Library for MPU6050 motion sensor with Madgwick filter.

Dependents:   ScilabArduino MPU6050_Hello

Files at this revision

API Documentation at this revision

Comitter:
hudakz
Date:
Mon Jan 18 19:44:43 2021 +0000
Commit message:
Library for MPU6050 with Madgwick filter.

Changed in this revision

MPU6050.cpp Show annotated file Show diff for this revision Revisions of this file
MPU6050.h Show annotated file Show diff for this revision Revisions of this file
diff -r 000000000000 -r 9c2bb0f94c31 MPU6050.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU6050.cpp	Mon Jan 18 19:44:43 2021 +0000
@@ -0,0 +1,826 @@
+#include "MPU6050.h"
+
+/**
+ * @brief   Creates an MPU6050 object
+ * @note    Default address is 0x68
+ *          Default acceleration range 2G
+ *          Default gyroscope range is 250 dps (degrees per second)
+ *          I2C_SDA and I2C_SCL pins are used for I2C connection by default
+ *          Interrupt pin is not connected (NC) by default
+ * @param
+ * @retval
+ */
+MPU6050::MPU6050
+(
+    uint8_t     addr /*= 0x68*/,
+    AccelScale  accelScale /*= AFS_2G*/,
+    GyroScale   gyroScale /*= GFS_250DPS*/,
+    PinName     sdaPin /*= I2C_SDA*/,
+    PinName     sclPin /*= I2C_SCL*/,
+    PinName     interruptInPin  /*= NC*/
+) :
+    _addr(addr << 1),
+    _accelScale(accelScale),
+    _gyroScale(gyroScale),
+    _i2c(sdaPin, sclPin),
+    _interruptIn(interruptInPin),
+    _accelRes(0),
+    _gyroRes(0),
+    _beta(sqrt(3.0f / 4.0f) * _gyroError),
+    _zeta(sqrt(3.0f / 4.0f) * _gyroDrift)
+{
+    _i2c.frequency(400000); // 400 kHz
+}
+
+/**
+ * @brief
+ * @note
+ * @param
+ * @retval
+ */
+void MPU6050::rise(Callback<void (void)> func)
+{
+    _interruptIn.rise(func);
+}
+
+/**
+ * @brief
+ * @note
+ * @param
+ * @retval
+ */
+template<typename T>
+void MPU6050::rise(T* tptr, void (T:: *mptr) (void))
+{
+    if ((mptr != NULL) && (tptr != NULL))
+        _interruptIn.rise(tptr, &T::mptr);
+}
+
+/**
+ * @brief
+ * @note
+ * @param
+ * @retval
+ */
+void MPU6050::fall(Callback<void (void)> func)
+{
+    _interruptIn.fall(func);
+}
+
+/**
+ * @brief
+ * @note
+ * @param
+ * @retval
+ */
+template<typename T>
+void MPU6050::fall(T* tptr, void (T:: *mptr) (void))
+{
+    if ((mptr != NULL) && (tptr != NULL))
+        _interruptIn.fall(tptr, &T::mptr);
+}
+
+/**
+ * @brief   Writes a byte to register
+ * @note
+ * @param
+ * @retval
+ */
+void MPU6050::writeReg(uint8_t reg, uint8_t byte)
+{
+    char    data[2];
+
+    data[0] = reg;
+    data[1] = byte;
+    _i2c.write(_addr, data, sizeof(data), false);
+}
+
+/**
+ * @brief   Reads byte from a register
+ * @note
+ * @param
+ * @retval
+ */
+uint8_t MPU6050::readReg(uint8_t reg)
+{
+    char    ret;                                    // `ret` will store the register data
+
+    _i2c.write(_addr, (const char*) &reg, 1, 1);    // no stop
+    _i2c.read(_addr, &ret, 1, 0);
+    return ret;
+}
+
+/**
+ * @brief   Read multiple bytes from a register
+ * @note
+ * @param
+ * @retval
+ */
+void MPU6050::readRegBytes(uint8_t reg, uint8_t len, uint8_t* dest)
+{
+    _i2c.write(_addr, (const char*) &reg, 1, 1);    // no stop
+    _i2c.read(_addr, (char*)dest, len, 0);
+}
+
+/**
+ * @brief   Initializes the MPU6050
+ * @note
+ * @param
+ * @retval
+ */
+bool MPU6050::init()
+{
+    uint8_t c;
+
+    writeReg(PWR_MGMT_1, 0x00); // Select internal OSC as clock source, clear sleep mode bit (6), enable all sensors
+
+    // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
+#if MBED_MAJOR_VERSION > 5
+    ThisThread::sleep_for(100ms);
+#else
+    wait_ms(100);
+#endif
+    //
+
+    // get stable time source
+    writeReg(PWR_MGMT_1, 0x01); // Select PLL with x-axis gyroscope reference as clock source, bits 2:0 = 001
+
+    // Configure Gyro and Accelerometer
+    // DLPF_CFG = bits 2:0 = 0x03 (0b010)
+    // Sets the sample rate to 1 kHz for Low Pass Filter (DLPF) for both the accelerometers and gyros
+    // disables FSYNC and sets accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
+    // Maximum delay is 4.9 ms (= 204.08 Hz) which is just over a 200 Hz maximum rate
+    writeReg(CONFIG, 0x03);
+
+    // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+    // Where gyroscope output rate = 1kHz when the DLPF is disabled (DLPF_CFG = 0 or 7)
+    // Use a 200 Hz rate; the same rate set in CONFIG above: 200 = 1000/(1 + 4)
+    writeReg(SMPLRT_DIV, 0x04);
+
+    // Set gyroscope full scale range
+    c = readReg(GYRO_CONFIG);   // Read the GYRO_CONFIG register
+    c &= 0b11100000;            // Clear self-test bits [7:5]
+
+    // Range selectors FS_SEL is 0 - 3, so left-shift 2-bit value into positions 4:3
+    c |= (_gyroScale << 3);     // Set FS_SEL bits [4:3]
+    writeReg(GYRO_CONFIG, c);   // Set the full scale range for the gyro
+
+    // Update gyro scale according to the selected gyro full scale range.
