Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of BAE_hw_test1_5 by
HK.cpp
- Committer:
- raizel_varun
- Date:
- 2014-12-19
- Revision:
- 0:ebdf4f859dca
- Child:
- 2:edd107ea4740
File content as of revision 0:ebdf4f859dca:
#include "HK.h"
#include "pin_config.h"
//GPIO pins used=> D2-D12, A0-A1
DigitalOut SelectLinesA[]={PIN96,PIN44,PIN45,PIN46};//to mux1=>voltage mux , PTA 13-16 , CHNGE TO PIN43 LATER
DigitalOut SelectLinesB[]={PIN56,PIN57,PIN58,PIN59};//to mux2=>current mux(differential mux) , PTB 3,7,8,9
DigitalOut SelectLinesC[]={PIN64,PIN65,PIN66,PIN67};//to mux3=>temp mux PTB 18-21
//--------------------------------------------MSB is SelectLines[0],LSB is SelectLines[3]--------------------------------
AnalogIn CurrentInput(PIN53); // Input from Current Mux PTB0
AnalogIn VoltageInput(PIN54); // Input from Voltage Multiplexer PTB1
AnalogIn TemperatureInput(PIN55); /*PTB2 Input from Temperature Multiplexer,thermistor Multiplexer- same multiplexer for both(lines 1-4 for thermistor,line 0 for temperature sensor)*/
int quantiz(float start,float step,float x) // accepts min and measured values and step->quantises on a scale 0-15..(4 bit quantisation)
{
int y=(x-start)/step;
if(y<=0)y=0;
if(y>=15)y=15;
return y;
}
void init_beacon(ShortBeacy* x,SensorDataQuantised y)
{
(*x).Voltage[0]=2;//quantised value
(*x).Temp[0]=y.PanelTemperature[0];//quantised value
(*x).Temp[1]=y.PanelTemperature[1];//quantised value
(*x).AngularSpeed[0]=y.AngularSpeed[0];
(*x).AngularSpeed[1]=y.AngularSpeed[1];
(*x).SubsystemStatus[0]=145;//dummy values----------to be changed-------------------
(*x).ErrorFlag[0]=3;//dummy values----------to be changed-------------------
}
SensorData Sensor;
SensorDataQuantised SensorQuantised;
ShortBeacy Shortbeacon;
void FUNC_HK_MAIN()
{
//define structure variables
//initialise all selectlines to zeroes->1st line of muxes selected
SelectLinesA[0]=SelectLinesA[1]=SelectLinesA[2]=SelectLinesA[3]=0;
SelectLinesB[0]=SelectLinesB[1]=SelectLinesB[2]=0;
SelectLinesC[0]=SelectLinesC[1]=SelectLinesC[2]=SelectLinesC[3]=0;
int LoopIterator;
int SelectLineIterator;
float resistance_thermistor,voltage_thermistor;//for thermistor
//measurement from voltage sensor=> 16 sensors in place
for(LoopIterator=0; LoopIterator<16; LoopIterator++)
{
//following lines read the sensor values and stores them in 'SensorData' structure's variable 'Sensor'
Sensor.Voltage[LoopIterator]=(VoltageInput.read()*3.3*5.545454);//resistors in voltage divider=>15Mohm,3.3Mohm
if(LoopIterator%2==0)
SensorQuantised.Voltage[LoopIterator/2]=quantiz(vstart,vstep,Sensor.Voltage[LoopIterator]);
else
SensorQuantised.Voltage[(LoopIterator)/2]=SensorQuantised.Voltage[(LoopIterator)/2]<<4+quantiz(vstart,vstep,Sensor.Voltage[LoopIterator]);
// The following lines are used to iterate the select lines from 0 to 15
//following is an algorithm similar to counting binary numbers of 4 bit
for(SelectLineIterator=3;SelectLineIterator>=0;SelectLineIterator--)
{
if(SelectLinesA[SelectLineIterator]==0)
{
SelectLinesA[SelectLineIterator]=1;
break;
}
else SelectLinesA[SelectLineIterator]=0;
}
wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed.
