Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: mbed_lpc1768_freertos_lib
src/tasks.c@0:5ff20db10a96, 2017-05-31 (annotated)
- Committer:
- fep
- Date:
- Wed May 31 02:36:43 2017 +0000
- Revision:
- 0:5ff20db10a96
FreeRTOS v9.0.0 for ARM Cortex-M3 based boards.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
fep | 0:5ff20db10a96 | 1 | /* |
fep | 0:5ff20db10a96 | 2 | FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd. |
fep | 0:5ff20db10a96 | 3 | All rights reserved |
fep | 0:5ff20db10a96 | 4 | |
fep | 0:5ff20db10a96 | 5 | VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. |
fep | 0:5ff20db10a96 | 6 | |
fep | 0:5ff20db10a96 | 7 | This file is part of the FreeRTOS distribution. |
fep | 0:5ff20db10a96 | 8 | |
fep | 0:5ff20db10a96 | 9 | FreeRTOS is free software; you can redistribute it and/or modify it under |
fep | 0:5ff20db10a96 | 10 | the terms of the GNU General Public License (version 2) as published by the |
fep | 0:5ff20db10a96 | 11 | Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception. |
fep | 0:5ff20db10a96 | 12 | |
fep | 0:5ff20db10a96 | 13 | *************************************************************************** |
fep | 0:5ff20db10a96 | 14 | >>! NOTE: The modification to the GPL is included to allow you to !<< |
fep | 0:5ff20db10a96 | 15 | >>! distribute a combined work that includes FreeRTOS without being !<< |
fep | 0:5ff20db10a96 | 16 | >>! obliged to provide the source code for proprietary components !<< |
fep | 0:5ff20db10a96 | 17 | >>! outside of the FreeRTOS kernel. !<< |
fep | 0:5ff20db10a96 | 18 | *************************************************************************** |
fep | 0:5ff20db10a96 | 19 | |
fep | 0:5ff20db10a96 | 20 | FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY |
fep | 0:5ff20db10a96 | 21 | WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
fep | 0:5ff20db10a96 | 22 | FOR A PARTICULAR PURPOSE. Full license text is available on the following |
fep | 0:5ff20db10a96 | 23 | link: http://www.freertos.org/a00114.html |
fep | 0:5ff20db10a96 | 24 | |
fep | 0:5ff20db10a96 | 25 | *************************************************************************** |
fep | 0:5ff20db10a96 | 26 | * * |
fep | 0:5ff20db10a96 | 27 | * FreeRTOS provides completely free yet professionally developed, * |
fep | 0:5ff20db10a96 | 28 | * robust, strictly quality controlled, supported, and cross * |
fep | 0:5ff20db10a96 | 29 | * platform software that is more than just the market leader, it * |
fep | 0:5ff20db10a96 | 30 | * is the industry's de facto standard. * |
fep | 0:5ff20db10a96 | 31 | * * |
fep | 0:5ff20db10a96 | 32 | * Help yourself get started quickly while simultaneously helping * |
fep | 0:5ff20db10a96 | 33 | * to support the FreeRTOS project by purchasing a FreeRTOS * |
fep | 0:5ff20db10a96 | 34 | * tutorial book, reference manual, or both: * |
fep | 0:5ff20db10a96 | 35 | * http://www.FreeRTOS.org/Documentation * |
fep | 0:5ff20db10a96 | 36 | * * |
fep | 0:5ff20db10a96 | 37 | *************************************************************************** |
fep | 0:5ff20db10a96 | 38 | |
fep | 0:5ff20db10a96 | 39 | http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading |
fep | 0:5ff20db10a96 | 40 | the FAQ page "My application does not run, what could be wrong?". Have you |
fep | 0:5ff20db10a96 | 41 | defined configASSERT()? |
fep | 0:5ff20db10a96 | 42 | |
fep | 0:5ff20db10a96 | 43 | http://www.FreeRTOS.org/support - In return for receiving this top quality |
fep | 0:5ff20db10a96 | 44 | embedded software for free we request you assist our global community by |
fep | 0:5ff20db10a96 | 45 | participating in the support forum. |
fep | 0:5ff20db10a96 | 46 | |
fep | 0:5ff20db10a96 | 47 | http://www.FreeRTOS.org/training - Investing in training allows your team to |
fep | 0:5ff20db10a96 | 48 | be as productive as possible as early as possible. Now you can receive |
fep | 0:5ff20db10a96 | 49 | FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers |
fep | 0:5ff20db10a96 | 50 | Ltd, and the world's leading authority on the world's leading RTOS. |
fep | 0:5ff20db10a96 | 51 | |
fep | 0:5ff20db10a96 | 52 | http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, |
fep | 0:5ff20db10a96 | 53 | including FreeRTOS+Trace - an indispensable productivity tool, a DOS |
fep | 0:5ff20db10a96 | 54 | compatible FAT file system, and our tiny thread aware UDP/IP stack. |
fep | 0:5ff20db10a96 | 55 | |
fep | 0:5ff20db10a96 | 56 | http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate. |
fep | 0:5ff20db10a96 | 57 | Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS. |
fep | 0:5ff20db10a96 | 58 | |
fep | 0:5ff20db10a96 | 59 | http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High |
fep | 0:5ff20db10a96 | 60 | Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS |
fep | 0:5ff20db10a96 | 61 | licenses offer ticketed support, indemnification and commercial middleware. |
fep | 0:5ff20db10a96 | 62 | |
fep | 0:5ff20db10a96 | 63 | http://www.SafeRTOS.com - High Integrity Systems also provide a safety |
fep | 0:5ff20db10a96 | 64 | engineered and independently SIL3 certified version for use in safety and |
fep | 0:5ff20db10a96 | 65 | mission critical applications that require provable dependability. |
fep | 0:5ff20db10a96 | 66 | |
fep | 0:5ff20db10a96 | 67 | 1 tab == 4 spaces! |
fep | 0:5ff20db10a96 | 68 | */ |
fep | 0:5ff20db10a96 | 69 | |
fep | 0:5ff20db10a96 | 70 | /* Standard includes. */ |
fep | 0:5ff20db10a96 | 71 | #include <stdlib.h> |
fep | 0:5ff20db10a96 | 72 | #include <string.h> |
fep | 0:5ff20db10a96 | 73 | |
fep | 0:5ff20db10a96 | 74 | /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining |
fep | 0:5ff20db10a96 | 75 | all the API functions to use the MPU wrappers. That should only be done when |
fep | 0:5ff20db10a96 | 76 | task.h is included from an application file. */ |
fep | 0:5ff20db10a96 | 77 | #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE |
fep | 0:5ff20db10a96 | 78 | |
fep | 0:5ff20db10a96 | 79 | /* FreeRTOS includes. */ |
fep | 0:5ff20db10a96 | 80 | #include "FreeRTOS.h" |
fep | 0:5ff20db10a96 | 81 | #include "task.h" |
fep | 0:5ff20db10a96 | 82 | #include "timers.h" |
fep | 0:5ff20db10a96 | 83 | #include "StackMacros.h" |
fep | 0:5ff20db10a96 | 84 | |
fep | 0:5ff20db10a96 | 85 | /* Lint e961 and e750 are suppressed as a MISRA exception justified because the |
fep | 0:5ff20db10a96 | 86 | MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the |
fep | 0:5ff20db10a96 | 87 | header files above, but not in this file, in order to generate the correct |
fep | 0:5ff20db10a96 | 88 | privileged Vs unprivileged linkage and placement. */ |
fep | 0:5ff20db10a96 | 89 | #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */ |
fep | 0:5ff20db10a96 | 90 | |
fep | 0:5ff20db10a96 | 91 | /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting |
fep | 0:5ff20db10a96 | 92 | functions but without including stdio.h here. */ |
fep | 0:5ff20db10a96 | 93 | #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) |
fep | 0:5ff20db10a96 | 94 | /* At the bottom of this file are two optional functions that can be used |
fep | 0:5ff20db10a96 | 95 | to generate human readable text from the raw data generated by the |
fep | 0:5ff20db10a96 | 96 | uxTaskGetSystemState() function. Note the formatting functions are provided |
fep | 0:5ff20db10a96 | 97 | for convenience only, and are NOT considered part of the kernel. */ |
fep | 0:5ff20db10a96 | 98 | #include <stdio.h> |
fep | 0:5ff20db10a96 | 99 | #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */ |
fep | 0:5ff20db10a96 | 100 | |
fep | 0:5ff20db10a96 | 101 | #if( configUSE_PREEMPTION == 0 ) |
fep | 0:5ff20db10a96 | 102 | /* If the cooperative scheduler is being used then a yield should not be |
fep | 0:5ff20db10a96 | 103 | performed just because a higher priority task has been woken. */ |
fep | 0:5ff20db10a96 | 104 | #define taskYIELD_IF_USING_PREEMPTION() |
fep | 0:5ff20db10a96 | 105 | #else |
fep | 0:5ff20db10a96 | 106 | #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API() |
fep | 0:5ff20db10a96 | 107 | #endif |
fep | 0:5ff20db10a96 | 108 | |
fep | 0:5ff20db10a96 | 109 | /* Values that can be assigned to the ucNotifyState member of the TCB. */ |
fep | 0:5ff20db10a96 | 110 | #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) |
fep | 0:5ff20db10a96 | 111 | #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 ) |
fep | 0:5ff20db10a96 | 112 | #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 ) |
fep | 0:5ff20db10a96 | 113 | |
fep | 0:5ff20db10a96 | 114 | /* |
fep | 0:5ff20db10a96 | 115 | * The value used to fill the stack of a task when the task is created. This |
fep | 0:5ff20db10a96 | 116 | * is used purely for checking the high water mark for tasks. |
fep | 0:5ff20db10a96 | 117 | */ |
fep | 0:5ff20db10a96 | 118 | #define tskSTACK_FILL_BYTE ( 0xa5U ) |
fep | 0:5ff20db10a96 | 119 | |
fep | 0:5ff20db10a96 | 120 | /* Sometimes the FreeRTOSConfig.h settings only allow a task to be created using |
fep | 0:5ff20db10a96 | 121 | dynamically allocated RAM, in which case when any task is deleted it is known |
fep | 0:5ff20db10a96 | 122 | that both the task's stack and TCB need to be freed. Sometimes the |
