Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of SPI_TFT_ILI9341 by
SPI_TFT_ILI9341_NXP.cpp
- Committer:
- gregeric
- Date:
- 2014-12-08
- Revision:
- 17:8794e2eadd8d
- Parent:
- 13:b2b3e5430f81
File content as of revision 17:8794e2eadd8d:
/* mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller
* Copyright (c) 2014 Peter Drescher - DC2PD
* Special version for NXP LPC1768
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// 25.06.14 initial version
// only include this file if target is LPC1768
#if defined TARGET_LPC1768
#include "SPI_TFT_ILI9341.h"
#include "mbed.h"
#if defined TARGET_LPC1768
#define use_ram
#endif
// some defines for the DMA use
#define DMA_CHANNEL_ENABLE 1
#define DMA_TRANSFER_TYPE_M2P (1UL << 11)
#define DMA_CHANNEL_TCIE (1UL << 31)
#define DMA_CHANNEL_SRC_INC (1UL << 26)
#define DMA_MASK_IE (1UL << 14)
#define DMA_MASK_ITC (1UL << 15)
#define DMA_SSP1_TX (1UL << 2)
#define DMA_SSP0_TX (0)
#define DMA_DEST_SSP1_TX (2UL << 6)
#define DMA_DEST_SSP0_TX (0UL << 6)
#define BPP 16 // Bits per pixel
//extern Serial pc;
//extern DigitalOut xx; // debug !!
SPI_TFT_ILI9341::SPI_TFT_ILI9341(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, PinName dc, const char *name)
: GraphicsDisplay(name), SPI(mosi,miso,sclk), _cs(cs), _reset(reset), _dc(dc)
{
format(8,3); // 8 bit spi mode 3
frequency(10000000); // 10 Mhz SPI clock : result 2 / 4 = 8
orientation = 0;
char_x = 0;
if((int)_spi.spi == SPI_0) { // test which SPI is in use
spi_num = 0;
}
if((int)_spi.spi == SPI_1) {
spi_num = 1;
}
tft_reset();
}
// we define a fast write to the SPI port
void inline SPI_TFT_ILI9341::f_write(int data)
{
while(((_spi.spi->SR) & 0x02) == 0);
_spi.spi->DR = data;
}
// wait for SPI not busy
// we have to wait for the last bit to switch the cs off
void inline SPI_TFT_ILI9341::spi_bsy(void)
{
while ((_spi.spi->SR & 0x10) == 0x10); // SPI not idle
}
// switch fast between 8 and 16 bit mode
void SPI_TFT_ILI9341::spi_16(bool s)
{
if(s) _spi.spi->CR0 |= 0x08; // switch to 16 bit Mode
else _spi.spi->CR0 &= ~(0x08); // switch to 8 bit Mode
}
int SPI_TFT_ILI9341::width()
{
if (orientation == 0 || orientation == 2) return 240;
else return 320;
}
int SPI_TFT_ILI9341::height()
{
if (orientation == 0 || orientation == 2) return 320;
else return 240;
}
void SPI_TFT_ILI9341::set_orientation(unsigned int o)
{
orientation = o;
wr_cmd(0x36); // MEMORY_ACCESS_CONTROL
switch (orientation) {
case 0:
f_write(0x48);
break;
case 1:
f_write(0x28);
break;
case 2:
f_write(0x88);
break;
case 3:
f_write(0xE8);
break;
}
spi_bsy(); // wait for end of transfer
_cs = 1;
WindowMax();
}
// write command to tft register
// use fast command
void SPI_TFT_ILI9341::wr_cmd(unsigned char cmd)
{
_dc = 0;
_cs = 0;
f_write(cmd);
spi_bsy();
_dc = 1;
}
void SPI_TFT_ILI9341::wr_dat(unsigned char dat)
{
f_write(dat);
spi_bsy(); // wait for SPI send
}
// the ILI9341 can read
char SPI_TFT_ILI9341::rd_byte(unsigned char cmd)
{
// has to change !!
return(0);
}
// read 32 bit
int SPI_TFT_ILI9341::rd_32(unsigned char cmd)
{
// has to change !!!