+    // Possible gyro scales (and their register bit settings) are:
+    // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11).
+    // Set DPS/(ADC tick) based on that 2-bit value:
+    switch (_gyroScale) {
+        case GFS_250DPS:
+            _gyroRes = 250.0 / 32768.0;
+            break;
+
+        case GFS_500DPS:
+            _gyroRes = 500.0 / 32768.0;
+            break;
+
+        case GFS_1000DPS:
+            _gyroRes = 1000.0 / 32768.0;
+            break;
+
+        case GFS_2000DPS:
+            _gyroRes = 2000.0 / 32768.0;
+            break;
+    }
+
+    // Set accelerometer configuration
+    c = readReg(ACCEL_CONFIG);  // Read the ACCEL_CONFIG register
+    c &= 0b11100000;            // Clear self-test bits [7:5]
+
+    // Range selectors AFS_SEL is 0 - 3, so left-shift 2-bit value into positions 4:3
+    c |= (_accelScale << 3);
+    writeReg(ACCEL_CONFIG, c);  // Set full scale range for the accelerometer
+
+    // Update acceleration scle to the selected acceleration scale range.
+    // Possible accelerometer scales (and their register bit settings) are:
+    // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11).
+    // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+    switch (_accelScale) {
+        case AFS_2G:
+            _accelRes = 2.0 / 32768.0;
+            break;
+
+        case AFS_4G:
+            _accelRes = 4.0 / 32768.0;
+            break;
+
+        case AFS_8G:
+            _accelRes = 8.0 / 32768.0;
+            break;
+
+        case AFS_16G:
+            _accelRes = 16.0 / 32768.0;
+            break;
+    }
+
+    // Configure Interrupts and Bypass Enable
+    // When bit [7] (INT_LEVEL) is equal to 0, the logic level for the INT pin is active high.
+    // When bit [6] (INT_OPEN) is equal to 0, the INT pin is configured as push-pull.
+    // When bit [5] (LATCH_INT_EN) is equal to 1, the INT pin is held high until the interrupt is cleared.
+    // When bit [4] (INT_RD_CLEAR) is equal to 0, interrupt status bits are cleared only by reading INT_STATUS
+    // When bit [3] (FSYNC_INT_LEVEL) is equal to 0, the logic level for the FSYNC pin
+    // (when used as an interrupt to the host processor) is active high.
+    // When bit [2] (FSYNC_INT_EN) is equal to 0, this bit disables the FSYNC pin from causing
+    // an interrupt to the host processor.
+    // When bit [1] (I2C_BYPASS_EN) is equal to 1 and bit [5] (I2C_MST_EN) in the USER_CTRL register) is equal to 0,
+    // the host application processor will be able to directly access the auxiliary I2C bus of the MPU-60X0.
+    writeReg(INT_PIN_CFG, 0b00100010);
+
+    // Clear bit [5] in the USER_CTRL register
+    c = readReg(USER_CTRL);
+    c &= ~(1 << I2C_MST_EN);
+    writeReg(USER_CTRL, c);
+
+    // Enable data ready interrupt (bit [0])
+    writeReg(INT_ENABLE, 0x01);
+
+    return true;
+}
+
+/**
+ * @brief   Indicates whether data is available after an interrupt
+ * @note    The DATA_RDY_INT bit clears to 0 after the INT_STATUS register has been read.
+ * @param
+ * @retval
+ */
+bool MPU6050::dataReady()
+{
+    return(readReg(INT_STATUS) & (1 << DATA_RDY_INT));
+}
+
+/**
+ * @brief   Reads acceleration ADC (analog to digital converter)
+ * @note
+ * @param
+ * @retval  Acceleration ADC array of three elements
+ */
+int16_t* MPU6050::accelADC()
+{
+    uint8_t rawData[6];                                     // x/y/z accel register data stored here
+
+    readRegBytes(ACCEL_XOUT_H, 6, rawData);                 // Read the six raw data registers into data array
+    _accelAdc[0] = int16_t(rawData[0]) << 8 | rawData[1];   // Turn the MSB and LSB into a signed 16-bit value
+    _accelAdc[1] = int16_t(rawData[2]) << 8 | rawData[3];
+    _accelAdc[2] = int16_t(rawData[4]) << 8 | rawData[5];
+
+    return _accelAdc;
+}
+
+/**
+ * @brief   Reads gyro ADC (analog to digital converter)
+ * @note
+ * @param
+ * @retval  Gyro ADC array of three elements
+ */
+int16_t* MPU6050::gyroADC()
+{
+    uint8_t rawData[6];                                     // x/y/z gyro register data stored here
+
+    readRegBytes(GYRO_XOUT_H, 6, rawData);                  // Read the six raw data registers sequentially into data array
+    _gyroAdc[0] = int16_t(rawData[0]) << 8 | rawData[1];    // Turn the MSB and LSB into a signed 16-bit value
+    _gyroAdc[1] = int16_t(rawData[2]) << 8 | rawData[3];
+    _gyroAdc[2] = int16_t(rawData[4]) << 8 | rawData[5];
+
+    return _gyroAdc;
+}
+
+/**
+ * @brief   Reads temperature ADC (analog to digital converter)
+ * @note
+ * @param
+ * @retval  Temperature ADC value
+ */
+int16_t MPU6050::tempADC()
+{
+    uint8_t rawData[2];                             // x/y/z gyro register data stored here
+
+    readRegBytes(TEMP_OUT_H, 2, &rawData[0]);       // Read the two raw data registers sequentially into data array
+    return int16_t(rawData[0]) << 8 | rawData[1];   // Turn the MSB and LSB into a 16-bit value
+}
+
+/**
+ * @brief
+ * @note
+ * @param
+ * @retval
+ */
+float MPU6050::temp()
+{
+    return(tempADC() / 340. + 36.53);   // Temperature in degrees Celsius
+}
+
+/**
+ * @brief   Configures the motion detection control for low power accelerometer mode
+ * @note    The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
+ *          Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
+ *          above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
+ *          threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
+ *          consideration for these threshold evaluations; otherwise, the flags would be set all the time!