fep | 0:5ff20db10a96 | 123 | FreeRTOSConfig.h settings only allow a task to be created using statically |
fep | 0:5ff20db10a96 | 124 | allocated RAM, in which case when any task is deleted it is known that neither |
fep | 0:5ff20db10a96 | 125 | the task's stack or TCB should be freed. Sometimes the FreeRTOSConfig.h |
fep | 0:5ff20db10a96 | 126 | settings allow a task to be created using either statically or dynamically |
fep | 0:5ff20db10a96 | 127 | allocated RAM, in which case a member of the TCB is used to record whether the |
fep | 0:5ff20db10a96 | 128 | stack and/or TCB were allocated statically or dynamically, so when a task is |
fep | 0:5ff20db10a96 | 129 | deleted the RAM that was allocated dynamically is freed again and no attempt is |
fep | 0:5ff20db10a96 | 130 | made to free the RAM that was allocated statically. |
fep | 0:5ff20db10a96 | 131 | tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE is only true if it is possible for a |
fep | 0:5ff20db10a96 | 132 | task to be created using either statically or dynamically allocated RAM. Note |
fep | 0:5ff20db10a96 | 133 | that if portUSING_MPU_WRAPPERS is 1 then a protected task can be created with |
fep | 0:5ff20db10a96 | 134 | a statically allocated stack and a dynamically allocated TCB. */ |
fep | 0:5ff20db10a96 | 135 | #define tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE ( ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) || ( portUSING_MPU_WRAPPERS == 1 ) ) |
fep | 0:5ff20db10a96 | 136 | #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 ) |
fep | 0:5ff20db10a96 | 137 | #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 ) |
fep | 0:5ff20db10a96 | 138 | #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 ) |
fep | 0:5ff20db10a96 | 139 | |
fep | 0:5ff20db10a96 | 140 | /* |
fep | 0:5ff20db10a96 | 141 | * Macros used by vListTask to indicate which state a task is in. |
fep | 0:5ff20db10a96 | 142 | */ |
fep | 0:5ff20db10a96 | 143 | #define tskBLOCKED_CHAR ( 'B' ) |
fep | 0:5ff20db10a96 | 144 | #define tskREADY_CHAR ( 'R' ) |
fep | 0:5ff20db10a96 | 145 | #define tskDELETED_CHAR ( 'D' ) |
fep | 0:5ff20db10a96 | 146 | #define tskSUSPENDED_CHAR ( 'S' ) |
fep | 0:5ff20db10a96 | 147 | |
fep | 0:5ff20db10a96 | 148 | /* |
fep | 0:5ff20db10a96 | 149 | * Some kernel aware debuggers require the data the debugger needs access to be |
fep | 0:5ff20db10a96 | 150 | * global, rather than file scope. |
fep | 0:5ff20db10a96 | 151 | */ |
fep | 0:5ff20db10a96 | 152 | #ifdef portREMOVE_STATIC_QUALIFIER |
fep | 0:5ff20db10a96 | 153 | #define static |
fep | 0:5ff20db10a96 | 154 | #endif |
fep | 0:5ff20db10a96 | 155 | |
fep | 0:5ff20db10a96 | 156 | #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) |
fep | 0:5ff20db10a96 | 157 | |
fep | 0:5ff20db10a96 | 158 | /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is |
fep | 0:5ff20db10a96 | 159 | performed in a generic way that is not optimised to any particular |
fep | 0:5ff20db10a96 | 160 | microcontroller architecture. */ |
fep | 0:5ff20db10a96 | 161 | |
fep | 0:5ff20db10a96 | 162 | /* uxTopReadyPriority holds the priority of the highest priority ready |
fep | 0:5ff20db10a96 | 163 | state task. */ |
fep | 0:5ff20db10a96 | 164 | #define taskRECORD_READY_PRIORITY( uxPriority ) \ |
fep | 0:5ff20db10a96 | 165 | { \ |
fep | 0:5ff20db10a96 | 166 | if( ( uxPriority ) > uxTopReadyPriority ) \ |
fep | 0:5ff20db10a96 | 167 | { \ |
fep | 0:5ff20db10a96 | 168 | uxTopReadyPriority = ( uxPriority ); \ |
fep | 0:5ff20db10a96 | 169 | } \ |
fep | 0:5ff20db10a96 | 170 | } /* taskRECORD_READY_PRIORITY */ |
fep | 0:5ff20db10a96 | 171 | |
fep | 0:5ff20db10a96 | 172 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 173 | |
fep | 0:5ff20db10a96 | 174 | #define taskSELECT_HIGHEST_PRIORITY_TASK() \ |
fep | 0:5ff20db10a96 | 175 | { \ |
fep | 0:5ff20db10a96 | 176 | UBaseType_t uxTopPriority = uxTopReadyPriority; \ |
fep | 0:5ff20db10a96 | 177 | \ |
fep | 0:5ff20db10a96 | 178 | /* Find the highest priority queue that contains ready tasks. */ \ |
fep | 0:5ff20db10a96 | 179 | while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \ |
fep | 0:5ff20db10a96 | 180 | { \ |
fep | 0:5ff20db10a96 | 181 | configASSERT( uxTopPriority ); \ |
fep | 0:5ff20db10a96 | 182 | --uxTopPriority; \ |
fep | 0:5ff20db10a96 | 183 | } \ |
fep | 0:5ff20db10a96 | 184 | \ |
fep | 0:5ff20db10a96 | 185 | /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \ |
fep | 0:5ff20db10a96 | 186 | the same priority get an equal share of the processor time. */ \ |
fep | 0:5ff20db10a96 | 187 | listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \ |
fep | 0:5ff20db10a96 | 188 | uxTopReadyPriority = uxTopPriority; \ |
fep | 0:5ff20db10a96 | 189 | } /* taskSELECT_HIGHEST_PRIORITY_TASK */ |
fep | 0:5ff20db10a96 | 190 | |
fep | 0:5ff20db10a96 | 191 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 192 | |
fep | 0:5ff20db10a96 | 193 | /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as |
fep | 0:5ff20db10a96 | 194 | they are only required when a port optimised method of task selection is |
fep | 0:5ff20db10a96 | 195 | being used. */ |
fep | 0:5ff20db10a96 | 196 | #define taskRESET_READY_PRIORITY( uxPriority ) |
fep | 0:5ff20db10a96 | 197 | #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority ) |
fep | 0:5ff20db10a96 | 198 | |
fep | 0:5ff20db10a96 | 199 | #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ |
fep | 0:5ff20db10a96 | 200 | |
fep | 0:5ff20db10a96 | 201 | /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is |
fep | 0:5ff20db10a96 | 202 | performed in a way that is tailored to the particular microcontroller |
fep | 0:5ff20db10a96 | 203 | architecture being used. */ |
fep | 0:5ff20db10a96 | 204 | |
fep | 0:5ff20db10a96 | 205 | /* A port optimised version is provided. Call the port defined macros. */ |
fep | 0:5ff20db10a96 | 206 | #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority ) |
fep | 0:5ff20db10a96 | 207 | |
fep | 0:5ff20db10a96 | 208 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 209 | |
fep | 0:5ff20db10a96 | 210 | #define taskSELECT_HIGHEST_PRIORITY_TASK() \ |
fep | 0:5ff20db10a96 | 211 | { \ |
fep | 0:5ff20db10a96 | 212 | UBaseType_t uxTopPriority; \ |
fep | 0:5ff20db10a96 | 213 | \ |
fep | 0:5ff20db10a96 | 214 | /* Find the highest priority list that contains ready tasks. */ \ |
fep | 0:5ff20db10a96 | 215 | portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \ |
fep | 0:5ff20db10a96 | 216 | configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \ |
fep | 0:5ff20db10a96 | 217 | listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \ |
fep | 0:5ff20db10a96 | 218 | } /* taskSELECT_HIGHEST_PRIORITY_TASK() */ |
fep | 0:5ff20db10a96 | 219 | |
fep | 0:5ff20db10a96 | 220 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 221 | |
fep | 0:5ff20db10a96 | 222 | /* A port optimised version is provided, call it only if the TCB being reset |
fep | 0:5ff20db10a96 | 223 | is being referenced from a ready list. If it is referenced from a delayed |
fep | 0:5ff20db10a96 | 224 | or suspended list then it won't be in a ready list. */ |
fep | 0:5ff20db10a96 | 225 | #define taskRESET_READY_PRIORITY( uxPriority ) \ |
fep | 0:5ff20db10a96 | 226 | { \ |
fep | 0:5ff20db10a96 | 227 | if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \ |
fep | 0:5ff20db10a96 | 228 | { \ |
fep | 0:5ff20db10a96 | 229 | portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \ |
fep | 0:5ff20db10a96 | 230 | } \ |
fep | 0:5ff20db10a96 | 231 | } |
fep | 0:5ff20db10a96 | 232 | |
fep | 0:5ff20db10a96 | 233 | #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ |
fep | 0:5ff20db10a96 | 234 | |
fep | 0:5ff20db10a96 | 235 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 236 | |
fep | 0:5ff20db10a96 | 237 | /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick |
fep | 0:5ff20db10a96 | 238 | count overflows. */ |
fep | 0:5ff20db10a96 | 239 | #define taskSWITCH_DELAYED_LISTS() \ |
fep | 0:5ff20db10a96 | 240 | { \ |
fep | 0:5ff20db10a96 | 241 | List_t *pxTemp; \ |
fep | 0:5ff20db10a96 | 242 | \ |
fep | 0:5ff20db10a96 | 243 | /* The delayed tasks list should be empty when the lists are switched. */ \ |
fep | 0:5ff20db10a96 | 244 | configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \ |
fep | 0:5ff20db10a96 | 245 | \ |
fep | 0:5ff20db10a96 | 246 | pxTemp = pxDelayedTaskList; \ |
fep | 0:5ff20db10a96 | 247 | pxDelayedTaskList = pxOverflowDelayedTaskList; \ |
fep | 0:5ff20db10a96 | 248 | pxOverflowDelayedTaskList = pxTemp; \ |
fep | 0:5ff20db10a96 | 249 | xNumOfOverflows++; \ |
fep | 0:5ff20db10a96 | 250 | prvResetNextTaskUnblockTime(); \ |
fep | 0:5ff20db10a96 | 251 | } |
fep | 0:5ff20db10a96 | 252 | |
fep | 0:5ff20db10a96 | 253 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 254 | |
fep | 0:5ff20db10a96 | 255 | /* |
fep | 0:5ff20db10a96 | 256 | * Place the task represented by pxTCB into the appropriate ready list for |
fep | 0:5ff20db10a96 | 257 | * the task. It is inserted at the end of the list. |
fep | 0:5ff20db10a96 | 258 | */ |
fep | 0:5ff20db10a96 | 259 | #define prvAddTaskToReadyList( pxTCB ) \ |
fep | 0:5ff20db10a96 | 260 | traceMOVED_TASK_TO_READY_STATE( pxTCB ); \ |