return(0);
}
int SPI_TFT_ILI9341::Read_ID(void)
{
int r;
r = rd_byte(0x0A);
r = rd_byte(0x0A);
r = rd_byte(0x0A);
r = rd_byte(0x0A);
return(r);
}
// Init code based on MI0283QT datasheet
// this code is called only at start
// no need to be optimized
void SPI_TFT_ILI9341::tft_reset()
{
_cs = 1; // cs high
_dc = 1; // dc high
_reset = 0; // display reset
wait_us(50);
_reset = 1; // end hardware reset
wait_ms(5);
wr_cmd(0x01); // SW reset
wait_ms(5);
wr_cmd(0x28); // display off
/* Start Initial Sequence ----------------------------------------------------*/
wr_cmd(0xCF);
f_write(0x00);
f_write(0x83);
f_write(0x30);
spi_bsy();
_cs = 1;
wr_cmd(0xED);
f_write(0x64);
f_write(0x03);
f_write(0x12);
f_write(0x81);
spi_bsy();
_cs = 1;
wr_cmd(0xE8);
f_write(0x85);
f_write(0x01);
f_write(0x79);
spi_bsy();
_cs = 1;
wr_cmd(0xCB);
f_write(0x39);
f_write(0x2C);
f_write(0x00);
f_write(0x34);
f_write(0x02);
spi_bsy();
_cs = 1;
wr_cmd(0xF7);
f_write(0x20);
spi_bsy();
_cs = 1;
wr_cmd(0xEA);
f_write(0x00);
f_write(0x00);
spi_bsy();
_cs = 1;
wr_cmd(0xC0); // POWER_CONTROL_1
f_write(0x26);
spi_bsy();
_cs = 1;
wr_cmd(0xC1); // POWER_CONTROL_2
f_write(0x11);
spi_bsy();
_cs = 1;
wr_cmd(0xC5); // VCOM_CONTROL_1
f_write(0x35);
f_write(0x3E);
spi_bsy();
_cs = 1;
wr_cmd(0xC7); // VCOM_CONTROL_2
f_write(0xBE);
spi_bsy();
_cs = 1;
wr_cmd(0x36); // MEMORY_ACCESS_CONTROL
f_write(0x48);
spi_bsy();
_cs = 1;
wr_cmd(0x3A); // COLMOD_PIXEL_FORMAT_SET
f_write(0x55); // 16 bit pixel
spi_bsy();
_cs = 1;
wr_cmd(0xB1); // Frame Rate
f_write(0x00);
f_write(0x1B);
spi_bsy();
_cs = 1;
wr_cmd(0xF2); // Gamma Function Disable
f_write(0x08);
spi_bsy();
_cs = 1;
wr_cmd(0x26);
f_write(0x01); // gamma set for curve 01/2/04/08
spi_bsy();
_cs = 1;
wr_cmd(0xE0); // positive gamma correction
f_write(0x1F);
f_write(0x1A);
f_write(0x18);
f_write(0x0A);
f_write(0x0F);
f_write(0x06);
f_write(0x45);
f_write(0x87);
f_write(0x32);
f_write(0x0A);
f_write(0x07);
f_write(0x02);
f_write(0x07);
f_write(0x05);
f_write(0x00);
spi_bsy();
_cs = 1;
wr_cmd(0xE1); // negativ gamma correction
f_write(0x00);
f_write(0x25);
f_write(0x27);
f_write(0x05);
f_write(0x10);
f_write(0x09);
f_write(0x3A);
f_write(0x78);
f_write(0x4D);
f_write(0x05);
f_write(0x18);
f_write(0x0D);
f_write(0x38);
f_write(0x3A);
f_write(0x1F);
spi_bsy();
_cs = 1;
WindowMax ();
//wr_cmd(0x34); // tearing effect off
//_cs = 1;
//wr_cmd(0x35); // tearing effect on
//_cs = 1;
wr_cmd(0xB7); // entry mode
f_write(0x07);
spi_bsy();
_cs = 1;
wr_cmd(0xB6); // display function control
f_write(0x0A);
f_write(0x82);
f_write(0x27);
f_write(0x00);
spi_bsy();
_cs = 1;
wr_cmd(0x11); // sleep out
spi_bsy();
_cs = 1;
wait_ms(100);
wr_cmd(0x29); // display on
spi_bsy();
_cs = 1;
wait_ms(100);
// setup DMA channel 0
LPC_SC->PCONP |= (1UL << 29); // Power up the GPDMA.