+ * @param
+ * @retval
+ */
+void MPU6050::lowPowerAccelOnly()
+{
+    uint8_t c = readReg(PWR_MGMT_1);
+    writeReg(PWR_MGMT_1, c &~0x30);     // Clear sleep and cycle bits [5:6]
+    writeReg(PWR_MGMT_1, c | 0x30);     // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
+    c = readReg(PWR_MGMT_2);
+    writeReg(PWR_MGMT_2, c &~0x38);     // Clear standby XA, YA, and ZA bits [3:5]
+    writeReg(PWR_MGMT_2, c | 0x00);     // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
+    c = readReg(ACCEL_CONFIG);
+    writeReg(ACCEL_CONFIG, c &~0x07);   // Clear high-pass filter bits [2:0]
+
+    // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
+    writeReg(ACCEL_CONFIG, c | 0x00);   // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
+    c = readReg(CONFIG);
+    writeReg(CONFIG, c &~0x07);         // Clear low-pass filter bits [2:0]
+    writeReg(CONFIG, c | 0x00);         // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
+    c = readReg(INT_ENABLE);
+    writeReg(INT_ENABLE, c &~0xFF);     // Clear all interrupts
+    writeReg(INT_ENABLE, 0x40);         // Enable motion threshold (bits 5) interrupt only
+
+    // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
+    // for at least the counter duration
+    writeReg(MOT_THR, 0x80);            // Set motion detection to 0.256 g; LSB = 2 mg
+    writeReg(MOT_DUR, 0x01);            // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate
+
+    // Add delay for accumulation of samples
+#if MBED_MAJOR_VERSION > 5
+    ThisThread::sleep_for(100ms);
+#else
+    wait_ms(100);
+#endif
+    c = readReg(ACCEL_CONFIG);
+    writeReg(ACCEL_CONFIG, c &~0x07);   // Clear high-pass filter bits [2:0]
+    writeReg(ACCEL_CONFIG, c | 0x07);   // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
+    c = readReg(PWR_MGMT_2);
+    writeReg(PWR_MGMT_2, c &~0xC7);     // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
+    writeReg(PWR_MGMT_2, c | 0x47);     // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
+    c = readReg(PWR_MGMT_1);
+    writeReg(PWR_MGMT_1, c &~0x20);     // Clear sleep and cycle bit 5
+    writeReg(PWR_MGMT_1, c | 0x20);     // Set cycle bit 5 to begin low power accelerometer motion interrupts
+}
+
+/**
+ * @brief   Resets the MPU6050
+ * @note
+ * @param
+ * @retval
+ */
+void MPU6050::reset()
+{
+    // Reset the device
+
+    writeReg(PWR_MGMT_1, 0b10000000);   // Write a one to bit 7 (reset bit);
+#if MBED_MAJOR_VERSION > 5
+    ThisThread::sleep_for(100ms);
+#else
+    wait_ms(100);
+#endif
+}
+
+/**
+ * @brief   Calibrates the MPU6050
+ * @note    Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
+ *          of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
+ * @param
+ * @retval
+ */
+void MPU6050::calibrate()
+{
+    uint8_t     data[12];                       // data array to hold accelerometer and gyro x, y, z, data
+    uint16_t    packetCount, fifoCount;
+    int32_t     gyroBias[3] = { 0, 0, 0 };
+    int32_t     accelBias[3] = { 0, 0, 0 };
+
+    // Reset the device, reset all registers, clear gyro and accelerometer bias registers
+
+    reset();
+
+    // Get stable time source: set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+    writeReg(PWR_MGMT_1, 0x01);
+    writeReg(PWR_MGMT_2, 0x00);
+#if MBED_MAJOR_VERSION > 5
+    ThisThread::sleep_for(200ms);
+#else
+    wait_ms(200);
+#endif
+    //
+
+    // Configure the device for bias calculation
+    writeReg(INT_ENABLE, 0x00);                 // Disable all interrupts
+    writeReg(FIFO_EN, 0x00);                    // Disable FIFO
+    writeReg(PWR_MGMT_1, 0x00);                 // Turn on internal clock source
+    writeReg(I2C_MST_CTRL, 0x00);               // Disable I2C master
+    writeReg(USER_CTRL, 0x00);                  // Disable FIFO and I2C master modes
+    writeReg(USER_CTRL, 0x0C);                  // Reset FIFO and DMP
+#if MBED_MAJOR_VERSION > 5
+    ThisThread::sleep_for(200ms);
+#else
+    wait_ms(200);
+#endif
+    // Configure MPU6050 gyro and accelerometer for bias calculation
+
+    writeReg(CONFIG, 0x01);                     // Set low-pass filter to 188 Hz
+    writeReg(SMPLRT_DIV, 0x00);                 // Set sample rate to 1 kHz
+    writeReg(GYRO_CONFIG, 0x00);                // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+    writeReg(ACCEL_CONFIG, 0x00);               // Set accelerometer full-scale to 2 g, maximum sensitivity
+    uint16_t    gyroSensitivity = 131;          // = 131 LSB/degrees/sec
+    uint16_t    accelSensitivity = 16384;       // = 16384 LSB/g
+
+    // Configure FIFO to capture accelerometer and gyro data for bias calculation
+    writeReg(USER_CTRL, 0x40);                  // Enable FIFO
+    writeReg(FIFO_EN, 0x78);                    // Enable gyro and accelerometer sensors for FIFO  (max size 1024 bytes in MPU-6050)
+
+    // accumulate 80 samples in 80 milliseconds = 960 bytes
+#if MBED_MAJOR_VERSION > 5
+    ThisThread::sleep_for(80ms);
+#else
+    wait_ms(80);
+#endif
+    //
+
+    // At end of sample accumulation, turn off FIFO sensor read
+    writeReg(FIFO_EN, 0x00);                    // Disable gyro and accelerometer sensors for FIFO
+    readRegBytes(FIFO_COUNTH, 2, &data[0]);     // read FIFO sample count
+    fifoCount = ((uint16_t) data[0] << 8) | data[1];
+    packetCount = fifoCount / 12;               // How many sets of full gyro and accelerometer data for averaging
+    for (int i = 0; i < packetCount; i++) {
+        int16_t accel_temp[3] = { 0, 0, 0 },
+        gyro_temp[3] = { 0, 0, 0 };
+        readRegBytes(FIFO_R_W, 12, &data[0]);   // read data for averaging