fep | 0:5ff20db10a96 | 261 | taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \ |
fep | 0:5ff20db10a96 | 262 | vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \ |
fep | 0:5ff20db10a96 | 263 | tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB ) |
fep | 0:5ff20db10a96 | 264 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 265 | |
fep | 0:5ff20db10a96 | 266 | /* |
fep | 0:5ff20db10a96 | 267 | * Several functions take an TaskHandle_t parameter that can optionally be NULL, |
fep | 0:5ff20db10a96 | 268 | * where NULL is used to indicate that the handle of the currently executing |
fep | 0:5ff20db10a96 | 269 | * task should be used in place of the parameter. This macro simply checks to |
fep | 0:5ff20db10a96 | 270 | * see if the parameter is NULL and returns a pointer to the appropriate TCB. |
fep | 0:5ff20db10a96 | 271 | */ |
fep | 0:5ff20db10a96 | 272 | #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TCB_t * ) pxCurrentTCB : ( TCB_t * ) ( pxHandle ) ) |
fep | 0:5ff20db10a96 | 273 | |
fep | 0:5ff20db10a96 | 274 | /* The item value of the event list item is normally used to hold the priority |
fep | 0:5ff20db10a96 | 275 | of the task to which it belongs (coded to allow it to be held in reverse |
fep | 0:5ff20db10a96 | 276 | priority order). However, it is occasionally borrowed for other purposes. It |
fep | 0:5ff20db10a96 | 277 | is important its value is not updated due to a task priority change while it is |
fep | 0:5ff20db10a96 | 278 | being used for another purpose. The following bit definition is used to inform |
fep | 0:5ff20db10a96 | 279 | the scheduler that the value should not be changed - in which case it is the |
fep | 0:5ff20db10a96 | 280 | responsibility of whichever module is using the value to ensure it gets set back |
fep | 0:5ff20db10a96 | 281 | to its original value when it is released. */ |
fep | 0:5ff20db10a96 | 282 | #if( configUSE_16_BIT_TICKS == 1 ) |
fep | 0:5ff20db10a96 | 283 | #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U |
fep | 0:5ff20db10a96 | 284 | #else |
fep | 0:5ff20db10a96 | 285 | #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL |
fep | 0:5ff20db10a96 | 286 | #endif |
fep | 0:5ff20db10a96 | 287 | |
fep | 0:5ff20db10a96 | 288 | /* |
fep | 0:5ff20db10a96 | 289 | * Task control block. A task control block (TCB) is allocated for each task, |
fep | 0:5ff20db10a96 | 290 | * and stores task state information, including a pointer to the task's context |
fep | 0:5ff20db10a96 | 291 | * (the task's run time environment, including register values) |
fep | 0:5ff20db10a96 | 292 | */ |
fep | 0:5ff20db10a96 | 293 | typedef struct tskTaskControlBlock |
fep | 0:5ff20db10a96 | 294 | { |
fep | 0:5ff20db10a96 | 295 | volatile StackType_t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */ |
fep | 0:5ff20db10a96 | 296 | |
fep | 0:5ff20db10a96 | 297 | #if ( portUSING_MPU_WRAPPERS == 1 ) |
fep | 0:5ff20db10a96 | 298 | xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */ |
fep | 0:5ff20db10a96 | 299 | #endif |
fep | 0:5ff20db10a96 | 300 | |
fep | 0:5ff20db10a96 | 301 | ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */ |
fep | 0:5ff20db10a96 | 302 | ListItem_t xEventListItem; /*< Used to reference a task from an event list. */ |
fep | 0:5ff20db10a96 | 303 | UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */ |
fep | 0:5ff20db10a96 | 304 | StackType_t *pxStack; /*< Points to the start of the stack. */ |
fep | 0:5ff20db10a96 | 305 | char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
fep | 0:5ff20db10a96 | 306 | |
fep | 0:5ff20db10a96 | 307 | #if ( portSTACK_GROWTH > 0 ) |
fep | 0:5ff20db10a96 | 308 | StackType_t *pxEndOfStack; /*< Points to the end of the stack on architectures where the stack grows up from low memory. */ |
fep | 0:5ff20db10a96 | 309 | #endif |
fep | 0:5ff20db10a96 | 310 | |
fep | 0:5ff20db10a96 | 311 | #if ( portCRITICAL_NESTING_IN_TCB == 1 ) |
fep | 0:5ff20db10a96 | 312 | UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */ |
fep | 0:5ff20db10a96 | 313 | #endif |
fep | 0:5ff20db10a96 | 314 | |
fep | 0:5ff20db10a96 | 315 | #if ( configUSE_TRACE_FACILITY == 1 ) |
fep | 0:5ff20db10a96 | 316 | UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */ |
fep | 0:5ff20db10a96 | 317 | UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */ |
fep | 0:5ff20db10a96 | 318 | #endif |
fep | 0:5ff20db10a96 | 319 | |
fep | 0:5ff20db10a96 | 320 | #if ( configUSE_MUTEXES == 1 ) |
fep | 0:5ff20db10a96 | 321 | UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */ |
fep | 0:5ff20db10a96 | 322 | UBaseType_t uxMutexesHeld; |
fep | 0:5ff20db10a96 | 323 | #endif |
fep | 0:5ff20db10a96 | 324 | |
fep | 0:5ff20db10a96 | 325 | #if ( configUSE_APPLICATION_TASK_TAG == 1 ) |
fep | 0:5ff20db10a96 | 326 | TaskHookFunction_t pxTaskTag; |
fep | 0:5ff20db10a96 | 327 | #endif |
fep | 0:5ff20db10a96 | 328 | |
fep | 0:5ff20db10a96 | 329 | #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) |
fep | 0:5ff20db10a96 | 330 | void *pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ]; |
fep | 0:5ff20db10a96 | 331 | #endif |
fep | 0:5ff20db10a96 | 332 | |
fep | 0:5ff20db10a96 | 333 | #if( configGENERATE_RUN_TIME_STATS == 1 ) |
fep | 0:5ff20db10a96 | 334 | uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */ |
fep | 0:5ff20db10a96 | 335 | #endif |
fep | 0:5ff20db10a96 | 336 | |
fep | 0:5ff20db10a96 | 337 | #if ( configUSE_NEWLIB_REENTRANT == 1 ) |
fep | 0:5ff20db10a96 | 338 | /* Allocate a Newlib reent structure that is specific to this task. |
fep | 0:5ff20db10a96 | 339 | Note Newlib support has been included by popular demand, but is not |
fep | 0:5ff20db10a96 | 340 | used by the FreeRTOS maintainers themselves. FreeRTOS is not |
fep | 0:5ff20db10a96 | 341 | responsible for resulting newlib operation. User must be familiar with |
fep | 0:5ff20db10a96 | 342 | newlib and must provide system-wide implementations of the necessary |
fep | 0:5ff20db10a96 | 343 | stubs. Be warned that (at the time of writing) the current newlib design |
fep | 0:5ff20db10a96 | 344 | implements a system-wide malloc() that must be provided with locks. */ |
fep | 0:5ff20db10a96 | 345 | struct _reent xNewLib_reent; |
fep | 0:5ff20db10a96 | 346 | #endif |
fep | 0:5ff20db10a96 | 347 | |
fep | 0:5ff20db10a96 | 348 | #if( configUSE_TASK_NOTIFICATIONS == 1 ) |
fep | 0:5ff20db10a96 | 349 | volatile uint32_t ulNotifiedValue; |
fep | 0:5ff20db10a96 | 350 | volatile uint8_t ucNotifyState; |
fep | 0:5ff20db10a96 | 351 | #endif |
fep | 0:5ff20db10a96 | 352 | |
fep | 0:5ff20db10a96 | 353 | /* See the comments above the definition of |
fep | 0:5ff20db10a96 | 354 | tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */ |
fep | 0:5ff20db10a96 | 355 | #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) |
fep | 0:5ff20db10a96 | 356 | uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */ |
fep | 0:5ff20db10a96 | 357 | #endif |
fep | 0:5ff20db10a96 | 358 | |
fep | 0:5ff20db10a96 | 359 | #if( INCLUDE_xTaskAbortDelay == 1 ) |
fep | 0:5ff20db10a96 | 360 | uint8_t ucDelayAborted; |
fep | 0:5ff20db10a96 | 361 | #endif |
fep | 0:5ff20db10a96 | 362 | |
fep | 0:5ff20db10a96 | 363 | } tskTCB; |
fep | 0:5ff20db10a96 | 364 | |
fep | 0:5ff20db10a96 | 365 | /* The old tskTCB name is maintained above then typedefed to the new TCB_t name |
fep | 0:5ff20db10a96 | 366 | below to enable the use of older kernel aware debuggers. */ |
fep | 0:5ff20db10a96 | 367 | typedef tskTCB TCB_t; |
fep | 0:5ff20db10a96 | 368 | |
fep | 0:5ff20db10a96 | 369 | /*lint -e956 A manual analysis and inspection has been used to determine which |
fep | 0:5ff20db10a96 | 370 | static variables must be declared volatile. */ |
fep | 0:5ff20db10a96 | 371 | |
fep | 0:5ff20db10a96 | 372 | PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL; |
fep | 0:5ff20db10a96 | 373 | |
fep | 0:5ff20db10a96 | 374 | /* Lists for ready and blocked tasks. --------------------*/ |
fep | 0:5ff20db10a96 | 375 | PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */ |
fep | 0:5ff20db10a96 | 376 | PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */ |
fep | 0:5ff20db10a96 | 377 | PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */ |
fep | 0:5ff20db10a96 | 378 | PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */ |
fep | 0:5ff20db10a96 | 379 | PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */ |
fep | 0:5ff20db10a96 | 380 | PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */ |
fep | 0:5ff20db10a96 | 381 | |
fep | 0:5ff20db10a96 | 382 | #if( INCLUDE_vTaskDelete == 1 ) |
fep | 0:5ff20db10a96 | 383 | |
fep | 0:5ff20db10a96 | 384 | PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */ |
fep | 0:5ff20db10a96 | 385 | PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U; |
fep | 0:5ff20db10a96 | 386 | |
fep | 0:5ff20db10a96 | 387 | #endif |
fep | 0:5ff20db10a96 | 388 | |
fep | 0:5ff20db10a96 | 389 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 390 | |
fep | 0:5ff20db10a96 | 391 | PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */ |
fep | 0:5ff20db10a96 | 392 | |
fep | 0:5ff20db10a96 | 393 | #endif |
fep | 0:5ff20db10a96 | 394 | |
