Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- pmic
- Date:
- 2022-02-10
- Revision:
- 17:c19b471f05cb
- Parent:
- 16:1be4a1c2d08a
- Child:
- 20:7e7325edcf5c
File content as of revision 17:c19b471f05cb:
#include "mbed.h"
#include "PM2_Libary.h"
InterruptIn user_button(PC_13);
DigitalOut led(LED1);
bool do_execute_main = false;
Timer user_button_timer, loop_timer;
int loop_period_ms = 50;
/* declaration of custom button functions */
void button_fall();
void button_rise();
// SHARP GP2Y0A21Y IR Sensor
/* create analog input object */
AnalogIn analog_in(PC_2);
float dist_ir_sensor = 0.0f;
// 78:1 Metal Gearmotor 20Dx43L mm 12V CB
/* create enable dc motor digital out object */
DigitalOut enable_motors(PB_15);
/* create pwm objects */
FastPWM pwm_M1(PB_13);
FastPWM pwm_M2(PA_9);
FastPWM pwm_M3(PA_10);
float pwm_period_s = 0.00005f;
/* create encoder read objects */
EncoderCounter encoder_M1(PA_6, PC_7);
EncoderCounter encoder_M2(PB_6, PB_7);
EncoderCounter encoder_M3(PA_0, PA_1);
/* create speed and position controller objects, default parametrization is for 78.125:1 gear */
float max_voltage = 12.0f; // adjust this to 6.0f if only one batterypack is used
float counts_per_turn = 20.0f * 78.125f; // counts/turn * gearratio
float kn = 180.0f / 12.0f; // motor constant (RPM/V)
float k_gear = 25.0f / 78.125f; // in case you are using a dc motor with a different gear box
float kp = 0.1f; // this is the default speed controller gain for gear box 78.125:1
SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear with default contoller parameters
// SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 25:1 gear
PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
// PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 25:1 gear, we need a different speed controller gain here
float max_speed_rps = 0.5f; // has to be smaller or equal to kn * max_voltage
// Futaba Servo S3001 20mm 3kg Analog
/* create servo objects */
Servo servo_S1(PB_2);
Servo servo_S2(PC_8);
// Servo servo_S3(PC_6); // PC_6 is used for ultra sonic sensor below
int servo_position_S1_mus = 0;
int servo_position_S2_mus = 0;
int servo_period_mus = 20000;
int servo_counter = 0;
int loops_per_second = static_cast<int>(ceilf(1.0f/(0.001f*(float)loop_period_ms)));
// Groove Ultrasonic Ranger V2.0
// https://ch.rs-online.com/web/p/entwicklungstools-sensorik/1743238/?cm_mmc=CH-PLA-DS3A-_-google-_-CSS_CH_DE_Raspberry_Pi_%26_Arduino_und_Entwicklungstools_Whoop-_-(CH:Whoop!)+Entwicklungstools+Sensorik-_-1743238&matchtype=&pla-306637898829&gclid=Cj0KCQjwpdqDBhCSARIsAEUJ0hOLQOOaw_2-Ob03u4YGwXthQPeSyjaazFqNuMkTIT8Ie18B1pD7P9AaAn18EALw_wcB&gclsrc=aw.ds
/* create range finder object (ultra sonic distance sensor) */
// RangeFinder range_finder(PC_6, 5782.0f, 0.02f, 17500); // 1/loop_period_ms = 20 Hz parametrization
RangeFinder range_finder(PB_6, 5782.0f, 0.02f, 7000); // 1/loop_period_ms = 50 Hz parametrization
float dist_us_sensor = 0.0f;
int main()
{
/* attach button fall and rise functions */
user_button.fall(&button_fall);
user_button.rise(&button_rise);
/* start loop_timer */
loop_timer.start();
/* enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled */
enable_motors = 1;
/* initialize pwm for motor M1*/
pwm_M1.period(pwm_period_s);
/* set pwm output zero at the beginning, range: 0...1 -> u_min...u_max , 0.5 -> 0 V */
pwm_M1.write(0.5);
/* enable servos, you can also disable them */
servo_S1.Enable(servo_position_S1_mus, servo_period_mus);
servo_S2.Enable(servo_position_S2_mus, servo_period_mus);
while (true) {
loop_timer.reset();
if (do_execute_main) {
/* read analog input */
dist_ir_sensor = analog_in.read() * 3.3f;
/* write output voltage to motor M1 */
pwm_M1.write(0.75);
/* set a desired speed for speed controlled dc motors M2 */
speedController_M2.setDesiredSpeedRPS(0.5f);
/* set a desired rotation for position controlled dc motors M3 */
positionController_M3.setDesiredRotation(1.5f, max_speed_rps);
/* command servo position via output time, this needs to be calibrated */
servo_S1.SetPosition(servo_position_S1_mus);
servo_S2.SetPosition(servo_position_S2_mus);
if (servo_position_S1_mus <= servo_period_mus & servo_counter%loops_per_second == 0 & servo_counter != 0) {
servo_position_S1_mus += 100;
}
if (servo_position_S2_mus <= servo_period_mus & servo_counter%loops_per_second == 0 & servo_counter != 0) {
servo_position_S2_mus += 100;
}
servo_counter++;
/* read ultra sonic distance sensor */
dist_us_sensor = range_finder.read_cm();
/* visual feedback that the main task is executed */
led = !led;
} else {
dist_ir_sensor = 0.0f;
pwm_M1.write(0.5);
speedController_M2.setDesiredSpeedRPS(0.0f);
positionController_M3.setDesiredRotation(0.0f, max_speed_rps);
servo_position_S1_mus = 0;
servo_position_S2_mus = 0;
servo_S1.SetPosition(servo_position_S1_mus);
servo_S2.SetPosition(servo_position_S2_mus);
dist_us_sensor = 0.0f;
led = 0;
}
/* do only output via serial what's really necessary (this makes your code slow)*/
printf("%3.3f, %3d, %3.3f, %3.3f, %3d, %3d, %3.3f;\r\n",
dist_ir_sensor * 1e3,
encoder_M1.read(),
speedController_M2.getSpeedRPS(),
positionController_M3.getRotation(),
servo_position_S1_mus,
servo_position_S2_mus,
dist_us_sensor);
/* ------------- stop hacking ----------------------------------------*/
int loop_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(loop_timer.elapsed_time()).count();
thread_sleep_for(loop_period_ms - loop_time_ms);
}
}
void button_fall()
{
user_button_timer.reset();
user_button_timer.start();
}
void button_rise()
{
int user_button_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
user_button_timer.stop();
if (user_button_time_ms > 200) {
do_execute_main = !do_execute_main;
}
}