.yaw);
jbeason3 0:ec36896926be 139 }
jbeason3 0:ec36896926be 140
jbeason3 0:ec36896926be 141 void sdwrite2(){ // Writes 2nd set to SD & Coolterm
jbeason3 0:ec36896926be 142 fprintf(fp,"$GPSST,%d,%f,%d\r\n",gps.lock,gps.utc_time,gps.satelites);
jbeason3 0:ec36896926be 143 pc.printf("$GPSST,%d,%f,%d\r\n",gps.lock,gps.utc_time,gps.satelites);
jbeason3 0:ec36896926be 144 }
jbeason3 0:ec36896926be 145
jbeason3 0:ec36896926be 146 void sdwrite3(){ // Writes 3rd set to SD & Coolterm
jbeason3 0:ec36896926be 147 fprintf(fp,"$GPSPS,%f,%f,%f,%f,%f\r\n",t.read(),gps.nmea_latitude,gps.nmea_longitude,gps.speed_k,gps.course_d);
jbeason3 0:ec36896926be 148 pc.printf("$GPSPS,%f,%f,%f,%f,%f\r\n",t.read(),gps.nmea_latitude,gps.nmea_longitude,gps.speed_k,gps.course_d);
jbeason3 0:ec36896926be 149 }
jbeason3 0:ec36896926be 150
jbeason3 0:ec36896926be 151
jbeason3 0:ec36896926be 152 int main() {
jbeason3 0:ec36896926be 153 char buffer[100]; // creates buffer character
jbeason3 0:ec36896926be 154 mkdir("/sd/A5_Beason", 0777); // file location
jbeason3 0:ec36896926be 155 pc.printf("Please set a file name\r\n"); // asks user for file name
jbeason3 0:ec36896926be 156 pc.scanf("%s",buffer); // looks at the name given
jbeason3 0:ec36896926be 157 sprintf(file_name,"/sd/A5_Beason/%s.txt",buffer); // creates file location
jbeason3 0:ec36896926be 158 pc.printf("The file name and directory is: %s\r\n",file_name); // tells user the information
jbeason3 0:ec36896926be 159 fp = fopen(file_name, "w"); // opens file to be written on
jbeason3 0:ec36896926be 160 pc.printf("file_opened \n"); // tells user the file is opened
jbeason3 0:ec36896926be 161 if (fp == NULL) { // if the file is not opened
jbeason3 0:ec36896926be 162 error("Could not open file for writing\n"); // informs user that the file was not opened
jbeason3 0:ec36896926be 163 }
jbeason3 0:ec36896926be 164 fclose(fp); // closes file
jbeason3 0:ec36896926be 165
jbeason3 0:ec36896926be 166 pc.baud(9600);
jbeason3 0:ec36896926be 167 t.start();
jbeason3 0:ec36896926be 168 mpu9250_initialization();
jbeason3 0:ec36896926be 169 mag_cali();
jbeason3 0:ec36896926be 170 pc.printf("####IMU is all set, going to start sensing in 5 seconds\r\n");
jbeason3 0:ec36896926be 171 wait(5);
jbeason3 0:ec36896926be 172 while(1){
jbeason3 0:ec36896926be 173 if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
jbeason3 0:ec36896926be 174 mpu9250.readAccelData(mpu9250.accelCount); // Read the x/y/z adc values
jbeason3 0:ec36896926be 175 // Now we'll calculate the accleration value into actual g's
jbeason3 0:ec36896926be 176 mpu9250.ax = (float)mpu9250.accelCount[0]*mpu9250.aRes - mpu9250.accelBias[0]; // get actual g value, this depends on scale being set
jbeason3 0:ec36896926be 177 mpu9250.ay = (float)mpu9250.accelCount[1]*mpu9250.aRes - mpu9250.accelBias[1];
jbeason3 0:ec36896926be 178 mpu9250.az = (float)mpu9250.accelCount[2]*mpu9250.aRes - mpu9250.accelBias[2];
