Port of MicroPython to the mbed platform. See micropython-repl for an interactive program.

Dependents:   micropython-repl

This a port of MicroPython to the mbed Classic platform.

This provides an interpreter running on the board's USB serial connection.

Getting Started

Import the micropython-repl program into your IDE workspace on developer.mbed.org. Compile and download to your board. Connect to the USB serial port in your usual manner. You should get a startup message similar to the following:

  MicroPython v1.7-155-gdddcdd8 on 2016-04-23; K64F with ARM
  Type "help()" for more information.
  >>>

Then you can start using micropython. For example:

  >>> from mbed import DigitalOut
  >>> from pins import LED1
  >>> led = DigitalOut(LED1)
  >>> led.write(1)

Requirements

You need approximately 100K of flash memory, so this will be no good for boards with smaller amounts of storage.

Caveats

This can be considered an alpha release of the port; things may not work; APIs may change in later releases. It is NOT an official part part the micropython project, so if anything doesn't work, blame me. If it does work, most of the credit is due to micropython.

  • Only a few of the mbed classes are available in micropython so far, and not all methods of those that are.
  • Only a few boards have their full range of pin names available; for others, only a few standard ones (USBTX, USBRX, LED1) are implemented.
  • The garbage collector is not yet implemented. The interpreter will gradually consume memory and then fail.
  • Exceptions from the mbed classes are not yet handled.
  • Asynchronous processing (e.g. events on inputs) is not supported.

Credits

  • Damien P. George and other contributors who created micropython.
  • Colin Hogben, author of this port.

py/sequence.c

Committer:
Colin Hogben
Date:
2016-04-27
Revision:
10:33521d742af1
Parent:
0:5868e8752d44

File content as of revision 10:33521d742af1:

/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 * Copyright (c) 2014 Paul Sokolovsky
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <string.h>

#include "py/nlr.h"
#include "py/obj.h"
#include "py/runtime0.h"
#include "py/runtime.h"

// Helpers for sequence types

#define SWAP(type, var1, var2) { type t = var2; var2 = var1; var1 = t; }

// Implements backend of sequence * integer operation. Assumes elements are
// memory-adjacent in sequence.
void mp_seq_multiply(const void *items, mp_uint_t item_sz, mp_uint_t len, mp_uint_t times, void *dest) {
    for (mp_uint_t i = 0; i < times; i++) {
        uint copy_sz = item_sz * len;
        memcpy(dest, items, copy_sz);
        dest = (char*)dest + copy_sz;
    }
}

#if MICROPY_PY_BUILTINS_SLICE

bool mp_seq_get_fast_slice_indexes(mp_uint_t len, mp_obj_t slice, mp_bound_slice_t *indexes) {
    mp_obj_t ostart, ostop, ostep;
    mp_int_t start, stop;
    mp_obj_slice_get(slice, &ostart, &ostop, &ostep);

    if (ostart == mp_const_none) {
        start = 0;
    } else {
        start = MP_OBJ_SMALL_INT_VALUE(ostart);
    }
    if (ostop == mp_const_none) {
        stop = len;
    } else {
        stop = MP_OBJ_SMALL_INT_VALUE(ostop);
    }

    // Unlike subscription, out-of-bounds slice indexes are never error
    if (start < 0) {
        start = len + start;
        if (start < 0) {
            start = 0;
        }
    } else if ((mp_uint_t)start > len) {
        start = len;
    }
    if (stop < 0) {
        stop = len + stop;
    } else if ((mp_uint_t)stop > len) {
        stop = len;
    }

    // CPython returns empty sequence in such case, or point for assignment is at start
    if (start > stop) {
        stop = start;
    }

    indexes->start = start;
    indexes->stop = stop;

    if (ostep != mp_const_none && ostep != MP_OBJ_NEW_SMALL_INT(1)) {
        indexes->step = MP_OBJ_SMALL_INT_VALUE(ostep);
        return false;
    }
    indexes->step = 1;
    return true;
}

#endif

mp_obj_t mp_seq_extract_slice(mp_uint_t len, const mp_obj_t *seq, mp_bound_slice_t *indexes) {
    (void)len; // TODO can we remove len from the arg list?

    mp_int_t start = indexes->start, stop = indexes->stop;
    mp_int_t step = indexes->step;

    mp_obj_t res = mp_obj_new_list(0, NULL);

    if (step < 0) {
        stop--;
        while (start <= stop) {
            mp_obj_list_append(res, seq[stop]);
            stop += step;
        }
    } else {
        while (start < stop) {
            mp_obj_list_append(res, seq[start]);
            start += step;
        }
    }
    return res;
}

