Ian Kilburn / VL53L0X

Dependents:   4012Code PWM

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers VL53L0X.cpp Source File

VL53L0X.cpp

00001 /// Most of the functionality of this library is based on the VL53L0X API
00002 // provided by ST (STSW-IMG005), and some of the explanatory comments are quoted
00003 // or paraphrased from the API source code, API user manual (UM2039), and the
00004 // VL53L0X datasheet.
00005 
00006 #include "VL53L0X.h"
00007 #include "mbed.h"
00008 // Defines /////////////////////////////////////////////////////////////////////
00009 
00010 // The Arduino two-wire interface uses a 7-bit number for the address,
00011 // and sets the last bit correctly based on reads and writes
00012 #define ADDRESS_DEFAULT 0b0101001 << 1
00013 
00014 // Record the current time to check an upcoming timeout against
00015 #define startTimeout() (timeout_start_ms = 0)
00016 
00017 // Check if timeout is enabled (set to nonzero value) and has expired
00018 #define checkTimeoutExpired() (io_timeout > 0 && ((uint16_t)10 - timeout_start_ms) > io_timeout)
00019 
00020 // Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs
00021 // from register value
00022 // based on VL53L0X_decode_vcsel_period()
00023 #define decodeVcselPeriod(reg_val)      (((reg_val) + 1) << 1)
00024 
00025 // Encode VCSEL pulse period register value from period in PCLKs
00026 // based on VL53L0X_encode_vcsel_period()
00027 #define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1)
00028 
00029 // Calculate macro period in *nanoseconds* from VCSEL period in PCLKs
00030 // based on VL53L0X_calc_macro_period_ps()
00031 // PLL_period_ps = 1655; macro_period_vclks = 2304
00032 #define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000)
00033 
00034 // Constructors ////////////////////////////////////////////////////////////////
00035 
00036 VL53L0X::VL53L0X(PinName sda, PinName scl) : m_i2c(sda,scl),m_addr(ADDRESS_DEFAULT), io_timeout(0) // no timeout
00037   , did_timeout(false)
00038 {
00039 }
00040 
00041 // Public Methods //////////////////////////////////////////////////////////////
00042 
00043 void VL53L0X::setAddress(uint8_t new_addr)
00044 {
00045   writeReg(I2C_SLAVE_DEVICE_ADDRESS, new_addr & 0x7F);
00046   address = new_addr;
00047 }
00048 
00049 // Initialize sensor using sequence based on VL53L0X_DataInit(),
00050 // VL53L0X_StaticInit(), and VL53L0X_PerformRefCalibration().
00051 // This function does not perform reference SPAD calibration
00052 // (VL53L0X_PerformRefSpadManagement()), since the API user manual says that it
00053 // is performed by ST on the bare modules; it seems like that should work well
00054 // enough unless a cover glass is added.
00055 // If io_2v8 (optional) is true or not given, the sensor is configured for 2V8
00056 // mode.
00057 bool VL53L0X::init(bool io_2v8)
00058 {
00059   // VL53L0X_DataInit() begin
00060 
00061   // sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary
00062   if (io_2v8)
00063   {
00064     writeReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
00065       readReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01); // set bit 0
00066   }
00067 
00068   // "Set I2C standard mode"
00069   writeReg(0x88, 0x00);
00070 
00071   writeReg(0x80, 0x01);
00072   writeReg(0xFF, 0x01);
00073   writeReg(0x00, 0x00);
00074   stop_variable = readReg(0x91);
00075   writeReg(0x00, 0x01);
00076   writeReg(0xFF, 0x00);
00077   writeReg(0x80, 0x00);
00078 
00079   // disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks
00080   writeReg(MSRC_CONFIG_CONTROL, readReg(MSRC_CONFIG_CONTROL) | 0x12);
00081 
00082   // set final range signal rate limit to 0.25 MCPS (million counts per second)
00083   setSignalRateLimit(0.25);
00084 
00085   writeReg(SYSTEM_SEQUENCE_CONFIG, 0xFF);
00086 
00087   // VL53L0X_DataInit() end
00088 
00089   // VL53L0X_StaticInit() begin
00090 
00091   uint8_t spad_count;
00092   bool spad_type_is_aperture;
00093   if (!getSpadInfo(&spad_count, &spad_type_is_aperture)) { return false; }
00094 
00095   // The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in
00096   // the API, but the same data seems to be more easily readable from
00097   // GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there
00098   char ref_spad_map[6];
00099   readMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
00100 
00101   // -- VL53L0X_set_reference_spads() begin (assume NVM values are valid)
00102 