LPC_GPDMA->DMACConfig = 1; // enable DMA controller
LPC_GPDMA->DMACIntTCClear = 0x1; // Reset the Interrupt status
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCLLI = 0;
}
// speed optimized
// write direct to SPI1 register !
void SPI_TFT_ILI9341::pixel(int x, int y, int color)
{
wr_cmd(0x2A);
spi_16(1); // switch to 8 bit Mode
f_write(x);
spi_bsy();
_cs = 1;
spi_16(0); // switch to 8 bit Mode
wr_cmd(0x2B);
spi_16(1);
f_write(y);
spi_bsy();
_cs = 1;
spi_16(0);
wr_cmd(0x2C); // send pixel
spi_16(1);
f_write(color);
spi_bsy();
_cs = 1;
spi_16(0);
}
// optimized
// write direct to SPI1 register !
void SPI_TFT_ILI9341::window (unsigned int x, unsigned int y, unsigned int w, unsigned int h)
{
wr_cmd(0x2A);
spi_16(1);
f_write(x);
f_write(x+w-1);
spi_bsy();
_cs = 1;
spi_16(0);
wr_cmd(0x2B);
spi_16(1);
f_write(y) ;
f_write(y+h-1);
spi_bsy();
_cs = 1;
spi_16(0);
}
void SPI_TFT_ILI9341::WindowMax (void)
{
window (0, 0, width(), height());
}
// optimized
// use DMA to transfer pixel data to the screen
void SPI_TFT_ILI9341::cls (void)
{
// we can use the fillrect function
fillrect(0,0,width()-1,height()-1,_background);
}
void SPI_TFT_ILI9341::circle(int x0, int y0, int r, int color)
{
int x = -r, y = 0, err = 2-2*r, e2;
do {
pixel(x0-x, y0+y,color);
pixel(x0+x, y0+y,color);
pixel(x0+x, y0-y,color);
pixel(x0-x, y0-y,color);
e2 = err;
if (e2 <= y) {
err += ++y*2+1;
if (-x == y && e2 <= x) e2 = 0;
}
if (e2 > x) err += ++x*2+1;
} while (x <= 0);
}
void SPI_TFT_ILI9341::fillcircle(int x0, int y0, int r, int color)
{
int x = -r, y = 0, err = 2-2*r, e2;
do {
vline(x0-x, y0-y, y0+y, color);
vline(x0+x, y0-y, y0+y, color);
e2 = err;
if (e2 <= y) {
err += ++y*2+1;
if (-x == y && e2 <= x) e2 = 0;
}
if (e2 > x) err += ++x*2+1;
} while (x <= 0);
}
// optimized for speed
void SPI_TFT_ILI9341::hline(int x0, int x1, int y, int color)
{
int w,j;
w = x1 - x0 + 1;
window(x0,y,w,1);
_dc = 0;
_cs = 0;
f_write(0x2C); // send pixel
spi_bsy();
_dc = 1;
spi_16(1);
for (j=0; j<w; j++) {
f_write(color);
}
spi_bsy();
spi_16(0);
_cs = 1;
WindowMax();
return;
}
// optimized for speed
void SPI_TFT_ILI9341::vline(int x, int y0, int y1, int color)
{
int h,y;
h = y1 - y0 + 1;
window(x,y0,1,h);
_dc = 0;
_cs = 0;
f_write(0x2C); // send pixel
spi_bsy();
_dc = 1;
spi_16(1);
// switch to 16 bit Mode 3
for (y=0; y<h; y++) {
f_write(color);
}
spi_bsy();
spi_16(0);
_cs = 1;
WindowMax();
return;
}
void SPI_TFT_ILI9341::line(int x0, int y0, int x1, int y1, int color)
{
//WindowMax();
int dx = 0, dy = 0;
int dx_sym = 0, dy_sym = 0;
int dx_x2 = 0, dy_x2 = 0;
int di = 0;
dx = x1-x0;
dy = y1-y0;
if (dx == 0) { /* vertical line */
if (y1 > y0) vline(x0,y0,y1,color);
else vline(x0,y1,y0,color);
return;
}
if (dx > 0) {
dx_sym = 1;
} else {
dx_sym = -1;
}
if (dy == 0) { /* horizontal line */
if (x1 > x0) hline(x0,x1,y0,color);
else hline(x1,x0,y0,color);
return;
}
if (dy > 0) {
dy_sym = 1;
} else {
dy_sym = -1;
}
dx = dx_sym*dx;
dy = dy_sym*dy;
dx_x2 = dx*2;
dy_x2 = dy*2;
if (dx >= dy) {
di = dy_x2 - dx;
while (x0 != x1) {
pixel(x0, y0, color);
x0 += dx_sym;
if (di<0) {
di += dy_x2;
} else {
di += dy_x2 - dx_x2;
y0 += dy_sym;
}
}
pixel(x0, y0, color);
} else {
di = dx_x2 - dy;
while (y0 != y1) {
pixel(x0, y0, color);
y0 += dy_sym;
if (di < 0) {
di += dx_x2;
} else {
di += dx_x2 - dy_x2;
x0 += dx_sym;
}
}
pixel(x0, y0, color);
}
return;
}
void SPI_TFT_ILI9341::rect(int x0, int y0, int x1, int y1, int color)
{
if (x1 > x0) hline(x0,x1,y0,color);
