ROS Serial library for Mbed platforms for ROS Jade Turtle. Check http://wiki.ros.org/rosserial_mbed/ for more information.

Dependencies:   BufferedSerial

Dependents:   rosserial_mbed_hello_world_publisher_jade

ROSSerial_mbed for Jade Distribution

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

The rosserial_mbed package allows to write ROS nodes on any mbed enabled devices and have them connected to a running ROS system on your computer using the serial port.

Hello World (example publisher)

Import programrosserial_mbed_hello_world_publisher_jade

rosserial_mbed Hello World example for jade distribution

Running the Code

Now, launch the roscore in a new terminal window:

Quote:

$ roscore

Next, run the rosserial client application that forwards your MBED messages to the rest of ROS. Make sure to use the correct serial port:

Quote:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Finally, watch the greetings come in from your MBED by launching a new terminal window and entering :

Quote:

$ rostopic echo chatter

See Also

More examples

Blink

/*
 * rosserial Subscriber Example
 * Blinks an LED on callback
 */
#include "mbed.h"
#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;
DigitalOut myled(LED1);

void messageCb(const std_msgs::Empty& toggle_msg){
    myled = !myled;   // blink the led
}

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb);

int main() {
    nh.initNode();
    nh.subscribe(sub);

    while (1) {
        nh.spinOnce();
        wait_ms(1);
    }
}

Push

/*
 * Button Example for Rosserial
 */

#include "mbed.h"
#include <ros.h>
#include <std_msgs/Bool.h>

PinName button = p20;

ros::NodeHandle nh;

std_msgs::Bool pushed_msg;
ros::Publisher pub_button("pushed", &pushed_msg);

DigitalIn button_pin(button);
DigitalOut led_pin(LED1);

bool last_reading;
long last_debounce_time=0;
long debounce_delay=50;
bool published = true;

Timer t;
int main() {
    t.start();
    nh.initNode();
    nh.advertise(pub_button);

    //Enable the pullup resistor on the button
    button_pin.mode(PullUp);

    //The button is a normally button
    last_reading = ! button_pin;

    while (1) {
        bool reading = ! button_pin;

        if (last_reading!= reading) {
            last_debounce_time = t.read_ms();
            published = false;
        }

        //if the button value has not changed for the debounce delay, we know its stable
        if ( !published && (t.read_ms() - last_debounce_time)  > debounce_delay) {
            led_pin = reading;
            pushed_msg.data = reading;
            pub_button.publish(&pushed_msg);
            published = true;
        }

        last_reading = reading;

        nh.spinOnce();
    }
}

gazebo_msgs/ContactState.h

Committer:
garyservin
Date:
2016-03-31
Revision:
0:a906bb7c7831

File content as of revision 0:a906bb7c7831:

#ifndef _ROS_gazebo_msgs_ContactState_h
#define _ROS_gazebo_msgs_ContactState_h

#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "ros/msg.h"
#include "geometry_msgs/Wrench.h"
#include "geometry_msgs/Vector3.h"

namespace gazebo_msgs
{

  class ContactState : public ros::Msg
  {
    public:
      const char* info;
      const char* collision1_name;
      const char* collision2_name;
      uint8_t wrenches_length;
      geometry_msgs::Wrench st_wrenches;
      geometry_msgs::Wrench * wrenches;
      geometry_msgs::Wrench total_wrench;
      uint8_t contact_positions_length;
      geometry_msgs::Vector3 st_contact_positions;
      geometry_msgs::Vector3 * contact_positions;
      uint8_t contact_normals_length;
      geometry_msgs::Vector3 st_contact_normals;
      geometry_msgs::Vector3 * contact_normals;
      uint8_t depths_length;
      double st_depths;
      double * depths;