// Special-case comparison function for sequences of bytes
// Don't pass MP_BINARY_OP_NOT_EQUAL here
bool mp_seq_cmp_bytes(mp_uint_t op, const byte *data1, mp_uint_t len1, const byte *data2, mp_uint_t len2) {
    if (op == MP_BINARY_OP_EQUAL && len1 != len2) {
        return false;
    }

    // Let's deal only with > & >=
    if (op == MP_BINARY_OP_LESS || op == MP_BINARY_OP_LESS_EQUAL) {
        SWAP(const byte*, data1, data2);
        SWAP(uint, len1, len2);
        if (op == MP_BINARY_OP_LESS) {
            op = MP_BINARY_OP_MORE;
        } else {
            op = MP_BINARY_OP_MORE_EQUAL;
        }
    }
    uint min_len = len1 < len2 ? len1 : len2;
    int res = memcmp(data1, data2, min_len);
    if (op == MP_BINARY_OP_EQUAL) {
        // If we are checking for equality, here're the answer
        return res == 0;
    }
    if (res < 0) {
        return false;
    }
    if (res > 0) {
        return true;
    }

    // If we had tie in the last element...
    // ... and we have lists of different lengths...
    if (len1 != len2) {
        if (len1 < len2) {
            // ... then longer list length wins (we deal only with >)
            return false;
        }
    } else if (op == MP_BINARY_OP_MORE) {
        // Otherwise, if we have strict relation, equality means failure
        return false;
    }
    return true;
}

// Special-case comparison function for sequences of mp_obj_t
// Don't pass MP_BINARY_OP_NOT_EQUAL here
bool mp_seq_cmp_objs(mp_uint_t op, const mp_obj_t *items1, mp_uint_t len1, const mp_obj_t *items2, mp_uint_t len2) {
    if (op == MP_BINARY_OP_EQUAL && len1 != len2) {
        return false;
    }

    // Let's deal only with > & >=
    if (op == MP_BINARY_OP_LESS || op == MP_BINARY_OP_LESS_EQUAL) {
        SWAP(const mp_obj_t *, items1, items2);
        SWAP(uint, len1, len2);
        if (op == MP_BINARY_OP_LESS) {
            op = MP_BINARY_OP_MORE;
        } else {
            op = MP_BINARY_OP_MORE_EQUAL;
        }
    }

    mp_uint_t len = len1 < len2 ? len1 : len2;
    for (mp_uint_t i = 0; i < len; i++) {
        // If current elements equal, can't decide anything - go on
        if (mp_obj_equal(items1[i], items2[i])) {
            continue;
        }

        // Othewise, if they are not equal, we can have final decision based on them
        if (op == MP_BINARY_OP_EQUAL) {
            // In particular, if we are checking for equality, here're the answer
            return false;
        }

        // Otherwise, application of relation op gives the answer
        return (mp_binary_op(op, items1[i], items2[i]) == mp_const_true);
    }

    // If we had tie in the last element...
    // ... and we have lists of different lengths...
    if (len1 != len2) {
        if (len1 < len2) {
            // ... then longer list length wins (we deal only with >)
            return false;
        }
    } else if (op == MP_BINARY_OP_MORE) {
        // Otherwise, if we have strict relation, sequence equality means failure
        return false;
    }

    return true;
}

// Special-case of index() which searches for mp_obj_t
mp_obj_t mp_seq_index_obj(const mp_obj_t *items, mp_uint_t len, mp_uint_t n_args, const mp_obj_t *args) {
    mp_obj_type_t *type = mp_obj_get_type(args[0]);
    mp_obj_t value = args[1];
    uint start = 0;
    uint stop = len;

    if (n_args >= 3) {
        start = mp_get_index(type, len, args[2], true);
        if (n_args >= 4) {
            stop = mp_get_index(type, len, args[3], true);
        }
    }

    for (mp_uint_t i = start; i < stop; i++) {
        if (mp_obj_equal(items[i], value)) {
            // Common sense says this cannot overflow small int
            return MP_OBJ_NEW_SMALL_INT(i);
        }
    }

    nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "object not in sequence"));
}

mp_obj_t mp_seq_count_obj(const mp_obj_t *items, mp_uint_t len, mp_obj_t value) {
    mp_uint_t count = 0;
    for (uint i = 0; i < len; i++) {
         if (mp_obj_equal(items[i], value)) {
              count++;
         }
    }

    // Common sense says this cannot overflow small int
    return MP_OBJ_NEW_SMALL_INT(count);
}