else hline(x1,x0,y0,color);
if (y1 > y0) vline(x0,y0,y1,color);
else vline(x0,y1,y0,color);
if (x1 > x0) hline(x0,x1,y1,color);
else hline(x1,x0,y1,color);
if (y1 > y0) vline(x1,y0,y1,color);
else vline(x1,y1,y0,color);
return;
}
// optimized for speed
// use DMA
void SPI_TFT_ILI9341::fillrect(int x0, int y0, int x1, int y1, int color)
{
int h = y1 - y0 + 1;
int w = x1 - x0 + 1;
int pixel = h * w;
unsigned int dma_count;
window(x0,y0,w,h);
wr_cmd(0x2C); // send pixel
spi_16(1);
LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color;
switch(spi_num) { // decide which SPI is to use
case (0):
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
LPC_SSP0->DMACR = 0x2;
break;
case (1):
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
LPC_SSP1->DMACR = 0x2;
break;
}
// start DMA
do {
if (pixel > 4095) {
dma_count = 4095;
pixel = pixel - 4095;
} else {
dma_count = pixel;
pixel = 0;
}
LPC_GPDMA->DMACIntTCClear = 0x1;
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt
LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_num ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
LPC_GPDMA->DMACSoftSReq = 0x1; // DMA request
do {
} while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
} while (pixel > 0);
spi_bsy(); // wait for end of transfer
spi_16(0);
_cs = 1;
WindowMax();
return;
}
void SPI_TFT_ILI9341::locate(int x, int y)
{
char_x = x;
char_y = y;
}
int SPI_TFT_ILI9341::columns()
{
return width() / font[1];
}
int SPI_TFT_ILI9341::rows()
{
return height() / font[2];
}
int SPI_TFT_ILI9341::_putc(int value)
{
if (value == '\n') { // new line
char_x = 0;
char_y = char_y + font[2];
if (char_y >= height() - font[2]) {
char_y = 0;
}
} else {
character(char_x, char_y, value);
}
return value;
}
// speed optimized
// will use dma
void SPI_TFT_ILI9341::character(int x, int y, int c)
{
unsigned int hor,vert,offset,bpl,j,i,b;
unsigned char* zeichen;
unsigned char z,w;
#ifdef use_ram
unsigned int pixel;
unsigned int p;
unsigned int dma_count,dma_off;
uint16_t *buffer;
#endif
if ((c < 31) || (c > 127)) return; // test char range
// read font parameter from start of array
offset = (font[0]<<8) + font[1]; // bytes / char
hor = font[2]; // get hor size of font
vert = font[3]; // get vert size of font
bpl = font[4]; // bytes per line
zeichen = &font[((c -32) * offset) + 5]; // start of char bitmap
w = zeichen[0]; // width of actual char
if (char_x + (w+2) > width()) {
char_x = 0;
char_y = char_y + vert;
if (char_y >= height() - vert) {
char_y = 0;
}
}
window(char_x, char_y,(w+2),vert); // setup char box
wr_cmd(0x2C);
spi_16(1); // switch to 16 bit Mode
#ifdef use_ram
pixel = (w+2) * vert; // calculate buffer size
buffer = (uint16_t *) malloc (2*pixel); // we need a buffer for the font
if(buffer != NULL) { // there is memory space -> use dma
p = 0;
// construct the font into the buffer
for (j=0; j<vert; j++) { // vert line
for (i=0; i<(w+2); i++) { // horz line
z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
b = 1 << (j & 0x07);
if (( z & b ) == 0x00) {
buffer[p] = _background;
} else {
buffer[p] = _foreground;
}
p++;
}
}
// copy the buffer with DMA SPI to display
dma_off = 0; // offset for DMA transfer
switch(spi_num) { // decide which SPI is to use
case (0):
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
LPC_SSP0->DMACR = 0x2;
break;
case (1):
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
LPC_SSP1->DMACR = 0x2;
break;
}
// start DMA
do {
if (pixel > 4095) { // this is a giant font !