+        accel_temp[0] = (int16_t) (((int16_t) data[0] << 8) | data[1]); // Form signed 16-bit integer for each sample in FIFO
+        accel_temp[1] = (int16_t) (((int16_t) data[2] << 8) | data[3]);
+        accel_temp[2] = (int16_t) (((int16_t) data[4] << 8) | data[5]);
+        gyro_temp[0] = (int16_t) (((int16_t) data[6] << 8) | data[7]);
+        gyro_temp[1] = (int16_t) (((int16_t) data[8] << 8) | data[9]);
+        gyro_temp[2] = (int16_t) (((int16_t) data[10] << 8) | data[11]);
+
+        accelBias[0] += (int32_t) accel_temp[0];                        // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
+        accelBias[1] += (int32_t) accel_temp[1];
+        accelBias[2] += (int32_t) accel_temp[2];
+        gyroBias[0] += (int32_t) gyro_temp[0];
+        gyroBias[1] += (int32_t) gyro_temp[1];
+        gyroBias[2] += (int32_t) gyro_temp[2];
+    }
+
+    accelBias[0] /= (int32_t) packetCount;                              // Normalize sums to get average count biases
+    accelBias[1] /= (int32_t) packetCount;
+    accelBias[2] /= (int32_t) packetCount;
+    gyroBias[0] /= (int32_t) packetCount;
+    gyroBias[1] /= (int32_t) packetCount;
+    gyroBias[2] /= (int32_t) packetCount;
+
+    if (accelBias[2] > 0L) {
+        accelBias[2] -= (int32_t) accelSensitivity;
+    }                                           // Remove gravity from the z-axis accelerometer bias calculation
+    else {
+        accelBias[2] += (int32_t) accelSensitivity;
+    }
+
+    // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
+    data[0] = (-gyroBias[0] / 4 >> 8) & 0xFF;   // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+    data[1] = (-gyroBias[0] / 4) & 0xFF;        // Biases are additive, so change sign on calculated average gyro biases
+    data[2] = (-gyroBias[1] / 4 >> 8) & 0xFF;
+    data[3] = (-gyroBias[1] / 4) & 0xFF;
+    data[4] = (-gyroBias[2] / 4 >> 8) & 0xFF;
+    data[5] = (-gyroBias[2] / 4) & 0xFF;
+
+    // Push gyro biases to hardware registers
+    writeReg(XG_OFFS_USRH, data[0]);
+    writeReg(XG_OFFS_USRL, data[1]);
+    writeReg(YG_OFFS_USRH, data[2]);
+    writeReg(YG_OFFS_USRL, data[3]);
+    writeReg(ZG_OFFS_USRH, data[4]);
+    writeReg(ZG_OFFS_USRL, data[5]);
+
+    _gyroBias[0] = (float)gyroBias[0] / (float)gyroSensitivity; // construct gyro bias in deg/s for later manual subtraction
+    _gyroBias[1] = (float)gyroBias[1] / (float)gyroSensitivity;
+    _gyroBias[2] = (float)gyroBias[2] / (float)gyroSensitivity;
+
+    // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
+    // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
+    // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
+    // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
+    // the accelerometer biases calculated above must be divided by 8.
+    int32_t accel_bias_reg[3] = { 0, 0, 0 };                    // A place to hold the factory accelerometer trim biases
+
+    readRegBytes(XA_OFFSET_H, 2, &data[0]);                     // Read factory accelerometer trim values
+    accel_bias_reg[0] = (int16_t) ((int16_t) data[0] << 8) | data[1];
+    readRegBytes(YA_OFFSET_H, 2, &data[0]);
+    accel_bias_reg[1] = (int16_t) ((int16_t) data[0] << 8) | data[1];
+    readRegBytes(ZA_OFFSET_H, 2, &data[0]);
+    accel_bias_reg[2] = (int16_t) ((int16_t) data[0] << 8) | data[1];
+
+    uint32_t    mask = 1uL;                                     // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+    uint8_t     mask_bit[3] = { 0, 0, 0 };                      // Define array to hold mask bit for each accelerometer bias axis
+
+    for (int i = 0; i < 3; i++) {
+        if (accel_bias_reg[i] & mask)
+            mask_bit[i] = 0x01;                                 // If temperature compensation bit is set, record that fact in mask_bit
+    }
+
+    // Construct total accelerometer bias, including calculated average accelerometer bias from above
+    accel_bias_reg[0] -= (accelBias[0] / 8);                    // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+    accel_bias_reg[1] -= (accelBias[1] / 8);
+    accel_bias_reg[2] -= (accelBias[2] / 8);
+
+    data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+    data[1] = (accel_bias_reg[0]) & 0xFF;
+    data[1] = data[1] | mask_bit[0];                            // preserve temperature compensation bit when writing back to accelerometer bias registers
+    data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+    data[3] = (accel_bias_reg[1]) & 0xFF;
+    data[3] = data[3] | mask_bit[1];                            // preserve temperature compensation bit when writing back to accelerometer bias registers
+    data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+    data[5] = (accel_bias_reg[2]) & 0xFF;
+    data[5] = data[5] | mask_bit[2];                            // preserve temperature compensation bit when writing back to accelerometer bias registers
+
+    // Push accelerometer biases to hardware registers
+    //  writeByte(_address, XA_OFFSET_H, data[0]);
+    //  writeByte(_address, XA_OFFSET_L_TC, data[1]);
+    //  writeByte(_address, YA_OFFSET_H, data[2]);
+    //  writeByte(_address, YA_OFFSET_L_TC, data[3]);
+    //  writeByte(_address, ZA_OFFSET_H, data[4]);
+    //  writeByte(_address, ZA_OFFSET_L_TC, data[5]);
+    // Output scaled accelerometer biases for manual subtraction in the main program
+    _accelBias[0] = (float)accelBias[0] / (float)accelSensitivity;
+    _accelBias[1] = (float)accelBias[1] / (float)accelSensitivity;
+    _accelBias[2] = (float)accelBias[2] / (float)accelSensitivity;
+}
+
+/**
+ * @brief   Performs accelerometer and gyroscope self test
+ * @note    Checks calibration wrt factory settings.