    ContactState():
      info(""),
      collision1_name(""),
      collision2_name(""),
      wrenches_length(0), wrenches(NULL),
      total_wrench(),
      contact_positions_length(0), contact_positions(NULL),
      contact_normals_length(0), contact_normals(NULL),
      depths_length(0), depths(NULL)
    {
    }

    virtual int serialize(unsigned char *outbuffer) const
    {
      int offset = 0;
      uint32_t length_info = strlen(this->info);
      memcpy(outbuffer + offset, &length_info, sizeof(uint32_t));
      offset += 4;
      memcpy(outbuffer + offset, this->info, length_info);
      offset += length_info;
      uint32_t length_collision1_name = strlen(this->collision1_name);
      memcpy(outbuffer + offset, &length_collision1_name, sizeof(uint32_t));
      offset += 4;
      memcpy(outbuffer + offset, this->collision1_name, length_collision1_name);
      offset += length_collision1_name;
      uint32_t length_collision2_name = strlen(this->collision2_name);
      memcpy(outbuffer + offset, &length_collision2_name, sizeof(uint32_t));
      offset += 4;
      memcpy(outbuffer + offset, this->collision2_name, length_collision2_name);
      offset += length_collision2_name;
      *(outbuffer + offset++) = wrenches_length;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      for( uint8_t i = 0; i < wrenches_length; i++){
      offset += this->wrenches[i].serialize(outbuffer + offset);
      }
      offset += this->total_wrench.serialize(outbuffer + offset);
      *(outbuffer + offset++) = contact_positions_length;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      for( uint8_t i = 0; i < contact_positions_length; i++){
      offset += this->contact_positions[i].serialize(outbuffer + offset);
      }
      *(outbuffer + offset++) = contact_normals_length;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      for( uint8_t i = 0; i < contact_normals_length; i++){
      offset += this->contact_normals[i].serialize(outbuffer + offset);
      }
      *(outbuffer + offset++) = depths_length;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      *(outbuffer + offset++) = 0;
      for( uint8_t i = 0; i < depths_length; i++){
      union {
        double real;
        uint64_t base;
      } u_depthsi;
      u_depthsi.real = this->depths[i];
      *(outbuffer + offset + 0) = (u_depthsi.base >> (8 * 0)) & 0xFF;
      *(outbuffer + offset + 1) = (u_depthsi.base >> (8 * 1)) & 0xFF;
      *(outbuffer + offset + 2) = (u_depthsi.base >> (8 * 2)) & 0xFF;
      *(outbuffer + offset + 3) = (u_depthsi.base >> (8 * 3)) & 0xFF;
      *(outbuffer + offset + 4) = (u_depthsi.base >> (8 * 4)) & 0xFF;
      *(outbuffer + offset + 5) = (u_depthsi.base >> (8 * 5)) & 0xFF;
      *(outbuffer + offset + 6) = (u_depthsi.base >> (8 * 6)) & 0xFF;
      *(outbuffer + offset + 7) = (u_depthsi.base >> (8 * 7)) & 0xFF;
      offset += sizeof(this->depths[i]);
      }
      return offset;
    }