00103   writeReg(0xFF, 0x01);
00104   writeReg(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
00105   writeReg(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
00106   writeReg(0xFF, 0x00);
00107   writeReg(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4);
00108 
00109   uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0; // 12 is the first aperture spad
00110   uint8_t spads_enabled = 0;
00111 
00112   for (uint8_t i = 0; i < 48; i++)
00113   {
00114     if (i < first_spad_to_enable || spads_enabled == spad_count)
00115     {
00116       // This bit is lower than the first one that should be enabled, or
00117       // (reference_spad_count) bits have already been enabled, so zero this bit
00118       ref_spad_map[i / 8] &= ~(1 << (i % 8));
00119     }
00120     else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1)
00121     {
00122       spads_enabled++;
00123     }
00124   }
00125 
00126   writeMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
00127 
00128   // -- VL53L0X_set_reference_spads() end
00129 
00130   // -- VL53L0X_load_tuning_settings() begin
00131   // DefaultTuningSettings from vl53l0x_tuning.h
00132 
00133   writeReg(0xFF, 0x01);
00134   writeReg(0x00, 0x00);
00135 
00136   writeReg(0xFF, 0x00);
00137   writeReg(0x09, 0x00);
00138   writeReg(0x10, 0x00);
00139   writeReg(0x11, 0x00);
00140 
00141   writeReg(0x24, 0x01);
00142   writeReg(0x25, 0xFF);
00143   writeReg(0x75, 0x00);
00144 
00145   writeReg(0xFF, 0x01);
00146   writeReg(0x4E, 0x2C);
00147   writeReg(0x48, 0x00);
00148   writeReg(0x30, 0x20);
00149 
00150   writeReg(0xFF, 0x00);
00151   writeReg(0x30, 0x09);
00152   writeReg(0x54, 0x00);
00153   writeReg(0x31, 0x04);
00154   writeReg(0x32, 0x03);
00155   writeReg(0x40, 0x83);
00156   writeReg(0x46, 0x25);
00157   writeReg(0x60, 0x00);
00158   writeReg(0x27, 0x00);
00159   writeReg(0x50, 0x06);
00160   writeReg(0x51, 0x00);
00161   writeReg(0x52, 0x96);
00162   writeReg(0x56, 0x08);
00163   writeReg(0x57, 0x30);
00164   writeReg(0x61, 0x00);
00165   writeReg(0x62, 0x00);
00166   writeReg(0x64, 0x00);
00167   writeReg(0x65, 0x00);
00168   writeReg(0x66, 0xA0);
00169 
00170   writeReg(0xFF, 0x01);
00171   writeReg(0x22, 0x32);
00172   writeReg(0x47, 0x14);
00173   writeReg(0x49, 0xFF);
00174   writeReg(0x4A, 0x00);
00175 
00176   writeReg(0xFF, 0x00);
00177   writeReg(0x7A, 0x0A);
00178   writeReg(0x7B, 0x00);
00179   writeReg(0x78, 0x21);
00180 
00181   writeReg(0xFF, 0x01);
00182   writeReg(0x23, 0x34);
00183   writeReg(0x42, 0x00);
00184   writeReg(0x44, 0xFF);
00185   writeReg(0x45, 0x26);
00186   writeReg(0x46, 0x05);
00187   writeReg(0x40, 0x40);
00188   writeReg(0x0E, 0x06);
00189   writeReg(0x20, 0x1A);
00190   writeReg(0x43, 0x40);
00191 
00192   writeReg(0xFF, 0x00);
00193   writeReg(0x34, 0x03);
00194   writeReg(0x35, 0x44);
00195 
00196   writeReg(0xFF, 0x01);
00197   writeReg(0x31, 0x04);
00198   writeReg(0x4B, 0x09);
00199   writeReg(0x4C, 0x05);
00200   writeReg(0x4D, 0x04);
00201 
00202   writeReg(0xFF, 0x00);
00203   writeReg(0x44, 0x00);
00204   writeReg(0x45, 0x20);
00205   writeReg(0x47, 0x08);
00206   writeReg(0x48, 0x28);
00207   writeReg(0x67, 0x00);
00208   writeReg(0x70, 0x04);
00209   writeReg(0x71, 0x01);
00210   writeReg(0x72, 0xFE);
00211   writeReg(0x76, 0x00);
00212   writeReg(0x77, 0x00);
00213 
00214   writeReg(0xFF, 0x01);
00215   writeReg(0x0D, 0x01);
00216 
00217   writeReg(0xFF, 0x00);
00218   writeReg(0x80, 0x01);
00219   writeReg(0x01, 0xF8);
00220 
00221   writeReg(0xFF, 0x01);
00222   writeReg(0x8E, 0x01);
00223   writeReg(0x00, 0x01);
00224   writeReg(0xFF, 0x00);
00225   writeReg(0x80, 0x00);
00226 
00227   // -- VL53L0X_load_tuning_settings() end
00228 
00229   // "Set interrupt config to new sample ready"
00230   // -- VL53L0X_SetGpioConfig() begin
00231 
00232   writeReg(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04);
00233   writeReg(GPIO_HV_MUX_ACTIVE_HIGH, readReg(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10); // active low
00234   writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
00235 
00236   // -- VL53L0X_SetGpioConfig() end
00237 
00238   measurement_timing_budget_us = getMeasurementTimingBudget();
00239 
00240   // "Disable MSRC and TCC by default"
00241   // MSRC = Minimum Signal Rate Check
00242   // TCC = Target CentreCheck
00243   // -- VL53L0X_SetSequenceStepEnable() begin
00244 
00245   writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8);
