mbed API for Raspberry Pi boards.

mbedPi

This is an attempt to implement a limited number of mbed APIs for Raspberry Pi single-board computers. The project was inspired by and based on the arduPi library developed for the Arduino by Cooking Hacks .

/media/uploads/hudakz/board01.jpg

Specifications

  • Chip: Broadcom BCM2836 SoC
  • Core architecture: Quad-core ARM Cortex-A7
  • CPU frequency: 900 MHz
  • GPU: Dual Core VideoCore IV® Multimedia Co-Processor
  • Memory: 1GB LPDDR2
  • Operating System: Boots from Micro SD card, running a version of the Linux operating system
  • Power: Micro USB socket 5V, 2A

Connectors

  • Ethernet: 10/100 BaseT Ethernet socket
  • Video Output: HDMI (rev 1.3 & 1.4)
  • Audio Output: 3.5mm jack, HDMI
  • USB: 4 x USB 2.0 Connector
  • GPIO Connector: 40-pin 2.54 mm (100 mil) expansion header: 2x20 strip providing 27 GPIO pins as well as +3.3 V, +5 V and GND supply lines
  • Camera Connector: 15-pin MIPI Camera Serial Interface (CSI-2)
  • JTAG: Not populated
  • Display Connector: Display Serial Interface (DSI) 15 way flat flex cable connector with two data lanes and a clock lane
  • Memory Card Slot: Micro SDIO

GPIO connector pinout

Zoom in /media/uploads/hudakz/mbedpi_pinout02.png

Information

Only the labels printed in blue/white or green/white (i.e. p3, gpio2 ...) must be used in your code. The other labels are given as information (alternate-functions, power pins, ...).


Building programs for the Raspberry Pi with mbedPi

I use Qt Creator for development, however you can use any other IDE available on the Raspberry Pi (e.g. Geany) if you like. For a quick try:

  • Install Qt and the Qt Creator onto your Raspberry Pi. Then create a new "Blinky" Plain non-Qt C++ Project as follows: /media/uploads/hudakz/newproject.png

  • Change the main code as below:

main.cpp

#include "mbedPi.h"

int main()
{
    DigitalOut  myled(p7);

    while(1) {
        myled = 1; // LED is ON
        wait(0.2); // 200 ms
        myled = 0; // LED is OFF
        wait(1.0); // 1 sec
        printf("Blink\r\n");
    }
}


  • Copy the mbedPi.zip file into your project's folder and unzip.
  • Add the mbedPi.h and mbedPi.cpp files to your project by right clicking on the "Blinky" project and then clicking on the "Add Existing Files..." option in the local menu:

    /media/uploads/hudakz/addfiles.png

    /media/uploads/hudakz/addfiles02.png

  • Double click on Blinky.pro to open it for editing and add new libraries by inserting a new line as follows:

    /media/uploads/hudakz/libs.png

  • Compile the project.

  • Connect an LED through a 1k resistor to pin 7 and the ground on the Raspberry Pi GPIO connector.

  • Run the binary as sudo (sudo ./Blinky) and you should see the LED blinking. /media/uploads/hudakz/mbedpi_run.png

  • Press Ctrl+c to stop running the application.

source/SPI.cpp

Committer:
hudakz
Date:
18 months ago
Revision:
2:131555dc6fb7
Parent:
1:1f2d9982fa8c

File content as of revision 2:131555dc6fb7:

#include "mbed.h"

extern volatile uint32_t *bcm2835_bsc1;
extern volatile uint32_t *bcm2835_spi0;

/**************************************************************************
 *
 * SPI Class implementation
 *
 **************************************************************************/

/******************
 * Public methods *
 ******************/
SPI::SPI() :
    _write_fill(0xFF)
{
    REV = getBoardRev();

    bcm2835_gpio_fsel(9, BCM2835_GPIO_FSEL_ALT0);   // MISO
    bcm2835_gpio_fsel(10, BCM2835_GPIO_FSEL_ALT0);  // MOSI
    bcm2835_gpio_fsel(11, BCM2835_GPIO_FSEL_ALT0);  // CLK

    // Set the SPI CS register to some sensible defaults
    volatile uint32_t*  paddr = bcm2835_spi0 + BCM2835_SPI0_CS / 4;
    bcm2835_peri_write(paddr, 0);                   // All 0s

    // Clear TX and RX fifos
    bcm2835_peri_write_nb(paddr, BCM2835_SPI0_CS_CLEAR);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
SPI::~SPI()
{
    // Set all the SPI0 pins back to input

    //    bcm2835_gpio_fsel(7, BCM2835_GPIO_FSEL_INPT);   // CE1
    //    bcm2835_gpio_fsel(8, BCM2835_GPIO_FSEL_INPT);   // CE0
    bcm2835_gpio_fsel(9, BCM2835_GPIO_FSEL_INPT);   // MISO
    bcm2835_gpio_fsel(10, BCM2835_GPIO_FSEL_INPT);  // MOSI
    bcm2835_gpio_fsel(11, BCM2835_GPIO_FSEL_INPT);  // CLK
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void SPI::format(int bits, uint8_t mode)
{
    volatile uint32_t*  paddr = bcm2835_spi0 + BCM2835_SPI0_CS / 4;

    if (bits > 0) {
        bits = 8U;
    }
    //BCM2835_SPI_BIT_ORDER_MSBFIRST is the only one suported by SPI0