+ *          Should return percent deviation from factory trim values
+ *          +/- 14 or less deviation is a pass
+ * @param
+ * @retval  true    if passed
+ *          false   otherwise
+ */
+bool MPU6050::selfTestOK()
+{
+    uint8_t rawData[4] = { 0, 0, 0, 0 };
+    uint8_t selfTest[6];
+    float   factoryTrim[6];
+    //
+    // Configure the accelerometer for self-test
+    writeReg(ACCEL_CONFIG, 0xF0);                               // Enable self test on all three axes and set accelerometer range to +/- 8 g
+    writeReg(GYRO_CONFIG, 0xE0);                                // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
+#if MBED_MAJOR_VERSION > 5
+    ThisThread::sleep_for(250ms);
+#else
+    wait_ms(250);
+#endif
+    rawData[0] = readReg(SELF_TEST_X);                          // X-axis self-test results
+    rawData[1] = readReg(SELF_TEST_Y);                          // Y-axis self-test results
+    rawData[2] = readReg(SELF_TEST_Z);                          // Z-axis self-test results
+    rawData[3] = readReg(SELF_TEST_A);                          // Mixed-axis self-test results
+
+    // Extract the acceleration test results first
+    selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4; // XA_TEST result is a five-bit unsigned integer
+    selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4; // YA_TEST result is a five-bit unsigned integer
+    selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4; // ZA_TEST result is a five-bit unsigned integer
+
+    // Extract the gyration test results first
+    selfTest[3] = rawData[0] & 0x1F;                            // XG_TEST result is a five-bit unsigned integer
+    selfTest[4] = rawData[1] & 0x1F;                            // YG_TEST result is a five-bit unsigned integer
+    selfTest[5] = rawData[2] & 0x1F;                            // ZG_TEST result is a five-bit unsigned integer
+
+    // Process results to allow final comparison with factory set values
+    factoryTrim[0] = (4096.0f * 0.34f) * (pow((0.92f / 0.34f), ((selfTest[0] - 1.0f) / 30.0f)));    // FT[Xa] factory trim calculation
+    factoryTrim[1] = (4096.0f * 0.34f) * (pow((0.92f / 0.34f), ((selfTest[1] - 1.0f) / 30.0f)));    // FT[Ya] factory trim calculation
+    factoryTrim[2] = (4096.0f * 0.34f) * (pow((0.92f / 0.34f), ((selfTest[2] - 1.0f) / 30.0f)));    // FT[Za] factory trim calculation
+    factoryTrim[3] = (25.0f * 131.0f) * (pow(1.046f, (selfTest[3] - 1.0f)));                        // FT[Xg] factory trim calculation
+    factoryTrim[4] = (-25.0f * 131.0f) * (pow(1.046f, (selfTest[4] - 1.0f)));                       // FT[Yg] factory trim calculation
+    factoryTrim[5] = (25.0f * 131.0f) * (pow(1.046f, (selfTest[5] - 1.0f)));                        // FT[Zg] factory trim calculation
+
+    //  Output self-test results and factory trim calculation if desired
+    //  Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
+    //  Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
+    //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
+    //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
+    // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
+    // To get to percent, must multiply by 100 and subtract result from 100
+    for (int i = 0; i < 6; i++) {
+        _selfTest[i] = 100.0f + 100.0f * (selfTest[i] - factoryTrim[i]) / factoryTrim[i];           // Report percent differences
+    }
+
+    return
+        (
+            _selfTest[0] < 1.0f &&
+            _selfTest[1] < 1.0f &&
+            _selfTest[2] < 1.0f &&
+            _selfTest[3] < 1.0f &&
+            _selfTest[4] < 1.0f &&
+            _selfTest[5] < 1.0f
+        );
+}
+
+/**
+ * @brief   Computes acceleration
+ * @note
+ * @param
+ * @retval
+ */
+float* MPU6050::accel()
+{
+    accelADC();
+
+    // Compute actual acceleration values, this depends on used scale
+    accelX = (float)_accelAdc[0] * _accelRes - _accelBias[0];
+    accelY = (float)_accelAdc[1] * _accelRes - _accelBias[1];
+    accelZ = (float)_accelAdc[2] * _accelRes - _accelBias[2];
+
+    return accelData;
+}
+
+/**
+ * @brief   Computes gyro
+ * @note
+ * @param
+ * @retval
+ */
+float* MPU6050::gyro()
+{
+    gyroADC();
+
+    // Compute actual gyro values, this depends on used scale
+    gyroX = (float)_gyroAdc[0] * _gyroRes - _gyroBias[0];
+    gyroY = (float)_gyroAdc[1] * _gyroRes - _gyroBias[1];
+    gyroZ = (float)_gyroAdc[2] * _gyroRes - _gyroBias[2];
+    return gyroData;
+}
+
+/**
+ * @brief   Adjusts filter gain after device is stabilized
+ * @note
+ * @param
+ * @retval
+ */
+void MPU6050::setGain(float beta, float zeta)
+{
+    _beta = beta;  // set filter gain
+    _zeta = zeta;  // set bias drift gain
+}
+
+/**
+ * @brief   Madgwick filter
+ * @note    Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
+ *          (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
+ *          which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
+ *          device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
+ *          The performance of the orientation filter is almost as good as conventional Kalman-based filtering algorithms
+ *          but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
+ * @param   deltaT  Integration time in seconds.