00246 
00247   // -- VL53L0X_SetSequenceStepEnable() end
00248 
00249   // "Recalculate timing budget"
00250   setMeasurementTimingBudget(measurement_timing_budget_us);
00251 
00252   // VL53L0X_StaticInit() end
00253 
00254   // VL53L0X_PerformRefCalibration() begin (VL53L0X_perform_ref_calibration())
00255 
00256   // -- VL53L0X_perform_vhv_calibration() begin
00257 
00258   writeReg(SYSTEM_SEQUENCE_CONFIG, 0x01);
00259   if (!performSingleRefCalibration(0x40)) { return false; }
00260 
00261   // -- VL53L0X_perform_vhv_calibration() end
00262 
00263   // -- VL53L0X_perform_phase_calibration() begin
00264 
00265   writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02);
00266   if (!performSingleRefCalibration(0x00)) { return false; }
00267 
00268   // -- VL53L0X_perform_phase_calibration() end
00269 
00270   // "restore the previous Sequence Config"
00271   writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8);
00272 
00273   // VL53L0X_PerformRefCalibration() end
00274 
00275   return true;
00276 }
00277 
00278 // Set the return signal rate limit check value in units of MCPS (mega counts
00279 // per second). "This represents the amplitude of the signal reflected from the
00280 // target and detected by the device"; setting this limit presumably determines
00281 // the minimum measurement necessary for the sensor to report a valid reading.
00282 // Setting a lower limit increases the potential range of the sensor but also
00283 // seems to increase the likelihood of getting an inaccurate reading because of
00284 // unwanted reflections from objects other than the intended target.
00285 // Defaults to 0.25 MCPS as initialized by the ST API and this library.
00286 bool VL53L0X::setSignalRateLimit(float limit_Mcps)
00287 {
00288   if (limit_Mcps < 0 || limit_Mcps > 511.99) { return false; }
00289 
00290   // Q9.7 fixed point format (9 integer bits, 7 fractional bits)
00291   writeReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, limit_Mcps * (1 << 7));
00292   return true;
00293 }
00294 
00295 // Get the return signal rate limit check value in MCPS
00296 float VL53L0X::getSignalRateLimit(void)
00297 {
00298   return (float)readReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT) / (1 << 7);
00299 }
00300 
00301 // Set the measurement timing budget in microseconds, which is the time allowed
00302 // for one measurement; the ST API and this library take care of splitting the
00303 // timing budget among the sub-steps in the ranging sequence. A longer timing
00304 // budget allows for more accurate measurements. Increasing the budget by a
00305 // factor of N decreases the range measurement standard deviation by a factor of
00306 // sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms.
00307 // based on VL53L0X_set_measurement_timing_budget_micro_seconds()
00308 bool VL53L0X::setMeasurementTimingBudget(uint32_t budget_us)
00309 {
00310   SequenceStepEnables enables;
00311   SequenceStepTimeouts timeouts;
00312 
00313   uint16_t const StartOverhead      = 1320; // note that this is different than the value in get_
00314   uint16_t const EndOverhead        = 960;
00315   uint16_t const MsrcOverhead       = 660;
00316   uint16_t const TccOverhead        = 590;
00317   uint16_t const DssOverhead        = 690;
00318   uint16_t const PreRangeOverhead   = 660;
00319   uint16_t const FinalRangeOverhead = 550;
00320 
00321   uint32_t const MinTimingBudget = 20000;
00322 
00323   if (budget_us < MinTimingBudget) { return false; }
00324 
00325   uint32_t used_budget_us = StartOverhead + EndOverhead;
00326 
00327   getSequenceStepEnables(&enables);
00328   getSequenceStepTimeouts(&enables, &timeouts);
00329 
00330   if (enables.tcc)
00331   {
00332     used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
00333   }
00334 
00335   if (enables.dss)
00336   {
00337     used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
00338   }
00339   else if (enables.msrc)
00340   {
00341     used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
00342   }
00343 
00344   if (enables.pre_range)
00345   {
00346     used_budget_us += (timeouts.pre_range_us + PreRangeOverhead);
00347   }
00348 
00349   if (enables.final_range)
00350   {
00351     used_budget_us += FinalRangeOverhead;
00352 
00353     // "Note that the final range timeout is determined by the timing
00354     // budget and the sum of all other timeouts within the sequence.