}
//measurement from current sensor=> 8 sensors in place
for(LoopIterator=0; LoopIterator<8; LoopIterator++)
{
//following lines read the sensor values and stores them in 'SensorData' structure variable 'Sensor'
Sensor.Current[LoopIterator]=(CurrentInput.read()*3.3/(50*rsens));
if(LoopIterator%2==0)
SensorQuantised.Current[LoopIterator/2]=quantiz(cstart,cstep,Sensor.Current[LoopIterator]);
else
SensorQuantised.Current[(LoopIterator)/2]=SensorQuantised.Current[(LoopIterator)/2]<<4+quantiz(cstart,cstep,Sensor.Current[LoopIterator]);
// The following lines are used to iterate the select lines from 0 to 7
//following is an algorithm similar to counting binary numbers of 3 bits
for(SelectLineIterator=2;SelectLineIterator>=0;SelectLineIterator--)
{
if(SelectLinesB[SelectLineIterator]==0)
{
SelectLinesB[SelectLineIterator]=1;
break;
}
else SelectLinesB[SelectLineIterator]=0;
}
wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed.
}
//measurement of temperature
//temperature measurement=> 4 thermistors, 1 temperature sensor
//mux line 1=>temp sensor, mux lines 2 to 5 =>thermistors
for(LoopIterator=0; LoopIterator<5; LoopIterator++)
{
//following lines read the sensor values and stores them in 'SensorData' structure variable 'Sensor'
Sensor.Temperature[LoopIterator]=(-90.7*3.3*TemperatureInput.read()+190.1543);
voltage_thermistor=TemperatureInput.read()*3.3;//voltage across thermistor
resistance_thermistor=24000*voltage_thermistor/(3.3-voltage_thermistor);//resistance of thermistor
//PanelTemperature will be updated depending on voltage_thermistor value later in the lines to follow
if(LoopIterator%2==0)
{
if(LoopIterator<1) //->corresponding to temperature sensor
SensorQuantised.Temperature[(LoopIterator)/2]=quantiz(tstart,tstep,Sensor.Temperature[LoopIterator]);
else //->corresponding to thermistor
{
if(voltage_thermistor<1.378) //Temperature>12 degC
Sensor.PanelTemperature[(LoopIterator-1)]=(3694/log(24.032242*resistance_thermistor));
else
Sensor.PanelTemperature[(LoopIterator-1)]=(3365.4792/log(7.60404*resistance_thermistor));
SensorQuantised.PanelTemperature[(LoopIterator-1)/2]=quantiz(tstart_thermistor,tstep_thermistor,Sensor.PanelTemperature[(LoopIterator-1)]);
}
}
else
{
if(LoopIterator<1)
SensorQuantised.Temperature[(LoopIterator)/2]=SensorQuantised.Temperature[(LoopIterator)/2]<<4+quantiz(tstart,tstep,Sensor.Temperature[LoopIterator]);
else
{
if(voltage_thermistor<1.378) //Temperature>12 degC
Sensor.PanelTemperature[LoopIterator-1]=(3694/log(24.032242*resistance_thermistor));
else
Sensor.PanelTemperature[LoopIterator-1]=(3365.4792/log(7.60404*resistance_thermistor));
SensorQuantised.PanelTemperature[(LoopIterator-1)/2]=SensorQuantised.PanelTemperature[(LoopIterator-1)/2]<<4+quantiz(tstart_thermistor,tstep_thermistor,Sensor.PanelTemperature[LoopIterator-1]);
}
}
strcpy(SensorQuantised.Voltage,"green");
// The following lines are used to iterate the select lines from 0 to 4
//following is an algorithm similar to counting binary numbers of 4 bit
for(SelectLineIterator=3;SelectLineIterator>=0;SelectLineIterator--)
{
if(SelectLinesC[SelectLineIterator]==0)
{
SelectLinesC[SelectLineIterator]=1;
break;
}
else SelectLinesC[SelectLineIterator]=0;
}
wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed.
}
//update magnetometer data->
//populate values in structure variable 'Sensor' from data to be given by Green
SensorQuantised.AngularSpeed[0]=quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[1]);
SensorQuantised.AngularSpeed[0]=SensorQuantised.AngularSpeed[0]<<4+quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[0]);
SensorQuantised.AngularSpeed[1]=quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[2]);
//update gyro data->
//populate values in structure variable 'Sensor' from data to be given by Green
SensorQuantised.Bnewvalue[0]=quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[1]);
SensorQuantised.Bnewvalue[0]=SensorQuantised.Bnewvalue[0]<<4+quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[0]);
SensorQuantised.Bnewvalue[1]=quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[2]);
//update beacon structure
init_beacon(&Shortbeacon,SensorQuantised);//Shortbeacon is passed
}