fep | 0:5ff20db10a96 | 395 | /* Other file private variables. --------------------------------*/ |
fep | 0:5ff20db10a96 | 396 | PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U; |
fep | 0:5ff20db10a96 | 397 | PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) 0U; |
fep | 0:5ff20db10a96 | 398 | PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY; |
fep | 0:5ff20db10a96 | 399 | PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE; |
fep | 0:5ff20db10a96 | 400 | PRIVILEGED_DATA static volatile UBaseType_t uxPendedTicks = ( UBaseType_t ) 0U; |
fep | 0:5ff20db10a96 | 401 | PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE; |
fep | 0:5ff20db10a96 | 402 | PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0; |
fep | 0:5ff20db10a96 | 403 | PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U; |
fep | 0:5ff20db10a96 | 404 | PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */ |
fep | 0:5ff20db10a96 | 405 | PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */ |
fep | 0:5ff20db10a96 | 406 | |
fep | 0:5ff20db10a96 | 407 | /* Context switches are held pending while the scheduler is suspended. Also, |
fep | 0:5ff20db10a96 | 408 | interrupts must not manipulate the xStateListItem of a TCB, or any of the |
fep | 0:5ff20db10a96 | 409 | lists the xStateListItem can be referenced from, if the scheduler is suspended. |
fep | 0:5ff20db10a96 | 410 | If an interrupt needs to unblock a task while the scheduler is suspended then it |
fep | 0:5ff20db10a96 | 411 | moves the task's event list item into the xPendingReadyList, ready for the |
fep | 0:5ff20db10a96 | 412 | kernel to move the task from the pending ready list into the real ready list |
fep | 0:5ff20db10a96 | 413 | when the scheduler is unsuspended. The pending ready list itself can only be |
fep | 0:5ff20db10a96 | 414 | accessed from a critical section. */ |
fep | 0:5ff20db10a96 | 415 | PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE; |
fep | 0:5ff20db10a96 | 416 | |
fep | 0:5ff20db10a96 | 417 | #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
fep | 0:5ff20db10a96 | 418 | |
fep | 0:5ff20db10a96 | 419 | PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */ |
fep | 0:5ff20db10a96 | 420 | PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */ |
fep | 0:5ff20db10a96 | 421 | |
fep | 0:5ff20db10a96 | 422 | #endif |
fep | 0:5ff20db10a96 | 423 | |
fep | 0:5ff20db10a96 | 424 | /*lint +e956 */ |
fep | 0:5ff20db10a96 | 425 | |
fep | 0:5ff20db10a96 | 426 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 427 | |
fep | 0:5ff20db10a96 | 428 | /* Callback function prototypes. --------------------------*/ |
fep | 0:5ff20db10a96 | 429 | #if( configCHECK_FOR_STACK_OVERFLOW > 0 ) |
fep | 0:5ff20db10a96 | 430 | extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName ); |
fep | 0:5ff20db10a96 | 431 | #endif |
fep | 0:5ff20db10a96 | 432 | |
fep | 0:5ff20db10a96 | 433 | #if( configUSE_TICK_HOOK > 0 ) |
fep | 0:5ff20db10a96 | 434 | extern void vApplicationTickHook( void ); |
fep | 0:5ff20db10a96 | 435 | #endif |
fep | 0:5ff20db10a96 | 436 | |
fep | 0:5ff20db10a96 | 437 | #if( configSUPPORT_STATIC_ALLOCATION == 1 ) |
fep | 0:5ff20db10a96 | 438 | extern void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); |
fep | 0:5ff20db10a96 | 439 | #endif |
fep | 0:5ff20db10a96 | 440 | |
fep | 0:5ff20db10a96 | 441 | /* File private functions. --------------------------------*/ |
fep | 0:5ff20db10a96 | 442 | |
fep | 0:5ff20db10a96 | 443 | /** |
fep | 0:5ff20db10a96 | 444 | * Utility task that simply returns pdTRUE if the task referenced by xTask is |
fep | 0:5ff20db10a96 | 445 | * currently in the Suspended state, or pdFALSE if the task referenced by xTask |
fep | 0:5ff20db10a96 | 446 | * is in any other state. |
fep | 0:5ff20db10a96 | 447 | */ |
fep | 0:5ff20db10a96 | 448 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 449 | static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 450 | #endif /* INCLUDE_vTaskSuspend */ |
fep | 0:5ff20db10a96 | 451 | |
fep | 0:5ff20db10a96 | 452 | /* |
fep | 0:5ff20db10a96 | 453 | * Utility to ready all the lists used by the scheduler. This is called |
fep | 0:5ff20db10a96 | 454 | * automatically upon the creation of the first task. |
fep | 0:5ff20db10a96 | 455 | */ |
fep | 0:5ff20db10a96 | 456 | static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 457 | |
fep | 0:5ff20db10a96 | 458 | /* |
fep | 0:5ff20db10a96 | 459 | * The idle task, which as all tasks is implemented as a never ending loop. |
fep | 0:5ff20db10a96 | 460 | * The idle task is automatically created and added to the ready lists upon |
fep | 0:5ff20db10a96 | 461 | * creation of the first user task. |
fep | 0:5ff20db10a96 | 462 | * |
fep | 0:5ff20db10a96 | 463 | * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific |
fep | 0:5ff20db10a96 | 464 | * language extensions. The equivalent prototype for this function is: |
fep | 0:5ff20db10a96 | 465 | * |
fep | 0:5ff20db10a96 | 466 | * void prvIdleTask( void *pvParameters ); |
fep | 0:5ff20db10a96 | 467 | * |
fep | 0:5ff20db10a96 | 468 | */ |
fep | 0:5ff20db10a96 | 469 | static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ); |
fep | 0:5ff20db10a96 | 470 | |
fep | 0:5ff20db10a96 | 471 | /* |
fep | 0:5ff20db10a96 | 472 | * Utility to free all memory allocated by the scheduler to hold a TCB, |
fep | 0:5ff20db10a96 | 473 | * including the stack pointed to by the TCB. |
fep | 0:5ff20db10a96 | 474 | * |
fep | 0:5ff20db10a96 | 475 | * This does not free memory allocated by the task itself (i.e. memory |
fep | 0:5ff20db10a96 | 476 | * allocated by calls to pvPortMalloc from within the tasks application code). |
fep | 0:5ff20db10a96 | 477 | */ |
fep | 0:5ff20db10a96 | 478 | #if ( INCLUDE_vTaskDelete == 1 ) |
fep | 0:5ff20db10a96 | 479 | |
fep | 0:5ff20db10a96 | 480 | static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 481 | |
fep | 0:5ff20db10a96 | 482 | #endif |
fep | 0:5ff20db10a96 | 483 | |
fep | 0:5ff20db10a96 | 484 | /* |
fep | 0:5ff20db10a96 | 485 | * Used only by the idle task. This checks to see if anything has been placed |
fep | 0:5ff20db10a96 | 486 | * in the list of tasks waiting to be deleted. If so the task is cleaned up |
fep | 0:5ff20db10a96 | 487 | * and its TCB deleted. |
fep | 0:5ff20db10a96 | 488 | */ |
fep | 0:5ff20db10a96 | 489 | static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 490 | |
fep | 0:5ff20db10a96 | 491 | /* |
fep | 0:5ff20db10a96 | 492 | * The currently executing task is entering the Blocked state. Add the task to |
fep | 0:5ff20db10a96 | 493 | * either the current or the overflow delayed task list. |
fep | 0:5ff20db10a96 | 494 | */ |
fep | 0:5ff20db10a96 | 495 | static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 496 | |
fep | 0:5ff20db10a96 | 497 | /* |
fep | 0:5ff20db10a96 | 498 | * Fills an TaskStatus_t structure with information on each task that is |
fep | 0:5ff20db10a96 | 499 | * referenced from the pxList list (which may be a ready list, a delayed list, |
fep | 0:5ff20db10a96 | 500 | * a suspended list, etc.). |
fep | 0:5ff20db10a96 | 501 | * |
fep | 0:5ff20db10a96 | 502 | * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM |
fep | 0:5ff20db10a96 | 503 | * NORMAL APPLICATION CODE. |
fep | 0:5ff20db10a96 | 504 | */ |
fep | 0:5ff20db10a96 | 505 | #if ( configUSE_TRACE_FACILITY == 1 ) |
fep | 0:5ff20db10a96 | 506 | |
fep | 0:5ff20db10a96 | 507 | static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 508 | |
fep | 0:5ff20db10a96 | 509 | #endif |
fep | 0:5ff20db10a96 | 510 | |
fep | 0:5ff20db10a96 | 511 | /* |
fep | 0:5ff20db10a96 | 512 | * Searches pxList for a task with name pcNameToQuery - returning a handle to |
fep | 0:5ff20db10a96 | 513 | * the task if it is found, or NULL if the task is not found. |
fep | 0:5ff20db10a96 | 514 | */ |
fep | 0:5ff20db10a96 | 515 | #if ( INCLUDE_xTaskGetHandle == 1 ) |
fep | 0:5ff20db10a96 | 516 | |
fep | 0:5ff20db10a96 | 517 | static TCB_t *prvSearchForNameWithinSingleList( List_t *pxList, const char pcNameToQuery[] ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 518 | |
fep | 0:5ff20db10a96 | 519 | #endif |
fep | 0:5ff20db10a96 | 520 | |
fep | 0:5ff20db10a96 | 521 | /* |
fep | 0:5ff20db10a96 | 522 | * When a task is created, the stack of the task is filled with a known value. |
fep | 0:5ff20db10a96 | 523 | * This function determines the 'high water mark' of the task stack by |
fep | 0:5ff20db10a96 | 524 | * determining how much of the stack remains at the original preset value. |
fep | 0:5ff20db10a96 | 525 | */ |
fep | 0:5ff20db10a96 | 526 | #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) |
fep | 0:5ff20db10a96 | 527 | |
fep | 0:5ff20db10a96 | 528 | static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 529 | |
fep | 0:5ff20db10a96 | 530 | #endif |
fep | 0:5ff20db10a96 | 531 | |
fep | 0:5ff20db10a96 | 532 | /* |
fep | 0:5ff20db10a96 | 533 | * Return the amount of time, in ticks, that will pass before the kernel will |
fep | 0:5ff20db10a96 | 534 | * next move a task from the Blocked state to the Running state. |
fep | 0:5ff20db10a96 | 535 | * |
fep | 0:5ff20db10a96 | 536 | * This conditional compilation should use inequality to 0, not equality to 1. |