dma_count = 4095;
pixel = pixel - 4095;
} else {
dma_count = pixel;
pixel = 0;
}
LPC_GPDMA->DMACIntTCClear = 0x1;
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCSrcAddr = (uint32_t) (buffer + dma_off);
LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) | DMA_CHANNEL_SRC_INC ; // 16 bit transfer , address increment, interrupt
LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_num ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
LPC_GPDMA->DMACSoftSReq = 0x1;
do {
} while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
dma_off = dma_off + dma_count;
} while (pixel > 0);
spi_bsy();
free ((uint16_t *) buffer);
spi_16(0);
}
else {
#endif
for (j=0; j<vert; j++) { // vert line
for (i=0; i<(w+2); i++) { // horz line
z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
b = 1 << (j & 0x07);
if (( z & b ) == 0x00) {
f_write(_background);
} else {
f_write(_foreground);
}
}
}
spi_bsy();
_cs = 1;
spi_16(0);
#ifdef use_ram
}
#endif
_cs = 1;
WindowMax();
if ((w + 2) < hor) { // x offset to next char
char_x += w + 2;
} else char_x += hor;
}
void SPI_TFT_ILI9341::set_font(unsigned char* f)
{
font = f;
}
void SPI_TFT_ILI9341::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap)
{
unsigned int j;
int padd;
unsigned short *bitmap_ptr = (unsigned short *)bitmap;
unsigned int i;
// the lines are padded to multiple of 4 bytes in a bitmap
padd = -1;
do {
padd ++;
} while (2*(w + padd)%4 != 0);
window(x, y, w, h);
bitmap_ptr += ((h - 1)* (w + padd));
wr_cmd(0x2C); // send pixel
spi_16(1);
for (j = 0; j < h; j++) { //Lines
for (i = 0; i < w; i++) { // one line
f_write(*bitmap_ptr); // one line
bitmap_ptr++;
}
bitmap_ptr -= 2*w;
bitmap_ptr -= padd;
}
spi_bsy();
_cs = 1;
spi_16(0);
WindowMax();
}
// local filesystem is not implemented but you can add a SD card to a different SPI
int SPI_TFT_ILI9341::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP)
{
#define OffsetPixelWidth 18
#define OffsetPixelHeigh 22
#define OffsetFileSize 34
#define OffsetPixData 10
#define OffsetBPP 28
char filename[50];
unsigned char BMP_Header[54];
unsigned short BPP_t;
unsigned int PixelWidth,PixelHeigh,start_data;
unsigned int i,off;
int padd,j;
unsigned short *line;
// get the filename
i=0;
while (*Name_BMP!='\0') {
filename[i++]=*Name_BMP++;
}
filename[i] = 0;
FILE *Image = fopen((const char *)&filename[0], "rb"); // open the bmp file
if (!Image) {
return(0); // error file not found !
}
fread(&BMP_Header[0],1,54,Image); // get the BMP Header
if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) { // check magic byte
fclose(Image);
return(-1); // error no BMP file
}
BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8);
if (BPP_t != 0x0010) {
fclose(Image);
return(-2); // error no 16 bit BMP
}
PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24);
PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24);
if (PixelHeigh > height() + y || PixelWidth > width() + x) {
fclose(Image);
return(-3); // to big
}
start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24);
line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line
if (line == NULL) {
return(-4); // error no memory
}
// the bmp lines are padded to multiple of 4 bytes
padd = -1;
do {
padd ++;
} while ((PixelWidth * 2 + padd)%4 != 0);
window(x, y,PixelWidth ,PixelHeigh);
wr_cmd(0x2C); // send pixel
spi_16(1);
for (j = PixelHeigh - 1; j >= 0; j--) { //Lines bottom up
off = j * (PixelWidth * 2 + padd) + start_data; // start of line
fseek(Image, off ,SEEK_SET);
fread(line,1,PixelWidth * 2,Image); // read a line - slow
for (i = 0; i < PixelWidth; i++) { // copy pixel data to TFT
f_write(line[i]); // one 16 bit pixel
}
}
spi_bsy();
_cs = 1;
spi_16(0);
free (line);
fclose(Image);
WindowMax();
return(1);
}
#endif