+ * @retval
+ */
+void MPU6050::madgwickFilter(float deltaT)
+{
+    // aliases for better readability
+    float&  q1 = _q[0];
+    float&  q2 = _q[1];
+    float&  q3 = _q[2];
+    float&  q4 = _q[3];
+    float   norm;       // vector norm
+    float   f1, f2, f3; // objective funcion elements
+    float   j_11or24, j_12or23, j_13or22, j_14or21, j_32, j_33; // objective function Jacobian elements
+    float   qDot1, qDot2, qDot3, qDot4;
+    float   hatDot1, hatDot2, hatDot3, hatDot4;
+    float   ax = accelX;
+    float   ay = accelY;
+    float   az = accelZ;
+    float   gx = gyroX * M_PI / 180.0f;                         // convert to rad/s
+    float   gy = gyroY * M_PI / 180.0f;                         // convert to rad/s
+    float   gz = gyroZ * M_PI / 180.0f;                         // convert to rad/s
+    float   gErrX, gErrY, gErrZ, gBiasX, gBiasY, gBiasZ;        // gyro bias errors
+
+    // Auxiliary variables to avoid repeated arithmetic
+    float   halfq1 = 0.5f * q1;
+    float   halfq2 = 0.5f * q2;
+    float   halfq3 = 0.5f * q3;
+    float   halfq4 = 0.5f * q4;
+    float   _2q1 = 2.0f * q1;
+    float   _2q2 = 2.0f * q2;
+    float   _2q3 = 2.0f * q3;
+    float   _2q4 = 2.0f * q4;
+    //float _2q1q3 = 2.0f * q1 * q3;
+    //float _2q3q4 = 2.0f * q3 * q4;
+    // Normalise accelerometer measurement
+    norm = sqrt(ax * ax + ay * ay + az * az);
+    if (norm == 0.0f)
+        return;                                         // handle NaN
+    norm = 1.0f / norm;
+    ax *= norm;
+    ay *= norm;
+    az *= norm;
+
+    // Compute the objective function and Jacobian
+    f1 = _2q2 * q4 - _2q1 * q3 - ax;
+    f2 = _2q1 * q2 + _2q3 * q4 - ay;
+    f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
+    j_11or24 = _2q3;
+    j_12or23 = _2q4;
+    j_13or22 = _2q1;
+    j_14or21 = _2q2;
+    j_32 = 2.0f * j_14or21;
+    j_33 = 2.0f * j_11or24;
+
+    // Compute the gradient (matrix multiplication)
+    hatDot1 = j_14or21 * f2 - j_11or24 * f1;
+    hatDot2 = j_12or23 * f1 + j_13or22 * f2 - j_32 * f3;
+    hatDot3 = j_12or23 * f2 - j_33 * f3 - j_13or22 * f1;
+    hatDot4 = j_14or21 * f1 + j_11or24 * f2;
+
+    // Normalize the gradient
+    norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
+    hatDot1 /= norm;
+    hatDot2 /= norm;
+    hatDot3 /= norm;
+    hatDot4 /= norm;
+
+    // Compute estimated gyroscope errors
+    gErrX = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
+    gErrY = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
+    gErrZ = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
+
+    // Compute gyroscope biases
+    gBiasX += gErrX * deltaT * _zeta;
+    gBiasY += gErrY * deltaT * _zeta;
+    gBiasZ += gErrZ * deltaT * _zeta;
+
+    // Remove gyroscope biases
+    gx -= gBiasX;
+    gy -= gBiasY;
+    gz -= gBiasZ;
+
+    // Compute the quaternion derivative
+    qDot1 = -halfq2 * gx - halfq3 * gy - halfq4 * gz;
+    qDot2 = halfq1 * gx + halfq3 * gz - halfq4 * gy;
+    qDot3 = halfq1 * gy - halfq2 * gz + halfq4 * gx;
+    qDot4 = halfq1 * gz + halfq2 * gy - halfq3 * gx;
+
+    // Compute the integrated estimated quaternion derivative
+    q1 += (qDot1 - (_beta * hatDot1)) * deltaT;
+    q2 += (qDot2 - (_beta * hatDot2)) * deltaT;
+    q3 += (qDot3 - (_beta * hatDot3)) * deltaT;
+    q4 += (qDot4 - (_beta * hatDot4)) * deltaT;
+
+    // Normalize the quaternion
+    norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
+    norm = 1.0f / norm;
+    _q[0] = q1 * norm;
+    _q[1] = q2 * norm;
+    _q[2] = q3 * norm;
+    _q[3] = q4 * norm;
+}
+
+/**
+ * @brief   Calculates yaw in degree
+ * @note
+ * @param
+ * @retval
+ */
+float MPU6050::yaw()
+{
+    float   yawRad = atan2
+        (
+            2.0f * (_q[1] * _q[2] + _q[0] * _q[3]),
+            _q[0] * _q[0] + _q[1] * _q[1] - _q[2] * _q[2] - _q[3] * _q[3]
+        );
+
+    return yawRad * 180.f / M_PI;
+}
+
+/**
+ * @brief   Calculates pitch in degree
+ * @note
+ * @param
+ * @retval
+ */
+float MPU6050::pitch()
+{
+    float   pitchRad = -asin(2.0f * (_q[1] * _q[3] - _q[0] * _q[2]));
+
+    return pitchRad * 180.f / M_PI;
+}
+
+/**
+ * @brief   Claculates roll in degree
+ * @note
+ * @param
+ * @retval
+ */
+float MPU6050::roll()
+{
+    float   rollRad = atan2
+        (
+            2.0f * (_q[0] * _q[1] + _q[2] * _q[3]),
+            _q[0] * _q[0] - _q[1] * _q[1] - _q[2] * _q[2] + _q[3] * _q[3]
+        );
+
+    return rollRad * 180.0f / M_PI;
+}
diff -r 000000000000 -r 9c2bb0f94c31 MPU6050.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU6050.h	Mon Jan 18 19:44:43 2021 +0000
@@ -0,0 +1,240 @@
+#ifndef MPU6050_H
+#define MPU6050_H
+
+#include "mbed.h"
+#include "math.h"
+
+#ifndef M_PI
+#define M_PI                3.14159265358979323846