fep | 0:5ff20db10a96 | 537 | * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user |
fep | 0:5ff20db10a96 | 538 | * defined low power mode implementations require configUSE_TICKLESS_IDLE to be |
fep | 0:5ff20db10a96 | 539 | * set to a value other than 1. |
fep | 0:5ff20db10a96 | 540 | */ |
fep | 0:5ff20db10a96 | 541 | #if ( configUSE_TICKLESS_IDLE != 0 ) |
fep | 0:5ff20db10a96 | 542 | |
fep | 0:5ff20db10a96 | 543 | static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 544 | |
fep | 0:5ff20db10a96 | 545 | #endif |
fep | 0:5ff20db10a96 | 546 | |
fep | 0:5ff20db10a96 | 547 | /* |
fep | 0:5ff20db10a96 | 548 | * Set xNextTaskUnblockTime to the time at which the next Blocked state task |
fep | 0:5ff20db10a96 | 549 | * will exit the Blocked state. |
fep | 0:5ff20db10a96 | 550 | */ |
fep | 0:5ff20db10a96 | 551 | static void prvResetNextTaskUnblockTime( void ); |
fep | 0:5ff20db10a96 | 552 | |
fep | 0:5ff20db10a96 | 553 | #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) |
fep | 0:5ff20db10a96 | 554 | |
fep | 0:5ff20db10a96 | 555 | /* |
fep | 0:5ff20db10a96 | 556 | * Helper function used to pad task names with spaces when printing out |
fep | 0:5ff20db10a96 | 557 | * human readable tables of task information. |
fep | 0:5ff20db10a96 | 558 | */ |
fep | 0:5ff20db10a96 | 559 | static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 560 | |
fep | 0:5ff20db10a96 | 561 | #endif |
fep | 0:5ff20db10a96 | 562 | |
fep | 0:5ff20db10a96 | 563 | /* |
fep | 0:5ff20db10a96 | 564 | * Called after a Task_t structure has been allocated either statically or |
fep | 0:5ff20db10a96 | 565 | * dynamically to fill in the structure's members. |
fep | 0:5ff20db10a96 | 566 | */ |
fep | 0:5ff20db10a96 | 567 | static void prvInitialiseNewTask( TaskFunction_t pxTaskCode, |
fep | 0:5ff20db10a96 | 568 | const char * const pcName, |
fep | 0:5ff20db10a96 | 569 | const uint32_t ulStackDepth, |
fep | 0:5ff20db10a96 | 570 | void * const pvParameters, |
fep | 0:5ff20db10a96 | 571 | UBaseType_t uxPriority, |
fep | 0:5ff20db10a96 | 572 | TaskHandle_t * const pxCreatedTask, |
fep | 0:5ff20db10a96 | 573 | TCB_t *pxNewTCB, |
fep | 0:5ff20db10a96 | 574 | const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
fep | 0:5ff20db10a96 | 575 | |
fep | 0:5ff20db10a96 | 576 | /* |
fep | 0:5ff20db10a96 | 577 | * Called after a new task has been created and initialised to place the task |
fep | 0:5ff20db10a96 | 578 | * under the control of the scheduler. |
fep | 0:5ff20db10a96 | 579 | */ |
fep | 0:5ff20db10a96 | 580 | static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB ) PRIVILEGED_FUNCTION; |
fep | 0:5ff20db10a96 | 581 | |
fep | 0:5ff20db10a96 | 582 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 583 | |
fep | 0:5ff20db10a96 | 584 | #if( configSUPPORT_STATIC_ALLOCATION == 1 ) |
fep | 0:5ff20db10a96 | 585 | |
fep | 0:5ff20db10a96 | 586 | TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode, |
fep | 0:5ff20db10a96 | 587 | const char * const pcName, |
fep | 0:5ff20db10a96 | 588 | const uint32_t ulStackDepth, |
fep | 0:5ff20db10a96 | 589 | void * const pvParameters, |
fep | 0:5ff20db10a96 | 590 | UBaseType_t uxPriority, |
fep | 0:5ff20db10a96 | 591 | StackType_t * const puxStackBuffer, |
fep | 0:5ff20db10a96 | 592 | StaticTask_t * const pxTaskBuffer ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
fep | 0:5ff20db10a96 | 593 | { |
fep | 0:5ff20db10a96 | 594 | TCB_t *pxNewTCB; |
fep | 0:5ff20db10a96 | 595 | TaskHandle_t xReturn; |
fep | 0:5ff20db10a96 | 596 | |
fep | 0:5ff20db10a96 | 597 | configASSERT( puxStackBuffer != NULL ); |
fep | 0:5ff20db10a96 | 598 | configASSERT( pxTaskBuffer != NULL ); |
fep | 0:5ff20db10a96 | 599 | |
fep | 0:5ff20db10a96 | 600 | if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) ) |
fep | 0:5ff20db10a96 | 601 | { |
fep | 0:5ff20db10a96 | 602 | /* The memory used for the task's TCB and stack are passed into this |
fep | 0:5ff20db10a96 | 603 | function - use them. */ |
fep | 0:5ff20db10a96 | 604 | pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */ |
fep | 0:5ff20db10a96 | 605 | pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer; |
fep | 0:5ff20db10a96 | 606 | |
fep | 0:5ff20db10a96 | 607 | #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) |
fep | 0:5ff20db10a96 | 608 | { |
fep | 0:5ff20db10a96 | 609 | /* Tasks can be created statically or dynamically, so note this |
fep | 0:5ff20db10a96 | 610 | task was created statically in case the task is later deleted. */ |
fep | 0:5ff20db10a96 | 611 | pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB; |
fep | 0:5ff20db10a96 | 612 | } |
fep | 0:5ff20db10a96 | 613 | #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ |
fep | 0:5ff20db10a96 | 614 | |
fep | 0:5ff20db10a96 | 615 | prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL ); |
fep | 0:5ff20db10a96 | 616 | prvAddNewTaskToReadyList( pxNewTCB ); |
fep | 0:5ff20db10a96 | 617 | } |
fep | 0:5ff20db10a96 | 618 | else |
fep | 0:5ff20db10a96 | 619 | { |
fep | 0:5ff20db10a96 | 620 | xReturn = NULL; |
fep | 0:5ff20db10a96 | 621 | } |
fep | 0:5ff20db10a96 | 622 | |
fep | 0:5ff20db10a96 | 623 | return xReturn; |
fep | 0:5ff20db10a96 | 624 | } |
fep | 0:5ff20db10a96 | 625 | |
fep | 0:5ff20db10a96 | 626 | #endif /* SUPPORT_STATIC_ALLOCATION */ |
fep | 0:5ff20db10a96 | 627 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 628 | |
fep | 0:5ff20db10a96 | 629 | #if( portUSING_MPU_WRAPPERS == 1 ) |
fep | 0:5ff20db10a96 | 630 | |
fep | 0:5ff20db10a96 | 631 | BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask ) |
fep | 0:5ff20db10a96 | 632 | { |
fep | 0:5ff20db10a96 | 633 | TCB_t *pxNewTCB; |
fep | 0:5ff20db10a96 | 634 | BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; |
fep | 0:5ff20db10a96 | 635 | |
fep | 0:5ff20db10a96 | 636 | configASSERT( pxTaskDefinition->puxStackBuffer ); |
fep | 0:5ff20db10a96 | 637 | |
fep | 0:5ff20db10a96 | 638 | if( pxTaskDefinition->puxStackBuffer != NULL ) |
fep | 0:5ff20db10a96 | 639 | { |
fep | 0:5ff20db10a96 | 640 | /* Allocate space for the TCB. Where the memory comes from depends |
fep | 0:5ff20db10a96 | 641 | on the implementation of the port malloc function and whether or |
fep | 0:5ff20db10a96 | 642 | not static allocation is being used. */ |
fep | 0:5ff20db10a96 | 643 | pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); |
fep | 0:5ff20db10a96 | 644 | |
fep | 0:5ff20db10a96 | 645 | if( pxNewTCB != NULL ) |
fep | 0:5ff20db10a96 | 646 | { |
fep | 0:5ff20db10a96 | 647 | /* Store the stack location in the TCB. */ |
fep | 0:5ff20db10a96 | 648 | pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer; |
fep | 0:5ff20db10a96 | 649 | |
fep | 0:5ff20db10a96 | 650 | /* Tasks can be created statically or dynamically, so note |
fep | 0:5ff20db10a96 | 651 | this task had a statically allocated stack in case it is |
fep | 0:5ff20db10a96 | 652 | later deleted. The TCB was allocated dynamically. */ |
fep | 0:5ff20db10a96 | 653 | pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY; |
fep | 0:5ff20db10a96 | 654 | |
fep | 0:5ff20db10a96 | 655 | prvInitialiseNewTask( pxTaskDefinition->pvTaskCode, |
fep | 0:5ff20db10a96 | 656 | pxTaskDefinition->pcName, |
fep | 0:5ff20db10a96 | 657 | ( uint32_t ) pxTaskDefinition->usStackDepth, |
fep | 0:5ff20db10a96 | 658 | pxTaskDefinition->pvParameters, |
fep | 0:5ff20db10a96 | 659 | pxTaskDefinition->uxPriority, |
fep | 0:5ff20db10a96 | 660 | pxCreatedTask, pxNewTCB, |
fep | 0:5ff20db10a96 | 661 | pxTaskDefinition->xRegions ); |
fep | 0:5ff20db10a96 | 662 | |
fep | 0:5ff20db10a96 | 663 | prvAddNewTaskToReadyList( pxNewTCB ); |
fep | 0:5ff20db10a96 | 664 | xReturn = pdPASS; |
fep | 0:5ff20db10a96 | 665 | } |
fep | 0:5ff20db10a96 | 666 | } |
fep | 0:5ff20db10a96 | 667 | |
fep | 0:5ff20db10a96 | 668 | return xReturn; |
fep | 0:5ff20db10a96 | 669 | } |
fep | 0:5ff20db10a96 | 670 | |
fep | 0:5ff20db10a96 | 671 | #endif /* portUSING_MPU_WRAPPERS */ |
fep | 0:5ff20db10a96 | 672 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 673 | |
fep | 0:5ff20db10a96 | 674 | #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) |
fep | 0:5ff20db10a96 | 675 | |
fep | 0:5ff20db10a96 | 676 | BaseType_t xTaskCreate( TaskFunction_t pxTaskCode, |
fep | 0:5ff20db10a96 | 677 | const char * const pcName, |
fep | 0:5ff20db10a96 | 678 | const uint16_t usStackDepth, |
fep | 0:5ff20db10a96 | 679 | void * const pvParameters, |
fep | 0:5ff20db10a96 | 680 | UBaseType_t uxPriority, |
fep | 0:5ff20db10a96 | 681 | TaskHandle_t * const pxCreatedTask ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
fep | 0:5ff20db10a96 | 682 | { |
fep | 0:5ff20db10a96 | 683 | TCB_t *pxNewTCB; |
fep | 0:5ff20db10a96 | 684 | BaseType_t xReturn; |
fep | 0:5ff20db10a96 | 685 | |
fep | 0:5ff20db10a96 | 686 | /* If the stack grows down then allocate the stack then the TCB so the stack |
fep | 0:5ff20db10a96 | 687 | does not grow into the TCB. Likewise if the stack grows up then allocate |
fep | 0:5ff20db10a96 | 688 | the TCB then the stack. */ |
fep | 0:5ff20db10a96 | 689 | #if( portSTACK_GROWTH > 0 ) |
fep | 0:5ff20db10a96 | 690 | { |
fep | 0:5ff20db10a96 | 691 | /* Allocate space for the TCB. Where the memory comes from depends on |