00355     // If there is no room for the final range timeout, then an error
00356     // will be set. Otherwise the remaining time will be applied to
00357     // the final range."
00358 
00359     if (used_budget_us > budget_us)
00360     {
00361       // "Requested timeout too big."
00362       return false;
00363     }
00364 
00365     uint32_t final_range_timeout_us = budget_us - used_budget_us;
00366 
00367     // set_sequence_step_timeout() begin
00368     // (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
00369 
00370     // "For the final range timeout, the pre-range timeout
00371     //  must be added. To do this both final and pre-range
00372     //  timeouts must be expressed in macro periods MClks
00373     //  because they have different vcsel periods."
00374 
00375     uint16_t final_range_timeout_mclks =
00376       timeoutMicrosecondsToMclks(final_range_timeout_us,
00377                                  timeouts.final_range_vcsel_period_pclks);
00378 
00379     if (enables.pre_range)
00380     {
00381       final_range_timeout_mclks += timeouts.pre_range_mclks;
00382     }
00383 
00384     writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
00385       encodeTimeout(final_range_timeout_mclks));
00386 
00387     // set_sequence_step_timeout() end
00388 
00389     measurement_timing_budget_us = budget_us; // store for internal reuse
00390   }
00391   return true;
00392 }
00393 
00394 // Get the measurement timing budget in microseconds
00395 // based on VL53L0X_get_measurement_timing_budget_micro_seconds()
00396 // in us
00397 uint32_t VL53L0X::getMeasurementTimingBudget(void)
00398 {
00399   SequenceStepEnables enables;
00400   SequenceStepTimeouts timeouts;
00401 
00402   uint16_t const StartOverhead     = 1910; // note that this is different than the value in set_
00403   uint16_t const EndOverhead        = 960;
00404   uint16_t const MsrcOverhead       = 660;
00405   uint16_t const TccOverhead        = 590;
00406   uint16_t const DssOverhead        = 690;
00407   uint16_t const PreRangeOverhead   = 660;
00408   uint16_t const FinalRangeOverhead = 550;
00409 
00410   // "Start and end overhead times always present"
00411   uint32_t budget_us = StartOverhead + EndOverhead;
00412 
00413   getSequenceStepEnables(&enables);
00414   getSequenceStepTimeouts(&enables, &timeouts);
00415 
00416   if (enables.tcc)
00417   {
00418     budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
00419   }
00420 
00421   if (enables.dss)
00422   {
00423     budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
00424   }
00425   else if (enables.msrc)
00426   {
00427     budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
00428   }
00429 
00430   if (enables.pre_range)
00431   {
00432     budget_us += (timeouts.pre_range_us + PreRangeOverhead);
00433   }
00434 
00435   if (enables.final_range)
00436   {
00437     budget_us += (timeouts.final_range_us + FinalRangeOverhead);
00438   }
00439 
00440   measurement_timing_budget_us = budget_us; // store for internal reuse
00441   return budget_us;
00442 }
00443 
00444 // Set the VCSEL (vertical cavity surface emitting laser) pulse period for the
00445 // given period type (pre-range or final range) to the given value in PCLKs.
00446 // Longer periods seem to increase the potential range of the sensor.
00447 // Valid values are (even numbers only):
00448 //  pre:  12 to 18 (initialized default: 14)
00449 //  final: 8 to 14 (initialized default: 10)
00450 // based on VL53L0X_set_vcsel_pulse_period()
00451 bool VL53L0X::setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks)
00452 {
00453   uint8_t vcsel_period_reg = encodeVcselPeriod(period_pclks);
00454 
00455   SequenceStepEnables enables;
00456   SequenceStepTimeouts timeouts;
00457 
00458   getSequenceStepEnables(&enables);
00459   getSequenceStepTimeouts(&enables, &timeouts);
00460 
00461   // "Apply specific settings for the requested clock period"
00462   // "Re-calculate and apply timeouts, in macro periods"
00463 
00464   // "When the VCSEL period for the pre or final range is changed,
00465   // the corresponding timeout must be read from the device using
00466   // the current VCSEL period, then the new VCSEL period can be
00467   // applied. The timeout then must be written back to the device
00468   // using the new VCSEL period.
00469   //
00470   // For the MSRC timeout, the same applies - this timeout being
00471   // dependant on the pre-range vcsel period."