jbeason3 0:ec36896926be 179
jbeason3 0:ec36896926be 180 mpu9250.readGyroData(mpu9250.gyroCount); // Read the x/y/z adc values
jbeason3 0:ec36896926be 181 // Calculate the gyro value into actual degrees per second
jbeason3 0:ec36896926be 182 mpu9250.gx = (float)mpu9250.gyroCount[0]*mpu9250.gRes - mpu9250.gyroBias[0]; // get actual gyro value, this depends on scale being set
jbeason3 0:ec36896926be 183 mpu9250.gy = (float)mpu9250.gyroCount[1]*mpu9250.gRes - mpu9250.gyroBias[1];
jbeason3 0:ec36896926be 184 mpu9250.gz = (float)mpu9250.gyroCount[2]*mpu9250.gRes - mpu9250.gyroBias[2];
jbeason3 0:ec36896926be 185
jbeason3 0:ec36896926be 186 mpu9250.readMagData(mpu9250.magCount); // Read the x/y/z adc values
jbeason3 0:ec36896926be 187 // Calculate the magnetometer values in milliGauss
jbeason3 0:ec36896926be 188 // Include factory calibration per data sheet and user environmental corrections
jbeason3 0:ec36896926be 189 mpu9250.mx = (float)mpu9250.magCount[0]*mpu9250.mRes*mpu9250.magCalibration[0] - mpu9250.magbias[0]; // get actual magnetometer value, this depends on scale being set
jbeason3 0:ec36896926be 190 mpu9250.my = (float)mpu9250.magCount[1]*mpu9250.mRes*mpu9250.magCalibration[1] - mpu9250.magbias[1];
jbeason3 0:ec36896926be 191 mpu9250.mz = (float)mpu9250.magCount[2]*mpu9250.mRes*mpu9250.magCalibration[2] - mpu9250.magbias[2];
jbeason3 0:ec36896926be 192 }
jbeason3 0:ec36896926be 193
jbeason3 0:ec36896926be 194 mpu9250.Now = t.read_us();
jbeason3 0:ec36896926be 195 mpu9250.deltat = (float)((mpu9250.Now - mpu9250.lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
jbeason3 0:ec36896926be 196 mpu9250.lastUpdate = mpu9250.Now;
jbeason3 0:ec36896926be 197 sum += mpu9250.deltat;
jbeason3 0:ec36896926be 198 sumCount++;
jbeason3 0:ec36896926be 199 //mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz);
jbeason3 0:ec36896926be 200 //compute the quaternion.
jbeason3 0:ec36896926be 201
jbeason3 0:ec36896926be 202 mpu9250.MahonyQuaternionUpdate(mpu9250.ax, mpu9250.ay, mpu9250.az,
jbeason3 0:ec36896926be 203 mpu9250.gx*PI/180.00, mpu9250.gy*PI/180.00, mpu9250.gz*PI/180.00,
jbeason3 0:ec36896926be 204 mpu9250.mx, mpu9250.my, mpu9250.mz);
jbeason3 0:ec36896926be 205
jbeason3 0:ec36896926be 206 // pc.printf("Q=%f,%f,%f,%f\r\n",mpu9250.q[0],mpu9250.q[1],mpu9250.q[2],mpu9250.q[3]);
jbeason3 0:ec36896926be 207 // Serial print and/or display at 0.5 s rate independent of data rates
jbeason3 0:ec36896926be 208 mpu9250.delt_t = t.read_ms() - mpu9250.count;
jbeason3 0:ec36896926be 209 if (mpu9250.delt_t > 100) {
jbeason3 0:ec36896926be 210 // pc.printf("ax = %f", 1000*mpu9250.ax);
jbeason3 0:ec36896926be 211 // pc.printf(" ay = %f", 1000*mpu9250.ay);
jbeason3 0:ec36896926be 212 // pc.printf(" az = %f mg\n\r", 1000*mpu9250.az);
jbeason3 0:ec36896926be 213 // pc.printf("gx = %f", mpu9250.gx);