fep | 0:5ff20db10a96 | 692 | the implementation of the port malloc function and whether or not static |
fep | 0:5ff20db10a96 | 693 | allocation is being used. */ |
fep | 0:5ff20db10a96 | 694 | pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); |
fep | 0:5ff20db10a96 | 695 | |
fep | 0:5ff20db10a96 | 696 | if( pxNewTCB != NULL ) |
fep | 0:5ff20db10a96 | 697 | { |
fep | 0:5ff20db10a96 | 698 | /* Allocate space for the stack used by the task being created. |
fep | 0:5ff20db10a96 | 699 | The base of the stack memory stored in the TCB so the task can |
fep | 0:5ff20db10a96 | 700 | be deleted later if required. */ |
fep | 0:5ff20db10a96 | 701 | pxNewTCB->pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
fep | 0:5ff20db10a96 | 702 | |
fep | 0:5ff20db10a96 | 703 | if( pxNewTCB->pxStack == NULL ) |
fep | 0:5ff20db10a96 | 704 | { |
fep | 0:5ff20db10a96 | 705 | /* Could not allocate the stack. Delete the allocated TCB. */ |
fep | 0:5ff20db10a96 | 706 | vPortFree( pxNewTCB ); |
fep | 0:5ff20db10a96 | 707 | pxNewTCB = NULL; |
fep | 0:5ff20db10a96 | 708 | } |
fep | 0:5ff20db10a96 | 709 | } |
fep | 0:5ff20db10a96 | 710 | } |
fep | 0:5ff20db10a96 | 711 | #else /* portSTACK_GROWTH */ |
fep | 0:5ff20db10a96 | 712 | { |
fep | 0:5ff20db10a96 | 713 | StackType_t *pxStack; |
fep | 0:5ff20db10a96 | 714 | |
fep | 0:5ff20db10a96 | 715 | /* Allocate space for the stack used by the task being created. */ |
fep | 0:5ff20db10a96 | 716 | pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
fep | 0:5ff20db10a96 | 717 | |
fep | 0:5ff20db10a96 | 718 | if( pxStack != NULL ) |
fep | 0:5ff20db10a96 | 719 | { |
fep | 0:5ff20db10a96 | 720 | /* Allocate space for the TCB. */ |
fep | 0:5ff20db10a96 | 721 | pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e961 MISRA exception as the casts are only redundant for some paths. */ |
fep | 0:5ff20db10a96 | 722 | |
fep | 0:5ff20db10a96 | 723 | if( pxNewTCB != NULL ) |
fep | 0:5ff20db10a96 | 724 | { |
fep | 0:5ff20db10a96 | 725 | /* Store the stack location in the TCB. */ |
fep | 0:5ff20db10a96 | 726 | pxNewTCB->pxStack = pxStack; |
fep | 0:5ff20db10a96 | 727 | } |
fep | 0:5ff20db10a96 | 728 | else |
fep | 0:5ff20db10a96 | 729 | { |
fep | 0:5ff20db10a96 | 730 | /* The stack cannot be used as the TCB was not created. Free |
fep | 0:5ff20db10a96 | 731 | it again. */ |
fep | 0:5ff20db10a96 | 732 | vPortFree( pxStack ); |
fep | 0:5ff20db10a96 | 733 | } |
fep | 0:5ff20db10a96 | 734 | } |
fep | 0:5ff20db10a96 | 735 | else |
fep | 0:5ff20db10a96 | 736 | { |
fep | 0:5ff20db10a96 | 737 | pxNewTCB = NULL; |
fep | 0:5ff20db10a96 | 738 | } |
fep | 0:5ff20db10a96 | 739 | } |
fep | 0:5ff20db10a96 | 740 | #endif /* portSTACK_GROWTH */ |
fep | 0:5ff20db10a96 | 741 | |
fep | 0:5ff20db10a96 | 742 | if( pxNewTCB != NULL ) |
fep | 0:5ff20db10a96 | 743 | { |
fep | 0:5ff20db10a96 | 744 | #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) |
fep | 0:5ff20db10a96 | 745 | { |
fep | 0:5ff20db10a96 | 746 | /* Tasks can be created statically or dynamically, so note this |
fep | 0:5ff20db10a96 | 747 | task was created dynamically in case it is later deleted. */ |
fep | 0:5ff20db10a96 | 748 | pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB; |
fep | 0:5ff20db10a96 | 749 | } |
fep | 0:5ff20db10a96 | 750 | #endif /* configSUPPORT_STATIC_ALLOCATION */ |
fep | 0:5ff20db10a96 | 751 | |
fep | 0:5ff20db10a96 | 752 | prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL ); |
fep | 0:5ff20db10a96 | 753 | prvAddNewTaskToReadyList( pxNewTCB ); |
fep | 0:5ff20db10a96 | 754 | xReturn = pdPASS; |
fep | 0:5ff20db10a96 | 755 | } |
fep | 0:5ff20db10a96 | 756 | else |
fep | 0:5ff20db10a96 | 757 | { |
fep | 0:5ff20db10a96 | 758 | xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; |
fep | 0:5ff20db10a96 | 759 | } |
fep | 0:5ff20db10a96 | 760 | |
fep | 0:5ff20db10a96 | 761 | return xReturn; |
fep | 0:5ff20db10a96 | 762 | } |
fep | 0:5ff20db10a96 | 763 | |
fep | 0:5ff20db10a96 | 764 | #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ |
fep | 0:5ff20db10a96 | 765 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 766 | |
fep | 0:5ff20db10a96 | 767 | static void prvInitialiseNewTask( TaskFunction_t pxTaskCode, |
fep | 0:5ff20db10a96 | 768 | const char * const pcName, |
fep | 0:5ff20db10a96 | 769 | const uint32_t ulStackDepth, |
fep | 0:5ff20db10a96 | 770 | void * const pvParameters, |
fep | 0:5ff20db10a96 | 771 | UBaseType_t uxPriority, |
fep | 0:5ff20db10a96 | 772 | TaskHandle_t * const pxCreatedTask, |
fep | 0:5ff20db10a96 | 773 | TCB_t *pxNewTCB, |
fep | 0:5ff20db10a96 | 774 | const MemoryRegion_t * const xRegions ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
fep | 0:5ff20db10a96 | 775 | { |
fep | 0:5ff20db10a96 | 776 | StackType_t *pxTopOfStack; |
fep | 0:5ff20db10a96 | 777 | UBaseType_t x; |
fep | 0:5ff20db10a96 | 778 | |
fep | 0:5ff20db10a96 | 779 | #if( portUSING_MPU_WRAPPERS == 1 ) |
fep | 0:5ff20db10a96 | 780 | /* Should the task be created in privileged mode? */ |
fep | 0:5ff20db10a96 | 781 | BaseType_t xRunPrivileged; |
fep | 0:5ff20db10a96 | 782 | if( ( uxPriority & portPRIVILEGE_BIT ) != 0U ) |
fep | 0:5ff20db10a96 | 783 | { |
fep | 0:5ff20db10a96 | 784 | xRunPrivileged = pdTRUE; |
fep | 0:5ff20db10a96 | 785 | } |
fep | 0:5ff20db10a96 | 786 | else |
fep | 0:5ff20db10a96 | 787 | { |
fep | 0:5ff20db10a96 | 788 | xRunPrivileged = pdFALSE; |
fep | 0:5ff20db10a96 | 789 | } |
fep | 0:5ff20db10a96 | 790 | uxPriority &= ~portPRIVILEGE_BIT; |
fep | 0:5ff20db10a96 | 791 | #endif /* portUSING_MPU_WRAPPERS == 1 */ |
fep | 0:5ff20db10a96 | 792 | |
fep | 0:5ff20db10a96 | 793 | /* Avoid dependency on memset() if it is not required. */ |
fep | 0:5ff20db10a96 | 794 | #if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) |
fep | 0:5ff20db10a96 | 795 | { |
fep | 0:5ff20db10a96 | 796 | /* Fill the stack with a known value to assist debugging. */ |
fep | 0:5ff20db10a96 | 797 | ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) ); |
fep | 0:5ff20db10a96 | 798 | } |
fep | 0:5ff20db10a96 | 799 | #endif /* ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) ) */ |
fep | 0:5ff20db10a96 | 800 | |
fep | 0:5ff20db10a96 | 801 | /* Calculate the top of stack address. This depends on whether the stack |
fep | 0:5ff20db10a96 | 802 | grows from high memory to low (as per the 80x86) or vice versa. |
fep | 0:5ff20db10a96 | 803 | portSTACK_GROWTH is used to make the result positive or negative as required |
fep | 0:5ff20db10a96 | 804 | by the port. */ |
fep | 0:5ff20db10a96 | 805 | #if( portSTACK_GROWTH < 0 ) |
fep | 0:5ff20db10a96 | 806 | { |
fep | 0:5ff20db10a96 | 807 | pxTopOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 ); |
fep | 0:5ff20db10a96 | 808 | pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. */ |
fep | 0:5ff20db10a96 | 809 | |
fep | 0:5ff20db10a96 | 810 | /* Check the alignment of the calculated top of stack is correct. */ |
fep | 0:5ff20db10a96 | 811 | configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); |
fep | 0:5ff20db10a96 | 812 | } |
fep | 0:5ff20db10a96 | 813 | #else /* portSTACK_GROWTH */ |
fep | 0:5ff20db10a96 | 814 | { |
fep | 0:5ff20db10a96 | 815 | pxTopOfStack = pxNewTCB->pxStack; |
fep | 0:5ff20db10a96 | 816 | |
fep | 0:5ff20db10a96 | 817 | /* Check the alignment of the stack buffer is correct. */ |
fep | 0:5ff20db10a96 | 818 | configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); |
fep | 0:5ff20db10a96 | 819 | |
fep | 0:5ff20db10a96 | 820 | /* The other extreme of the stack space is required if stack checking is |
fep | 0:5ff20db10a96 | 821 | performed. */ |
fep | 0:5ff20db10a96 | 822 | pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 ); |
fep | 0:5ff20db10a96 | 823 | } |
fep | 0:5ff20db10a96 | 824 | #endif /* portSTACK_GROWTH */ |
fep | 0:5ff20db10a96 | 825 | |
fep | 0:5ff20db10a96 | 826 | /* Store the task name in the TCB. */ |
fep | 0:5ff20db10a96 | 827 | for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) |
fep | 0:5ff20db10a96 | 828 | { |
fep | 0:5ff20db10a96 | 829 | pxNewTCB->pcTaskName[ x ] = pcName[ x ]; |
fep | 0:5ff20db10a96 | 830 | |
fep | 0:5ff20db10a96 | 831 | /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than |
fep | 0:5ff20db10a96 | 832 | configMAX_TASK_NAME_LEN characters just in case the memory after the |
fep | 0:5ff20db10a96 | 833 | string is not accessible (extremely unlikely). */ |
fep | 0:5ff20db10a96 | 834 | if( pcName[ x ] == 0x00 ) |
fep | 0:5ff20db10a96 | 835 | { |
fep | 0:5ff20db10a96 | 836 | break; |
fep | 0:5ff20db10a96 | 837 | } |
fep | 0:5ff20db10a96 | 838 | else |
fep | 0:5ff20db10a96 | 839 | { |
fep | 0:5ff20db10a96 | 840 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 841 | } |
fep | 0:5ff20db10a96 | 842 | } |
fep | 0:5ff20db10a96 | 843 | |
fep | 0:5ff20db10a96 | 844 | /* Ensure the name string is terminated in the case that the string length |
fep | 0:5ff20db10a96 | 845 | was greater or equal to configMAX_TASK_NAME_LEN. */ |
fep | 0:5ff20db10a96 | 846 | pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0'; |
fep | 0:5ff20db10a96 | 847 | |
fep | 0:5ff20db10a96 | 848 | /* This is used as an array index so must ensure it's not too large. First |
fep | 0:5ff20db10a96 | 849 | remove the privilege bit if one is present. */ |