00472 
00473 
00474   if (type == VcselPeriodPreRange)
00475   {
00476     // "Set phase check limits"
00477     switch (period_pclks)
00478     {
00479       case 12:
00480         writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18);
00481         break;
00482 
00483       case 14:
00484         writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30);
00485         break;
00486 
00487       case 16:
00488         writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40);
00489         break;
00490 
00491       case 18:
00492         writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50);
00493         break;
00494 
00495       default:
00496         // invalid period
00497         return false;
00498     }
00499     writeReg(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
00500 
00501     // apply new VCSEL period
00502     writeReg(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
00503 
00504     // update timeouts
00505 
00506     // set_sequence_step_timeout() begin
00507     // (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE)
00508 
00509     uint16_t new_pre_range_timeout_mclks =
00510       timeoutMicrosecondsToMclks(timeouts.pre_range_us, period_pclks);
00511 
00512     writeReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
00513       encodeTimeout(new_pre_range_timeout_mclks));
00514 
00515     // set_sequence_step_timeout() end
00516 
00517     // set_sequence_step_timeout() begin
00518     // (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)
00519 
00520     uint16_t new_msrc_timeout_mclks =
00521       timeoutMicrosecondsToMclks(timeouts.msrc_dss_tcc_us, period_pclks);
00522 
00523     writeReg(MSRC_CONFIG_TIMEOUT_MACROP,
00524       (new_msrc_timeout_mclks > 256) ? 255 : (new_msrc_timeout_mclks - 1));
00525 
00526     // set_sequence_step_timeout() end
00527   }
00528   else if (type == VcselPeriodFinalRange)
00529   {
00530     switch (period_pclks)
00531     {
00532       case 8:
00533         writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10);
00534         writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW,  0x08);
00535         writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
00536         writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
00537         writeReg(0xFF, 0x01);
00538         writeReg(ALGO_PHASECAL_LIM, 0x30);
00539         writeReg(0xFF, 0x00);
00540         break;
00541 
00542       case 10:
00543         writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28);
00544         writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW,  0x08);
00545         writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
00546         writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
00547         writeReg(0xFF, 0x01);
00548         writeReg(ALGO_PHASECAL_LIM, 0x20);
00549         writeReg(0xFF, 0x00);
00550         break;
00551 
00552       case 12:
00553         writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38);
00554         writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW,  0x08);
00555         writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
00556         writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
00557         writeReg(0xFF, 0x01);
00558         writeReg(ALGO_PHASECAL_LIM, 0x20);
00559         writeReg(0xFF, 0x00);
00560         break;
00561 
00562       case 14:
00563         writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48);
00564         writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW,  0x08);
00565         writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
00566         writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
00567         writeReg(0xFF, 0x01);
00568         writeReg(ALGO_PHASECAL_LIM, 0x20);
00569         writeReg(0xFF, 0x00);
00570         break;
00571 
00572       default:
00573         // invalid period
00574         return false;
00575     }
00576 
00577     // apply new VCSEL period
00578     writeReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
00579 
00580     // update timeouts
00581 
00582     // set_sequence_step_timeout() begin
00583     // (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
00584 
00585     // "For the final range timeout, the pre-range timeout
00586     //  must be added. To do this both final and pre-range
00587     //  timeouts must be expressed in macro periods MClks
00588     //  because they have different vcsel periods."
00589 
00590     uint16_t new_final_range_timeout_mclks =
00591       timeoutMicrosecondsToMclks(timeouts.final_range_us, period_pclks);
00592 
00593     if (enables.pre_range)
00594     {
00595       new_final_range_timeout_mclks += timeouts.pre_range_mclks;
00596     }
00597 
00598     writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
00599       encodeTimeout(new_final_range_timeout_mclks));
00600 
00601     // set_sequence_step_timeout end
00602   }
00603   else
00604   {
00605     // invalid type
00606     return false;
00607   }
00608 
00609   // "Finally, the timing budget must be re-applied"
00610 
00611   setMeasurementTimingBudget(measurement_timing_budget_us);
00612 
00613   // "Perform the phase calibration. This is needed after changing on vcsel period."
00614   // VL53L0X_perform_phase_calibration() begin
00615 
00616   uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG);
00617   writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02);
00618   performSingleRefCalibration(0x0);
00619   writeReg(SYSTEM_SEQUENCE_CONFIG, sequence_config);
00620 
00621   // VL53L0X_perform_phase_calibration() end
00622 
00623   return true;
00624 }
00625 
00626 // Get the VCSEL pulse period in PCLKs for the given period type.
00627 // based on VL53L0X_get_vcsel_pulse_period()
00628 uint8_t VL53L0X::getVcselPulsePeriod(vcselPeriodType type)
00629 {
00630   if (type == VcselPeriodPreRange)
00631   {
00632     return decodeVcselPeriod(readReg(PRE_RANGE_CONFIG_VCSEL_PERIOD));
00633   }
00634   else if (type == VcselPeriodFinalRange)
00635   {
00636     return decodeVcselPeriod(readReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD));
00637   }
00638   else { return 255; }
00639 }
00640 
00641 // Start continuous ranging measurements. If period_ms (optional) is 0 or not
00642 // given, continuous back-to-back mode is used (the sensor takes measurements as
00643 // often as possible); otherwise, continuous timed mode is used, with the given
00644 // inter-measurement period in milliseconds determining how often the sensor
00645 // takes a measurement.