jbeason3 0:ec36896926be 214 // pc.printf("gy = %f", mpu9250.gy);
jbeason3 0:ec36896926be 215 // pc.printf("gz = %f deg/s\n\r", mpu9250.gz);
jbeason3 0:ec36896926be 216 //pc.printf("mx = %f", mpu9250.mx);
jbeason3 0:ec36896926be 217 //pc.printf(" my = %f", mpu9250.my);
jbeason3 0:ec36896926be 218 //pc.printf(" mz = %f mG\n\r", mpu9250.mz);
jbeason3 0:ec36896926be 219 // tempCount = mpu9250.readTempData(); // Read the adc values
jbeason3 0:ec36896926be 220 // temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
jbeason3 0:ec36896926be 221 // pc.printf(" temperature = %f C\n\r", temperature);
jbeason3 0:ec36896926be 222
jbeason3 0:ec36896926be 223 mpu9250.roll = atan2(2.0f * (mpu9250.q[0] * mpu9250.q[1] + mpu9250.q[2] * mpu9250.q[3]),
jbeason3 0:ec36896926be 224 mpu9250.q[0] * mpu9250.q[0] - mpu9250.q[1] * mpu9250.q[1] - mpu9250.q[2] * mpu9250.q[2] + mpu9250.q[3] * mpu9250.q[3]);
jbeason3 0:ec36896926be 225 mpu9250.pitch = -asin(2.0f * (mpu9250.q[1] * mpu9250.q[3] - mpu9250.q[0] * mpu9250.q[2]));
jbeason3 0:ec36896926be 226 mpu9250.yaw = atan2(2.0f * (mpu9250.q[1] * mpu9250.q[2] + mpu9250.q[0] * mpu9250.q[3]),
jbeason3 0:ec36896926be 227 mpu9250.q[0] * mpu9250.q[0] + mpu9250.q[1] * mpu9250.q[1] - mpu9250.q[2] * mpu9250.q[2] - mpu9250.q[3] * mpu9250.q[3]);
jbeason3 0:ec36896926be 228 mpu9250.pitch *= 180.0f / PI;
jbeason3 0:ec36896926be 229 mpu9250.yaw *= 180.0f / PI;
jbeason3 0:ec36896926be 230 mpu9250.yaw += 15.0f; // Declination at RI
jbeason3 0:ec36896926be 231 mpu9250.roll *= 180.0f / PI;
jbeason3 0:ec36896926be 232
jbeason3 0:ec36896926be 233 fp = fopen(file_name,"a"); // Open file
jbeason3 0:ec36896926be 234
jbeason3 0:ec36896926be 235 sdwrite1(); // Write $IMUPS to SD card
jbeason3 0:ec36896926be 236 sdwrite2(); // Write $GPSST to SD card
jbeason3 0:ec36896926be 237 sdwrite3(); // Write $GPSPS to SD card
jbeason3 0:ec36896926be 238 fclose(fp); // close file
jbeason3 0:ec36896926be 239
jbeason3 0:ec36896926be 240 myled= !myled;
jbeason3 0:ec36896926be 241 mpu9250.count = t.read_ms();
jbeason3 0:ec36896926be 242
jbeason3 0:ec36896926be 243 if(mpu9250.count > 1<<21) {
jbeason3 0:ec36896926be 244 t.start(); // start the timer over again if ~30 minutes has passed
jbeason3 0:ec36896926be 245 mpu9250.count = 0;
jbeason3 0:ec36896926be 246 mpu9250.deltat= 0;
jbeason3 0:ec36896926be 247 mpu9250.lastUpdate = t.read_us();
jbeason3 0:ec36896926be 248 }
jbeason3 0:ec36896926be 249 sum = 0;
jbeason3 0:ec36896926be 250 sumCount = 0;
jbeason3 0:ec36896926be 251
jbeason3 0:ec36896926be 252 pc.printf("lock=%d %f %f %c %f %c %f %f\r\n",gps.lock,gps.utc_time,gps.nmea_longitude,gps.ns,gps.nmea_latitude,gps.ew,gps.speed_k,gps.course_d);
jbeason3 0:ec36896926be 253 wait(1);
jbeason3 0:ec36896926be 254 }
jbeason3 0:ec36896926be 255
jbeason3 0:ec36896926be 256 }
jbeason3 0:ec36896926be 257
jbeason3 0:ec36896926be 258 }
jbeason3 0:ec36896926be 259