fep | 0:5ff20db10a96 | 850 | if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) |
fep | 0:5ff20db10a96 | 851 | { |
fep | 0:5ff20db10a96 | 852 | uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; |
fep | 0:5ff20db10a96 | 853 | } |
fep | 0:5ff20db10a96 | 854 | else |
fep | 0:5ff20db10a96 | 855 | { |
fep | 0:5ff20db10a96 | 856 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 857 | } |
fep | 0:5ff20db10a96 | 858 | |
fep | 0:5ff20db10a96 | 859 | pxNewTCB->uxPriority = uxPriority; |
fep | 0:5ff20db10a96 | 860 | #if ( configUSE_MUTEXES == 1 ) |
fep | 0:5ff20db10a96 | 861 | { |
fep | 0:5ff20db10a96 | 862 | pxNewTCB->uxBasePriority = uxPriority; |
fep | 0:5ff20db10a96 | 863 | pxNewTCB->uxMutexesHeld = 0; |
fep | 0:5ff20db10a96 | 864 | } |
fep | 0:5ff20db10a96 | 865 | #endif /* configUSE_MUTEXES */ |
fep | 0:5ff20db10a96 | 866 | |
fep | 0:5ff20db10a96 | 867 | vListInitialiseItem( &( pxNewTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 868 | vListInitialiseItem( &( pxNewTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 869 | |
fep | 0:5ff20db10a96 | 870 | /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get |
fep | 0:5ff20db10a96 | 871 | back to the containing TCB from a generic item in a list. */ |
fep | 0:5ff20db10a96 | 872 | listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB ); |
fep | 0:5ff20db10a96 | 873 | |
fep | 0:5ff20db10a96 | 874 | /* Event lists are always in priority order. */ |
fep | 0:5ff20db10a96 | 875 | listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
fep | 0:5ff20db10a96 | 876 | listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB ); |
fep | 0:5ff20db10a96 | 877 | |
fep | 0:5ff20db10a96 | 878 | #if ( portCRITICAL_NESTING_IN_TCB == 1 ) |
fep | 0:5ff20db10a96 | 879 | { |
fep | 0:5ff20db10a96 | 880 | pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U; |
fep | 0:5ff20db10a96 | 881 | } |
fep | 0:5ff20db10a96 | 882 | #endif /* portCRITICAL_NESTING_IN_TCB */ |
fep | 0:5ff20db10a96 | 883 | |
fep | 0:5ff20db10a96 | 884 | #if ( configUSE_APPLICATION_TASK_TAG == 1 ) |
fep | 0:5ff20db10a96 | 885 | { |
fep | 0:5ff20db10a96 | 886 | pxNewTCB->pxTaskTag = NULL; |
fep | 0:5ff20db10a96 | 887 | } |
fep | 0:5ff20db10a96 | 888 | #endif /* configUSE_APPLICATION_TASK_TAG */ |
fep | 0:5ff20db10a96 | 889 | |
fep | 0:5ff20db10a96 | 890 | #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
fep | 0:5ff20db10a96 | 891 | { |
fep | 0:5ff20db10a96 | 892 | pxNewTCB->ulRunTimeCounter = 0UL; |
fep | 0:5ff20db10a96 | 893 | } |
fep | 0:5ff20db10a96 | 894 | #endif /* configGENERATE_RUN_TIME_STATS */ |
fep | 0:5ff20db10a96 | 895 | |
fep | 0:5ff20db10a96 | 896 | #if ( portUSING_MPU_WRAPPERS == 1 ) |
fep | 0:5ff20db10a96 | 897 | { |
fep | 0:5ff20db10a96 | 898 | vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth ); |
fep | 0:5ff20db10a96 | 899 | } |
fep | 0:5ff20db10a96 | 900 | #else |
fep | 0:5ff20db10a96 | 901 | { |
fep | 0:5ff20db10a96 | 902 | /* Avoid compiler warning about unreferenced parameter. */ |
fep | 0:5ff20db10a96 | 903 | ( void ) xRegions; |
fep | 0:5ff20db10a96 | 904 | } |
fep | 0:5ff20db10a96 | 905 | #endif |
fep | 0:5ff20db10a96 | 906 | |
fep | 0:5ff20db10a96 | 907 | #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) |
fep | 0:5ff20db10a96 | 908 | { |
fep | 0:5ff20db10a96 | 909 | for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ ) |
fep | 0:5ff20db10a96 | 910 | { |
fep | 0:5ff20db10a96 | 911 | pxNewTCB->pvThreadLocalStoragePointers[ x ] = NULL; |
fep | 0:5ff20db10a96 | 912 | } |
fep | 0:5ff20db10a96 | 913 | } |
fep | 0:5ff20db10a96 | 914 | #endif |
fep | 0:5ff20db10a96 | 915 | |
fep | 0:5ff20db10a96 | 916 | #if ( configUSE_TASK_NOTIFICATIONS == 1 ) |
fep | 0:5ff20db10a96 | 917 | { |
fep | 0:5ff20db10a96 | 918 | pxNewTCB->ulNotifiedValue = 0; |
fep | 0:5ff20db10a96 | 919 | pxNewTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION; |
fep | 0:5ff20db10a96 | 920 | } |
fep | 0:5ff20db10a96 | 921 | #endif |
fep | 0:5ff20db10a96 | 922 | |
fep | 0:5ff20db10a96 | 923 | #if ( configUSE_NEWLIB_REENTRANT == 1 ) |
fep | 0:5ff20db10a96 | 924 | { |
fep | 0:5ff20db10a96 | 925 | /* Initialise this task's Newlib reent structure. */ |
fep | 0:5ff20db10a96 | 926 | _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) ); |
fep | 0:5ff20db10a96 | 927 | } |
fep | 0:5ff20db10a96 | 928 | #endif |
fep | 0:5ff20db10a96 | 929 | |
fep | 0:5ff20db10a96 | 930 | #if( INCLUDE_xTaskAbortDelay == 1 ) |
fep | 0:5ff20db10a96 | 931 | { |
fep | 0:5ff20db10a96 | 932 | pxNewTCB->ucDelayAborted = pdFALSE; |
fep | 0:5ff20db10a96 | 933 | } |
fep | 0:5ff20db10a96 | 934 | #endif |
fep | 0:5ff20db10a96 | 935 | |
fep | 0:5ff20db10a96 | 936 | /* Initialize the TCB stack to look as if the task was already running, |
fep | 0:5ff20db10a96 | 937 | but had been interrupted by the scheduler. The return address is set |
fep | 0:5ff20db10a96 | 938 | to the start of the task function. Once the stack has been initialised |
fep | 0:5ff20db10a96 | 939 | the top of stack variable is updated. */ |
fep | 0:5ff20db10a96 | 940 | #if( portUSING_MPU_WRAPPERS == 1 ) |
fep | 0:5ff20db10a96 | 941 | { |
fep | 0:5ff20db10a96 | 942 | pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged ); |
fep | 0:5ff20db10a96 | 943 | } |
fep | 0:5ff20db10a96 | 944 | #else /* portUSING_MPU_WRAPPERS */ |
fep | 0:5ff20db10a96 | 945 | { |
fep | 0:5ff20db10a96 | 946 | pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters ); |
fep | 0:5ff20db10a96 | 947 | } |
fep | 0:5ff20db10a96 | 948 | #endif /* portUSING_MPU_WRAPPERS */ |
fep | 0:5ff20db10a96 | 949 | |
fep | 0:5ff20db10a96 | 950 | if( ( void * ) pxCreatedTask != NULL ) |
fep | 0:5ff20db10a96 | 951 | { |
fep | 0:5ff20db10a96 | 952 | /* Pass the handle out in an anonymous way. The handle can be used to |
fep | 0:5ff20db10a96 | 953 | change the created task's priority, delete the created task, etc.*/ |
fep | 0:5ff20db10a96 | 954 | *pxCreatedTask = ( TaskHandle_t ) pxNewTCB; |
fep | 0:5ff20db10a96 | 955 | } |
fep | 0:5ff20db10a96 | 956 | else |
fep | 0:5ff20db10a96 | 957 | { |
fep | 0:5ff20db10a96 | 958 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 959 | } |
fep | 0:5ff20db10a96 | 960 | } |
fep | 0:5ff20db10a96 | 961 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 962 | |
fep | 0:5ff20db10a96 | 963 | static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB ) |
fep | 0:5ff20db10a96 | 964 | { |
fep | 0:5ff20db10a96 | 965 | /* Ensure interrupts don't access the task lists while the lists are being |
fep | 0:5ff20db10a96 | 966 | updated. */ |
fep | 0:5ff20db10a96 | 967 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 968 | { |
fep | 0:5ff20db10a96 | 969 | uxCurrentNumberOfTasks++; |
fep | 0:5ff20db10a96 | 970 | if( pxCurrentTCB == NULL ) |
fep | 0:5ff20db10a96 | 971 | { |
fep | 0:5ff20db10a96 | 972 | /* There are no other tasks, or all the other tasks are in |
fep | 0:5ff20db10a96 | 973 | the suspended state - make this the current task. */ |
fep | 0:5ff20db10a96 | 974 | pxCurrentTCB = pxNewTCB; |
fep | 0:5ff20db10a96 | 975 | |
fep | 0:5ff20db10a96 | 976 | if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 ) |
fep | 0:5ff20db10a96 | 977 | { |
fep | 0:5ff20db10a96 | 978 | /* This is the first task to be created so do the preliminary |
fep | 0:5ff20db10a96 | 979 | initialisation required. We will not recover if this call |
fep | 0:5ff20db10a96 | 980 | fails, but we will report the failure. */ |
fep | 0:5ff20db10a96 | 981 | prvInitialiseTaskLists(); |
fep | 0:5ff20db10a96 | 982 | } |
fep | 0:5ff20db10a96 | 983 | else |
fep | 0:5ff20db10a96 | 984 | { |
fep | 0:5ff20db10a96 | 985 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 986 | } |
fep | 0:5ff20db10a96 | 987 | } |
fep | 0:5ff20db10a96 | 988 | else |
fep | 0:5ff20db10a96 | 989 | { |
fep | 0:5ff20db10a96 | 990 | /* If the scheduler is not already running, make this task the |
fep | 0:5ff20db10a96 | 991 | current task if it is the highest priority task to be created |
fep | 0:5ff20db10a96 | 992 | so far. */ |
fep | 0:5ff20db10a96 | 993 | if( xSchedulerRunning == pdFALSE ) |
fep | 0:5ff20db10a96 | 994 | { |
fep | 0:5ff20db10a96 | 995 | if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 996 | { |
fep | 0:5ff20db10a96 | 997 | pxCurrentTCB = pxNewTCB; |
fep | 0:5ff20db10a96 | 998 | } |
fep | 0:5ff20db10a96 | 999 | else |
fep | 0:5ff20db10a96 | 1000 | { |
fep | 0:5ff20db10a96 | 1001 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1002 | } |
fep | 0:5ff20db10a96 | 1003 | } |
fep | 0:5ff20db10a96 | 1004 | else |
fep | 0:5ff20db10a96 | 1005 | { |
fep | 0:5ff20db10a96 | 1006 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1007 | } |
fep | 0:5ff20db10a96 | 1008 | } |
fep | 0:5ff20db10a96 | 1009 | |
fep | 0:5ff20db10a96 | 1010 | uxTaskNumber++; |
fep | 0:5ff20db10a96 | 1011 | |
fep | 0:5ff20db10a96 | 1012 | #if ( configUSE_TRACE_FACILITY == 1 ) |
fep | 0:5ff20db10a96 | 1013 | { |
fep | 0:5ff20db10a96 | 1014 | /* Add a counter into the TCB for tracing only. */ |
fep | 0:5ff20db10a96 | 1015 | pxNewTCB->uxTCBNumber = uxTaskNumber; |
fep | 0:5ff20db10a96 | 1016 | } |
fep | 0:5ff20db10a96 | 1017 | #endif /* configUSE_TRACE_FACILITY */ |
fep | 0:5ff20db10a96 | 1018 | traceTASK_CREATE( pxNewTCB ); |