00646 // based on VL53L0X_StartMeasurement()
00647 void VL53L0X::startContinuous(uint32_t period_ms)
00648 {
00649   writeReg(0x80, 0x01);
00650   writeReg(0xFF, 0x01);
00651   writeReg(0x00, 0x00);
00652   writeReg(0x91, stop_variable);
00653   writeReg(0x00, 0x01);
00654   writeReg(0xFF, 0x00);
00655   writeReg(0x80, 0x00);
00656 
00657   if (period_ms != 0)
00658   {
00659     // continuous timed mode
00660 
00661     // VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin
00662 
00663     uint16_t osc_calibrate_val = readReg16Bit(OSC_CALIBRATE_VAL);
00664 
00665     if (osc_calibrate_val != 0)
00666     {
00667       period_ms *= osc_calibrate_val;
00668     }
00669 
00670     writeReg32Bit(SYSTEM_INTERMEASUREMENT_PERIOD, period_ms);
00671 
00672     // VL53L0X_SetInterMeasurementPeriodMilliSeconds() end
00673 
00674     writeReg(SYSRANGE_START, 0x04); // VL53L0X_REG_SYSRANGE_MODE_TIMED
00675   }
00676   else
00677   {
00678     // continuous back-to-back mode
00679     writeReg(SYSRANGE_START, 0x02); // VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK
00680   }
00681 }
00682 
00683 // Stop continuous measurements
00684 // based on VL53L0X_StopMeasurement()
00685 void VL53L0X::stopContinuous(void)
00686 {
00687   writeReg(SYSRANGE_START, 0x01); // VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT
00688 
00689   writeReg(0xFF, 0x01);
00690   writeReg(0x00, 0x00);
00691   writeReg(0x91, 0x00);
00692   writeReg(0x00, 0x01);
00693   writeReg(0xFF, 0x00);
00694 }
00695 
00696 // Returns a range reading in millimeters when continuous mode is active
00697 // (readRangeSingleMillimeters() also calls this function after starting a
00698 // single-shot range measurement)
00699 uint16_t VL53L0X::readRangeContinuousMillimeters(void)
00700 {
00701   startTimeout();
00702   while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0)
00703   {
00704     if (checkTimeoutExpired())
00705     {
00706       did_timeout = true;
00707       return 65535;
00708     }
00709   }
00710 
00711   // assumptions: Linearity Corrective Gain is 1000 (default);
00712   // fractional ranging is not enabled
00713   uint16_t range = readReg16Bit(RESULT_RANGE_STATUS + 10);
00714 
00715   writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
00716 
00717   return range;
00718 }
00719 
00720 // Performs a single-shot range measurement and returns the reading in
00721 // millimeters
00722 // based on VL53L0X_PerformSingleRangingMeasurement()
00723 uint16_t VL53L0X::readRangeSingleMillimeters(void)
00724 {
00725   writeReg(0x80, 0x01);
00726   writeReg(0xFF, 0x01);
00727   writeReg(0x00, 0x00);
00728   writeReg(0x91, stop_variable);
00729   writeReg(0x00, 0x01);
00730   writeReg(0xFF, 0x00);
00731   writeReg(0x80, 0x00);
00732 
00733   writeReg(SYSRANGE_START, 0x01);
00734 
00735   // "Wait until start bit has been cleared"
00736   startTimeout();
00737   while (readReg(SYSRANGE_START) & 0x01)
00738   {
00739     if (checkTimeoutExpired())
00740     {
00741       did_timeout = true;
00742       return 65535;
00743     }
00744   }
00745 
00746   return readRangeContinuousMillimeters();
00747 }
00748 
00749 // Did a timeout occur in one of the read functions since the last call to
00750 // timeoutOccurred()?