+#endif
+
+// Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
+
+// Invensense Inc., www.invensense.com
+// See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in
+// above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
+//
+#define XGOFFS_TC           0x00                        // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
+#define YGOFFS_TC           0x01
+#define ZGOFFS_TC           0x02
+#define X_FINE_GAIN         0x03                        // [7:0] fine gain
+#define Y_FINE_GAIN         0x04
+#define Z_FINE_GAIN         0x05
+#define XA_OFFSET_H         0x06                        // User-defined trim values for accelerometer
+#define XA_OFFSET_L_TC      0x07
+#define YA_OFFSET_H         0x08
+#define YA_OFFSET_L_TC      0x09
+#define ZA_OFFSET_H         0x0A
+#define ZA_OFFSET_L_TC      0x0B
+#define SELF_TEST_X         0x0D
+#define SELF_TEST_Y         0x0E
+#define SELF_TEST_Z         0x0F
+#define SELF_TEST_A         0x10
+#define XG_OFFS_USRH        0x13                        // User-defined trim values for gyroscope; supported in MPU-6050?
+#define XG_OFFS_USRL        0x14
+#define YG_OFFS_USRH        0x15
+#define YG_OFFS_USRL        0x16
+#define ZG_OFFS_USRH        0x17
+#define ZG_OFFS_USRL        0x18
+#define SMPLRT_DIV          0x19
+#define CONFIG              0x1A
+#define GYRO_CONFIG         0x1B
+#define ACCEL_CONFIG        0x1C
+#define FF_THR              0x1D                        // Free-fall
+#define FF_DUR              0x1E                        // Free-fall
+#define MOT_THR             0x1F                        // Motion detection threshold bits [7:0]
+#define MOT_DUR             0x20                        // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
+#define ZMOT_THR            0x21                        // Zero-motion detection threshold bits [7:0]
+#define ZRMOT_DUR           0x22                        // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
+#define FIFO_EN             0x23
+#define I2C_MST_CTRL        0x24
+#define I2C_SLV0_ADDR       0x25
+#define I2C_SLV0_REG        0x26
+#define I2C_SLV0_CTRL       0x27
+#define I2C_SLV1_ADDR       0x28
+#define I2C_SLV1_REG        0x29
+#define I2C_SLV1_CTRL       0x2A
+#define I2C_SLV2_ADDR       0x2B
+#define I2C_SLV2_REG        0x2C
+#define I2C_SLV2_CTRL       0x2D
+#define I2C_SLV3_ADDR       0x2E
+#define I2C_SLV3_REG        0x2F
+#define I2C_SLV3_CTRL       0x30
+#define I2C_SLV4_ADDR       0x31
+#define I2C_SLV4_REG        0x32
+#define I2C_SLV4_DO         0x33
+#define I2C_SLV4_CTRL       0x34
+#define I2C_SLV4_DI         0x35
+#define I2C_MST_STATUS      0x36
+#define INT_PIN_CFG         0x37
+#define INT_ENABLE          0x38
+#define DMP_INT_STATUS      0x39                        // Check DMP interrupt
+#define INT_STATUS          0x3A
+#define ACCEL_XOUT_H        0x3B
+#define ACCEL_XOUT_L        0x3C
+#define ACCEL_YOUT_H        0x3D
+#define ACCEL_YOUT_L        0x3E
+#define ACCEL_ZOUT_H        0x3F
+#define ACCEL_ZOUT_L        0x40
+#define TEMP_OUT_H          0x41
+#define TEMP_OUT_L          0x42
+#define GYRO_XOUT_H         0x43
+#define GYRO_XOUT_L         0x44
+#define GYRO_YOUT_H         0x45
+#define GYRO_YOUT_L         0x46
+#define GYRO_ZOUT_H         0x47
+#define GYRO_ZOUT_L         0x48
+#define EXT_SENS_DATA_00    0x49
+#define EXT_SENS_DATA_01    0x4A
+#define EXT_SENS_DATA_02    0x4B
+#define EXT_SENS_DATA_03    0x4C
+#define EXT_SENS_DATA_04    0x4D
+#define EXT_SENS_DATA_05    0x4E
+#define EXT_SENS_DATA_06    0x4F
+#define EXT_SENS_DATA_07    0x50
+#define EXT_SENS_DATA_08    0x51
+#define EXT_SENS_DATA_09    0x52
+#define EXT_SENS_DATA_10    0x53
+#define EXT_SENS_DATA_11    0x54
+#define EXT_SENS_DATA_12    0x55
+#define EXT_SENS_DATA_13    0x56
+#define EXT_SENS_DATA_14    0x57
+#define EXT_SENS_DATA_15    0x58
+#define EXT_SENS_DATA_16    0x59
+#define EXT_SENS_DATA_17    0x5A
+#define EXT_SENS_DATA_18    0x5B
+#define EXT_SENS_DATA_19    0x5C
+#define EXT_SENS_DATA_20    0x5D
+#define EXT_SENS_DATA_21    0x5E
+#define EXT_SENS_DATA_22    0x5F
+#define EXT_SENS_DATA_23    0x60
+#define MOT_DETECT_STATUS   0x61
+#define I2C_SLV0_DO         0x63
+#define I2C_SLV1_DO         0x64
+#define I2C_SLV2_DO         0x65
+#define I2C_SLV3_DO         0x66
+#define I2C_MST_DELAY_CTRL  0x67
+#define SIGNAL_PATH_RESET   0x68
+#define MOT_DETECT_CTRL     0x69
+#define USER_CTRL           0x6A                        // Bit 7 enable DMP, bit 3 reset DMP
+#define PWR_MGMT_1          0x6B                        // Device defaults to the SLEEP mode
+#define PWR_MGMT_2          0x6C
+#define DMP_BANK            0x6D                        // Activates a specific bank in the DMP