    // Mask in the CPO and CPHA bits of CS
    bcm2835_peri_set_bits(paddr, mode << 2, BCM2835_SPI0_CS_CPOL | BCM2835_SPI0_CS_CPHA);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void SPI::frequency(int hz)
{
    uint16_t    divider = 0;

    if (hz < 8000) {
        divider = SPI_CLOCK_DIV65536;
    }
    else
    if (hz < 15625) {
        divider = SPI_CLOCK_DIV32768;
    }
    else
    if (hz < 31250) {
        divider = SPI_CLOCK_DIV16384;
    }
    else
    if (hz < 62500) {
        divider = SPI_CLOCK_DIV8192;
    }
    else
    if (hz < 125000) {
        divider = SPI_CLOCK_DIV4096;
    }
    else
    if (hz < 250000) {
        divider = SPI_CLOCK_DIV2048;
    }
    else
    if (hz < 500000) {
        divider = SPI_CLOCK_DIV1024;
    }
    else
    if (hz < 1000000) {
        divider = SPI_CLOCK_DIV512;
    }
    else
    if (hz < 2000000) {
        divider = SPI_CLOCK_DIV256;
    }
    else
    if (hz < 4000000) {
        divider = SPI_CLOCK_DIV128;
    }
    else
    if (hz < 8000000) {
        divider = SPI_CLOCK_DIV64;
    }
    else
    if (hz < 20000000) {
        divider = SPI_CLOCK_DIV32;
    }
    else
    if (hz < 40000000) {
        divider = SPI_CLOCK_DIV16;
    }
    else
    if (hz < 80000000) {
        divider = SPI_CLOCK_DIV8;
    }
    else
    if (hz < 160000000) {
        divider = SPI_CLOCK_DIV4;
    }
    else {

        // hz >= 160000000
        divider = SPI_CLOCK_DIV2;
    }

    setClockDivider(divider);
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
uint8_t SPI::write(uint8_t value)
{
    volatile uint32_t*  paddr = bcm2835_spi0 + BCM2835_SPI0_CS / 4;
    volatile uint32_t*  fifo  = bcm2835_spi0 + BCM2835_SPI0_FIFO / 4;

    bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_CLEAR, BCM2835_SPI0_CS_CLEAR);

    bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_TA, BCM2835_SPI0_CS_TA);

    while (!(bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_TXD))
        wait_us(10);

    bcm2835_peri_write_nb(fifo, value);

    while (!(bcm2835_peri_read_nb(paddr) & BCM2835_SPI0_CS_DONE))
        wait_us(10);

    uint32_t    ret = bcm2835_peri_read_nb(fifo);

    bcm2835_peri_set_bits(paddr, 0, BCM2835_SPI0_CS_TA);

    return ret;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
int SPI::write(const char* tx_buffer, int tx_length, char* rx_buffer, int rx_length)
{
    int    len = tx_length;
    if (rx_length > len)
        len = rx_length;

    volatile uint32_t*  paddr = bcm2835_spi0 + BCM2835_SPI0_CS / 4;
    volatile uint32_t*  fifo  = bcm2835_spi0 + BCM2835_SPI0_FIFO / 4;

    // This is Polled transfer as per section 10.6.1

    // BUG ALERT: what happens if we get interupted in this section, and someone else
    // accesses a different peripheral?
    // Clear TX and RX fifos
    bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_CLEAR, BCM2835_SPI0_CS_CLEAR);

    // Set TA = 1
    bcm2835_peri_set_bits(paddr, BCM2835_SPI0_CS_TA, BCM2835_SPI0_CS_TA);

    int    i;
    for (i = 0; i < len; i++) {

        // Maybe wait for TXD
        while (!(bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_TXD))
            wait_us(10);

        // Write to FIFO, no barrier
        if (i < tx_length)
            bcm2835_peri_write_nb(fifo, tx_buffer[i]);
        else
            bcm2835_peri_write_nb(fifo, _write_fill);

        // Wait for RXD
        while (!(bcm2835_peri_read(paddr) & BCM2835_SPI0_CS_RXD))
            wait_us(10);

        // then read the data byte
        if (i < rx_length)
            rx_buffer[i] = bcm2835_peri_read_nb(fifo);
        else
            bcm2835_peri_read_nb(fifo);
    }

    // Wait for DONE to be set
    while (!(bcm2835_peri_read_nb(paddr) & BCM2835_SPI0_CS_DONE))
        wait_us(10);

    // Set TA = 0, and also set the barrier
    bcm2835_peri_set_bits(paddr, 0, BCM2835_SPI0_CS_TA);

    return len;
}

/**
 * @brief
 * @note
 * @param
 * @retval
 */
void SPI::set_default_write_value(char value)
{
    _write_fill = value;
}

/**
 * @brief
 * @note    The divisor must be a power of 2. Odd numbers rounded down.
 *          The maximum SPI clock rate is of the APB clock.
 * @param   divider Defaults to 0, which means a divider of 65536.
 * @retval
 */
void SPI::setClockDivider(uint16_t divider)
{
    volatile uint32_t*  paddr = bcm2835_spi0 + BCM2835_SPI0_CLK / 4;
    bcm2835_peri_write(paddr, divider);
}