00751 bool VL53L0X::timeoutOccurred()
00752 {
00753   bool tmp = did_timeout;
00754   did_timeout = false;
00755   return tmp;
00756 }
00757 
00758 // Private Methods /////////////////////////////////////////////////////////////
00759 
00760 // Get reference SPAD (single photon avalanche diode) count and type
00761 // based on VL53L0X_get_info_from_device(),
00762 // but only gets reference SPAD count and type
00763 bool VL53L0X::getSpadInfo(uint8_t * count, bool * type_is_aperture)
00764 {
00765   uint8_t tmp;
00766 
00767   writeReg(0x80, 0x01);
00768   writeReg(0xFF, 0x01);
00769   writeReg(0x00, 0x00);
00770 
00771   writeReg(0xFF, 0x06);
00772   writeReg(0x83, readReg(0x83) | 0x04);
00773   writeReg(0xFF, 0x07);
00774   writeReg(0x81, 0x01);
00775 
00776   writeReg(0x80, 0x01);
00777 
00778   writeReg(0x94, 0x6b);
00779   writeReg(0x83, 0x00);
00780   startTimeout();
00781   while (readReg(0x83) == 0x00)
00782   {
00783     if (checkTimeoutExpired()) { return false; }
00784   }
00785   writeReg(0x83, 0x01);
00786   tmp = readReg(0x92);
00787 
00788   *count = tmp & 0x7f;
00789   *type_is_aperture = (tmp >> 7) & 0x01;
00790 
00791   writeReg(0x81, 0x00);
00792   writeReg(0xFF, 0x06);
00793   writeReg(0x83, readReg( 0x83  & ~0x04));
00794   writeReg(0xFF, 0x01);
00795   writeReg(0x00, 0x01);
00796 
00797   writeReg(0xFF, 0x00);
00798   writeReg(0x80, 0x00);
00799 
00800   return true;
00801 }
00802 
00803 // Get sequence step enables
00804 // based on VL53L0X_GetSequenceStepEnables()
00805 void VL53L0X::getSequenceStepEnables(SequenceStepEnables * enables)
00806 {
00807   uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG);
00808 
00809   enables->tcc          = (sequence_config >> 4) & 0x1;
00810   enables->dss          = (sequence_config >> 3) & 0x1;
00811   enables->msrc         = (sequence_config >> 2) & 0x1;
00812   enables->pre_range    = (sequence_config >> 6) & 0x1;
00813   enables->final_range  = (sequence_config >> 7) & 0x1;
00814 }
00815 
00816 // Get sequence step timeouts
00817 // based on get_sequence_step_timeout(),
00818 // but gets all timeouts instead of just the requested one, and also stores
00819 // intermediate values
00820 void VL53L0X::getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts)
00821 {
00822   timeouts->pre_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodPreRange);
00823 
00824   timeouts->msrc_dss_tcc_mclks = readReg(MSRC_CONFIG_TIMEOUT_MACROP) + 1;
00825   timeouts->msrc_dss_tcc_us =
00826     timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks,
00827                                timeouts->pre_range_vcsel_period_pclks);
00828 
00829   timeouts->pre_range_mclks =
00830     decodeTimeout(readReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI));
00831   timeouts->pre_range_us =
00832     timeoutMclksToMicroseconds(timeouts->pre_range_mclks,
00833                                timeouts->pre_range_vcsel_period_pclks);
00834 
00835   timeouts->final_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodFinalRange);
00836 
00837   timeouts->final_range_mclks =
00838     decodeTimeout(readReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI));
00839 
00840   if (enables->pre_range)
00841   {
00842     timeouts->final_range_mclks -= timeouts->pre_range_mclks;
00843   }
00844 
00845   timeouts->final_range_us =
00846     timeoutMclksToMicroseconds(timeouts->final_range_mclks,
00847                                timeouts->final_range_vcsel_period_pclks);
00848 }
00849 
00850 // Decode sequence step timeout in MCLKs from register value
00851 // based on VL53L0X_decode_timeout()
00852 // Note: the original function returned a uint32_t, but the return value is
00853 // always stored in a uint16_t.
00854 uint16_t VL53L0X::decodeTimeout(uint16_t reg_val)
00855 {
00856   // format: "(LSByte * 2^MSByte) + 1"
00857   return (uint16_t)((reg_val & 0x00FF) <<
00858          (uint16_t)((reg_val & 0xFF00) >> 8)) + 1;
00859 }
00860 
00861 // Encode sequence step timeout register value from timeout in MCLKs
00862 // based on VL53L0X_encode_timeout()
00863 // Note: the original function took a uint16_t, but the argument passed to it
00864 // is always a uint16_t.