+#define DMP_RW_PNT          0x6E                        // Set read/write pointer to a specific start address in specified DMP bank
+#define DMP_REG             0x6F                        // Register in DMP from which to read or to which to write
+#define DMP_REG_1           0x70
+#define DMP_REG_2           0x71
+#define FIFO_COUNTH         0x72
+#define FIFO_COUNTL         0x73
+#define FIFO_R_W            0x74
+#define WHO_AM_I_MPU6050    0x75                        // Should return 0x68
+
+// Register bits
+#define DATA_RDY_INT        0
+#define I2C_MST_EN          5
+
+enum AccelScale
+{
+    AFS_2G,
+    AFS_4G,
+    AFS_8G,
+    AFS_16G
+};
+
+enum GyroScale
+{
+    GFS_250DPS,
+    GFS_500DPS,
+    GFS_1000DPS,
+    GFS_2000DPS
+};
+
+class MPU6050
+{
+    uint8_t     _addr;
+    AccelScale  _accelScale;
+    GyroScale   _gyroScale;
+    I2C         _i2c;
+    InterruptIn _interruptIn;
+    float       _accelRes;
+    float       _gyroRes;
+    int16_t     _accelAdc[3];                           // Stores the 16-bit signed accelerometer sensor output
+    int16_t     _gyroAdc[3];                            // Stores the 16-bit signed gyro sensor output
+    float       _gyroBias[3] = { 0 };
+    float       _accelBias[3] = { 0 };                  // Bias corrections for gyro and accelerometer
+    int16_t     _tempInt;                               // Stores the real internal chip temperature in degrees Celsius
+    float       _temp;
+    float       _selfTest[6];
+
+    // parameters for 6 DoF sensor fusion calculations
+    const float _gyroError = M_PI * (40.0f / 180.0f);   // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
+    const float _gyroDrift = M_PI * (2.0f / 180.0f);    // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
+    float       _beta;                                  // compute beta
+    float       _zeta;                                  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
+    float       _pitch, _yaw, _roll;
+    float       _q[4] = { 1.0f, 0.0f, 0.0f, 0.0f };     // vector to hold quaternion
+    void        writeReg(uint8_t reg, uint8_t byte);
+    uint8_t     readReg(uint8_t reg);
+    void        readRegBytes(uint8_t reg, uint8_t len, uint8_t* dest);
+    int16_t*    accelADC();
+    int16_t*    gyroADC();
+    int16_t     tempADC();
+public:
+    float   accelData[3];                               // Stores the real accelerometer sensor output
+    float&  accelX = accelData[0];                          // Acceleration liases
+    float&  accelY = accelData[1];
+    float&  accelZ = accelData[2];
+    float   gyroData[3];                                // Stores the real gyro sensor output
+    float&  gyroX = gyroData[0];                           // Gyro aliases
+    float&  gyroY = gyroData[1];
+    float&  gyroZ = gyroData[2];
+
+    MPU6050
+    (
+        uint8_t     addr = 0x68,
+        AccelScale  accelScale = AFS_2G,
+        GyroScale   gyroScale = GFS_250DPS,
+        PinName     sdaPin = I2C_SDA,
+        PinName     sclPin = I2C_SCL,
+        PinName     interruptInPin = NC
+    );
+    virtual ~MPU6050()  { }
+    void    rise(Callback<void (void)> func);
+    template<typename T>
+    void rise(T* tptr, void (T:: *mptr) (void));
+    void fall(Callback<void (void)> func);
+    template<typename T>
+    void fall(T* tptr, void (T:: *mptr) (void));
+    bool init();
+    bool dataReady();
+    float* accel();
+    float* gyro();
+    float temp();
+
+    // Configure the motion detection control for low power accelerometer mode
+    void lowPowerAccelOnly();
+    void reset();
+
+    // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
+    // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
+    void calibrate();
+
+    // Accelerometer and gyroscope self test; check calibration wrt factory settings
+    bool selfTestOK();                                  // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
+    void setGain(float beta, float zeta);
+
+    // Implementation of Sebastian Madgwick's "...efficient orientation filter for inertial/magnetic sensor arrays"
+    // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
+    // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
+    // device orientation -- which can be converted to yaw, pitch, and roll.
+    // Useful for stabilizing quadcopters, etc.
+    // The performance of the orientation filter is almost as good as conventional Kalman-based filtering algorithms
+    // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
+    void madgwickFilter(float deltaT);
+
+    // To compute yaw, pitch and roll after after aplying the madgwickFilter
+    float yaw();
+    float pitch();
+    float roll();
+};
+#endif // MPU6050_H