    virtual int deserialize(unsigned char *inbuffer)
    {
      int offset = 0;
      uint32_t length_info;
      memcpy(&length_info, (inbuffer + offset), sizeof(uint32_t));
      offset += 4;
      for(unsigned int k= offset; k< offset+length_info; ++k){
          inbuffer[k-1]=inbuffer[k];
      }
      inbuffer[offset+length_info-1]=0;
      this->info = (char *)(inbuffer + offset-1);
      offset += length_info;
      uint32_t length_collision1_name;
      memcpy(&length_collision1_name, (inbuffer + offset), sizeof(uint32_t));
      offset += 4;
      for(unsigned int k= offset; k< offset+length_collision1_name; ++k){
          inbuffer[k-1]=inbuffer[k];
      }
      inbuffer[offset+length_collision1_name-1]=0;
      this->collision1_name = (char *)(inbuffer + offset-1);
      offset += length_collision1_name;
      uint32_t length_collision2_name;
      memcpy(&length_collision2_name, (inbuffer + offset), sizeof(uint32_t));
      offset += 4;
      for(unsigned int k= offset; k< offset+length_collision2_name; ++k){
          inbuffer[k-1]=inbuffer[k];
      }
      inbuffer[offset+length_collision2_name-1]=0;
      this->collision2_name = (char *)(inbuffer + offset-1);
      offset += length_collision2_name;
      uint8_t wrenches_lengthT = *(inbuffer + offset++);
      if(wrenches_lengthT > wrenches_length)
        this->wrenches = (geometry_msgs::Wrench*)realloc(this->wrenches, wrenches_lengthT * sizeof(geometry_msgs::Wrench));
      offset += 3;
      wrenches_length = wrenches_lengthT;
      for( uint8_t i = 0; i < wrenches_length; i++){
      offset += this->st_wrenches.deserialize(inbuffer + offset);
        memcpy( &(this->wrenches[i]), &(this->st_wrenches), sizeof(geometry_msgs::Wrench));
      }
      offset += this->total_wrench.deserialize(inbuffer + offset);
      uint8_t contact_positions_lengthT = *(inbuffer + offset++);
      if(contact_positions_lengthT > contact_positions_length)
        this->contact_positions = (geometry_msgs::Vector3*)realloc(this->contact_positions, contact_positions_lengthT * sizeof(geometry_msgs::Vector3));
      offset += 3;
      contact_positions_length = contact_positions_lengthT;
      for( uint8_t i = 0; i < contact_positions_length; i++){
      offset += this->st_contact_positions.deserialize(inbuffer + offset);
        memcpy( &(this->contact_positions[i]), &(this->st_contact_positions), sizeof(geometry_msgs::Vector3));
      }
      uint8_t contact_normals_lengthT = *(inbuffer + offset++);
      if(contact_normals_lengthT > contact_normals_length)
        this->contact_normals = (geometry_msgs::Vector3*)realloc(this->contact_normals, contact_normals_lengthT * sizeof(geometry_msgs::Vector3));
      offset += 3;
      contact_normals_length = contact_normals_lengthT;
      for( uint8_t i = 0; i < contact_normals_length; i++){
      offset += this->st_contact_normals.deserialize(inbuffer + offset);
        memcpy( &(this->contact_normals[i]), &(this->st_contact_normals), sizeof(geometry_msgs::Vector3));
      }
      uint8_t depths_lengthT = *(inbuffer + offset++);
      if(depths_lengthT > depths_length)
        this->depths = (double*)realloc(this->depths, depths_lengthT * sizeof(double));
      offset += 3;
      depths_length = depths_lengthT;
      for( uint8_t i = 0; i < depths_length; i++){
      union {
        double real;
        uint64_t base;
      } u_st_depths;
      u_st_depths.base = 0;
      u_st_depths.base |= ((uint64_t) (*(inbuffer + offset + 0))) << (8 * 0);
      u_st_depths.base |= ((uint64_t) (*(inbuffer + offset + 1))) << (8 * 1);
      u_st_depths.base |= ((uint64_t) (*(inbuffer + offset + 2))) << (8 * 2);
      u_st_depths.base |= ((uint64_t) (*(inbuffer + offset + 3))) << (8 * 3);
      u_st_depths.base |= ((uint64_t) (*(inbuffer + offset + 4))) << (8 * 4);
      u_st_depths.base |= ((uint64_t) (*(inbuffer + offset + 5))) << (8 * 5);
      u_st_depths.base |= ((uint64_t) (*(inbuffer + offset + 6))) << (8 * 6);
      u_st_depths.base |= ((uint64_t) (*(inbuffer + offset + 7))) << (8 * 7);
      this->st_depths = u_st_depths.real;
      offset += sizeof(this->st_depths);
        memcpy( &(this->depths[i]), &(this->st_depths), sizeof(double));
      }
     return offset;
    }

    const char * getType(){ return "gazebo_msgs/ContactState"; };
    const char * getMD5(){ return "48c0ffb054b8c444f870cecea1ee50d9"; };

  };

}
#endif