00865 uint16_t VL53L0X::encodeTimeout(uint16_t timeout_mclks)
00866 {
00867   // format: "(LSByte * 2^MSByte) + 1"
00868 
00869   uint32_t ls_byte = 0;
00870   uint16_t ms_byte = 0;
00871 
00872   if (timeout_mclks > 0)
00873   {
00874     ls_byte = timeout_mclks - 1;
00875 
00876     while ((ls_byte & 0xFFFFFF00) > 0)
00877     {
00878       ls_byte >>= 1;
00879       ms_byte++;
00880     }
00881 
00882     return (ms_byte << 8) | (ls_byte & 0xFF);
00883   }
00884   else { return 0; }
00885 }
00886 
00887 // Convert sequence step timeout from MCLKs to microseconds with given VCSEL period in PCLKs
00888 // based on VL53L0X_calc_timeout_us()
00889 uint32_t VL53L0X::timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks)
00890 {
00891   uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);
00892 
00893   return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000;
00894 }
00895 
00896 // Convert sequence step timeout from microseconds to MCLKs with given VCSEL period in PCLKs
00897 // based on VL53L0X_calc_timeout_mclks()
00898 uint32_t VL53L0X::timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks)
00899 {
00900   uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);
00901 
00902   return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns);
00903 }
00904 
00905 
00906 // based on VL53L0X_perform_single_ref_calibration()
00907 bool VL53L0X::performSingleRefCalibration(uint8_t vhv_init_byte)
00908 {
00909   writeReg(SYSRANGE_START, 0x01 | vhv_init_byte); // VL53L0X_REG_SYSRANGE_MODE_START_STOP
00910 
00911   startTimeout();
00912   while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0)
00913   {
00914     if (checkTimeoutExpired()) { return false; }
00915   }
00916 
00917   writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
00918 
00919   writeReg(SYSRANGE_START, 0x00);
00920 
00921   return true;
00922 }
00923 
00924 // Write an 8-bit register
00925 void VL53L0X::writeReg(uint8_t reg, uint8_t value)
00926 {
00927   char data_write[2];
00928   data_write[0]=reg;
00929   data_write[1]=value;
00930   m_i2c.write(m_addr,data_write,2);
00931 }
00932 
00933 // Write a 16-bit register
00934 void VL53L0X::writeReg16Bit(uint8_t reg, uint16_t value)
00935 {
00936   char data_write[3];
00937   data_write[0]=reg;
00938   data_write[1]=(value >> 8) & 0xFF; // value high byte
00939   data_write[2]=value       & 0xFF; // value low byte
00940   m_i2c.write(m_addr,data_write,3);
00941 }
00942 
00943 // Write a 32-bit register
00944 void VL53L0X::writeReg32Bit(uint8_t reg, uint32_t value)
00945 {
00946   char data_write[5];
00947   data_write[0]=reg;
00948   data_write[1]=(value >> 24) & 0xFF; // value highest byte
00949   data_write[2]=(value >> 16) & 0xFF;
00950   data_write[3]=(value >>  8) & 0xFF;
00951   data_write[4]= value        & 0xFF; // value lowest byte
00952   m_i2c.write(m_addr,data_write,5);
00953 }
00954 
00955 // Read an 8-bit register
00956 uint8_t VL53L0X::readReg(uint8_t reg)
00957 {
00958   uint8_t value;
00959   char data_write[1];
00960   char data_read[1];
00961 
00962   data_write[0]=reg;
00963   m_i2c.write(m_addr,data_write,1);
00964   m_i2c.read(m_addr,data_read,1);
00965   value=data_read[0];
00966   return value;
00967 }
00968 
00969 // Read a 16-bit register
00970 uint16_t VL53L0X::readReg16Bit(uint8_t reg)
00971 {
00972   uint16_t value;
00973   uint8_t data_high;
00974   uint8_t data_low;
00975   char data_write[1];
00976   char data_read[2];
00977 
00978   data_write[0]=reg;
00979   m_i2c.write(m_addr,data_write,1);
00980   m_i2c.read(m_addr,data_read,2);
00981   data_high=data_read[0]; // value high byte
00982   data_low=data_read[1]; // value low byte
00983   value  = (data_high << 8)| data_low;
00984 
00985   return value;
00986 }
00987 
00988 // Read a 32-bit register
00989 uint32_t VL53L0X::readReg32Bit(uint8_t reg)
00990 {
00991   uint32_t value;
00992   uint8_t data_high;
00993   uint8_t data_2;
00994   uint8_t data_1;
00995   uint8_t data_low;
00996   char data_write[1];
00997   char data_read[4];
00998 
00999   data_write[0]=reg;
01000   m_i2c.write(m_addr,data_write,1);
01001   m_i2c.read(m_addr,data_read,4);
01002 
01003   data_high=data_read[0];
01004   data_2=data_read[1];
01005   data_1=data_read[2];
01006   data_low=data_read[3];
01007 
01008   value  = (data_high << 24)|(data_2 << 16)|(data_1 << 8)|(data_low); // value highest byte
01009 
01010   return value;
01011 }
01012 
01013 // Write an arbitrary number of bytes from the given array to the sensor,
01014 // starting at the given register
01015 void VL53L0X::writeMulti(uint8_t reg, char src[], uint8_t count)
01016 {
01017   char data_write[1];
01018   data_write[0]=reg;
01019   m_i2c.write(m_addr,data_write,1);
01020   m_i2c.write(m_addr,src,count);
01021 }
01022 
01023 // Read an arbitrary number of bytes from the sensor, starting at the given
01024 // register, into the given array
01025 void VL53L0X::readMulti(uint8_t reg, char dst[], uint8_t count)
01026 {
01027   char data_write[1];
01028   data_write[0]=reg;
01029   m_i2c.write(m_addr,data_write,1);
01030   m_i2c.read(m_addr,dst,count);
01031 }