fep | 0:5ff20db10a96 | 1019 | |
fep | 0:5ff20db10a96 | 1020 | prvAddTaskToReadyList( pxNewTCB ); |
fep | 0:5ff20db10a96 | 1021 | |
fep | 0:5ff20db10a96 | 1022 | portSETUP_TCB( pxNewTCB ); |
fep | 0:5ff20db10a96 | 1023 | } |
fep | 0:5ff20db10a96 | 1024 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 1025 | |
fep | 0:5ff20db10a96 | 1026 | if( xSchedulerRunning != pdFALSE ) |
fep | 0:5ff20db10a96 | 1027 | { |
fep | 0:5ff20db10a96 | 1028 | /* If the created task is of a higher priority than the current task |
fep | 0:5ff20db10a96 | 1029 | then it should run now. */ |
fep | 0:5ff20db10a96 | 1030 | if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 1031 | { |
fep | 0:5ff20db10a96 | 1032 | taskYIELD_IF_USING_PREEMPTION(); |
fep | 0:5ff20db10a96 | 1033 | } |
fep | 0:5ff20db10a96 | 1034 | else |
fep | 0:5ff20db10a96 | 1035 | { |
fep | 0:5ff20db10a96 | 1036 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1037 | } |
fep | 0:5ff20db10a96 | 1038 | } |
fep | 0:5ff20db10a96 | 1039 | else |
fep | 0:5ff20db10a96 | 1040 | { |
fep | 0:5ff20db10a96 | 1041 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1042 | } |
fep | 0:5ff20db10a96 | 1043 | } |
fep | 0:5ff20db10a96 | 1044 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1045 | |
fep | 0:5ff20db10a96 | 1046 | #if ( INCLUDE_vTaskDelete == 1 ) |
fep | 0:5ff20db10a96 | 1047 | |
fep | 0:5ff20db10a96 | 1048 | void vTaskDelete( TaskHandle_t xTaskToDelete ) |
fep | 0:5ff20db10a96 | 1049 | { |
fep | 0:5ff20db10a96 | 1050 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 1051 | |
fep | 0:5ff20db10a96 | 1052 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 1053 | { |
fep | 0:5ff20db10a96 | 1054 | /* If null is passed in here then it is the calling task that is |
fep | 0:5ff20db10a96 | 1055 | being deleted. */ |
fep | 0:5ff20db10a96 | 1056 | pxTCB = prvGetTCBFromHandle( xTaskToDelete ); |
fep | 0:5ff20db10a96 | 1057 | |
fep | 0:5ff20db10a96 | 1058 | /* Remove task from the ready list. */ |
fep | 0:5ff20db10a96 | 1059 | if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
fep | 0:5ff20db10a96 | 1060 | { |
fep | 0:5ff20db10a96 | 1061 | taskRESET_READY_PRIORITY( pxTCB->uxPriority ); |
fep | 0:5ff20db10a96 | 1062 | } |
fep | 0:5ff20db10a96 | 1063 | else |
fep | 0:5ff20db10a96 | 1064 | { |
fep | 0:5ff20db10a96 | 1065 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1066 | } |
fep | 0:5ff20db10a96 | 1067 | |
fep | 0:5ff20db10a96 | 1068 | /* Is the task waiting on an event also? */ |
fep | 0:5ff20db10a96 | 1069 | if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) |
fep | 0:5ff20db10a96 | 1070 | { |
fep | 0:5ff20db10a96 | 1071 | ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 1072 | } |
fep | 0:5ff20db10a96 | 1073 | else |
fep | 0:5ff20db10a96 | 1074 | { |
fep | 0:5ff20db10a96 | 1075 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1076 | } |
fep | 0:5ff20db10a96 | 1077 | |
fep | 0:5ff20db10a96 | 1078 | /* Increment the uxTaskNumber also so kernel aware debuggers can |
fep | 0:5ff20db10a96 | 1079 | detect that the task lists need re-generating. This is done before |
fep | 0:5ff20db10a96 | 1080 | portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will |
fep | 0:5ff20db10a96 | 1081 | not return. */ |
fep | 0:5ff20db10a96 | 1082 | uxTaskNumber++; |
fep | 0:5ff20db10a96 | 1083 | |
fep | 0:5ff20db10a96 | 1084 | if( pxTCB == pxCurrentTCB ) |
fep | 0:5ff20db10a96 | 1085 | { |
fep | 0:5ff20db10a96 | 1086 | /* A task is deleting itself. This cannot complete within the |
fep | 0:5ff20db10a96 | 1087 | task itself, as a context switch to another task is required. |
fep | 0:5ff20db10a96 | 1088 | Place the task in the termination list. The idle task will |
fep | 0:5ff20db10a96 | 1089 | check the termination list and free up any memory allocated by |
fep | 0:5ff20db10a96 | 1090 | the scheduler for the TCB and stack of the deleted task. */ |
fep | 0:5ff20db10a96 | 1091 | vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 1092 | |
fep | 0:5ff20db10a96 | 1093 | /* Increment the ucTasksDeleted variable so the idle task knows |
fep | 0:5ff20db10a96 | 1094 | there is a task that has been deleted and that it should therefore |
fep | 0:5ff20db10a96 | 1095 | check the xTasksWaitingTermination list. */ |
fep | 0:5ff20db10a96 | 1096 | ++uxDeletedTasksWaitingCleanUp; |
fep | 0:5ff20db10a96 | 1097 | |
fep | 0:5ff20db10a96 | 1098 | /* The pre-delete hook is primarily for the Windows simulator, |
fep | 0:5ff20db10a96 | 1099 | in which Windows specific clean up operations are performed, |
fep | 0:5ff20db10a96 | 1100 | after which it is not possible to yield away from this task - |
fep | 0:5ff20db10a96 | 1101 | hence xYieldPending is used to latch that a context switch is |
fep | 0:5ff20db10a96 | 1102 | required. */ |
fep | 0:5ff20db10a96 | 1103 | portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending ); |
fep | 0:5ff20db10a96 | 1104 | } |
fep | 0:5ff20db10a96 | 1105 | else |
fep | 0:5ff20db10a96 | 1106 | { |
fep | 0:5ff20db10a96 | 1107 | --uxCurrentNumberOfTasks; |
fep | 0:5ff20db10a96 | 1108 | prvDeleteTCB( pxTCB ); |
fep | 0:5ff20db10a96 | 1109 | |
fep | 0:5ff20db10a96 | 1110 | /* Reset the next expected unblock time in case it referred to |
fep | 0:5ff20db10a96 | 1111 | the task that has just been deleted. */ |
fep | 0:5ff20db10a96 | 1112 | prvResetNextTaskUnblockTime(); |
fep | 0:5ff20db10a96 | 1113 | } |
fep | 0:5ff20db10a96 | 1114 | |
fep | 0:5ff20db10a96 | 1115 | traceTASK_DELETE( pxTCB ); |
fep | 0:5ff20db10a96 | 1116 | } |
fep | 0:5ff20db10a96 | 1117 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 1118 | |
fep | 0:5ff20db10a96 | 1119 | /* Force a reschedule if it is the currently running task that has just |
fep | 0:5ff20db10a96 | 1120 | been deleted. */ |
fep | 0:5ff20db10a96 | 1121 | if( xSchedulerRunning != pdFALSE ) |
fep | 0:5ff20db10a96 | 1122 | { |
fep | 0:5ff20db10a96 | 1123 | if( pxTCB == pxCurrentTCB ) |
fep | 0:5ff20db10a96 | 1124 | { |
fep | 0:5ff20db10a96 | 1125 | configASSERT( uxSchedulerSuspended == 0 ); |
fep | 0:5ff20db10a96 | 1126 | portYIELD_WITHIN_API(); |
fep | 0:5ff20db10a96 | 1127 | } |
fep | 0:5ff20db10a96 | 1128 | else |
fep | 0:5ff20db10a96 | 1129 | { |
fep | 0:5ff20db10a96 | 1130 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1131 | } |
fep | 0:5ff20db10a96 | 1132 | } |
fep | 0:5ff20db10a96 | 1133 | } |
fep | 0:5ff20db10a96 | 1134 | |
fep | 0:5ff20db10a96 | 1135 | #endif /* INCLUDE_vTaskDelete */ |
fep | 0:5ff20db10a96 | 1136 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1137 | |
fep | 0:5ff20db10a96 | 1138 | #if ( INCLUDE_vTaskDelayUntil == 1 ) |
fep | 0:5ff20db10a96 | 1139 | |
fep | 0:5ff20db10a96 | 1140 | void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement ) |
fep | 0:5ff20db10a96 | 1141 | { |
fep | 0:5ff20db10a96 | 1142 | TickType_t xTimeToWake; |
fep | 0:5ff20db10a96 | 1143 | BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE; |
fep | 0:5ff20db10a96 | 1144 | |
fep | 0:5ff20db10a96 | 1145 | configASSERT( pxPreviousWakeTime ); |
fep | 0:5ff20db10a96 | 1146 | configASSERT( ( xTimeIncrement > 0U ) ); |
fep | 0:5ff20db10a96 | 1147 | configASSERT( uxSchedulerSuspended == 0 ); |
fep | 0:5ff20db10a96 | 1148 | |
fep | 0:5ff20db10a96 | 1149 | vTaskSuspendAll(); |
fep | 0:5ff20db10a96 | 1150 | { |
fep | 0:5ff20db10a96 | 1151 | /* Minor optimisation. The tick count cannot change in this |
fep | 0:5ff20db10a96 | 1152 | block. */ |
fep | 0:5ff20db10a96 | 1153 | const TickType_t xConstTickCount = xTickCount; |
fep | 0:5ff20db10a96 | 1154 | |
fep | 0:5ff20db10a96 | 1155 | /* Generate the tick time at which the task wants to wake. */ |
fep | 0:5ff20db10a96 | 1156 | xTimeToWake = *pxPreviousWakeTime + xTimeIncrement; |
fep | 0:5ff20db10a96 | 1157 | |
fep | 0:5ff20db10a96 | 1158 | if( xConstTickCount < *pxPreviousWakeTime ) |
fep | 0:5ff20db10a96 | 1159 | { |
fep | 0:5ff20db10a96 | 1160 | /* The tick count has overflowed since this function was |
fep | 0:5ff20db10a96 | 1161 | lasted called. In this case the only time we should ever |
fep | 0:5ff20db10a96 | 1162 | actually delay is if the wake time has also overflowed, |
fep | 0:5ff20db10a96 | 1163 | and the wake time is greater than the tick time. When this |
fep | 0:5ff20db10a96 | 1164 | is the case it is as if neither time had overflowed. */ |
fep | 0:5ff20db10a96 | 1165 | if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) ) |
fep | 0:5ff20db10a96 | 1166 | { |
fep | 0:5ff20db10a96 | 1167 | xShouldDelay = pdTRUE; |
fep | 0:5ff20db10a96 | 1168 | } |
fep | 0:5ff20db10a96 | 1169 | else |
fep | 0:5ff20db10a96 | 1170 | { |
fep | 0:5ff20db10a96 | 1171 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1172 | } |
fep | 0:5ff20db10a96 | 1173 | } |
fep | 0:5ff20db10a96 | 1174 | else |
fep | 0:5ff20db10a96 | 1175 | { |
fep | 0:5ff20db10a96 | 1176 | /* The tick time has not overflowed. In this case we will |
fep | 0:5ff20db10a96 | 1177 | delay if either the wake time has overflowed, and/or the |
fep | 0:5ff20db10a96 | 1178 | tick time is less than the wake time. */ |
fep | 0:5ff20db10a96 | 1179 | if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) ) |
fep | 0:5ff20db10a96 | 1180 | { |
fep | 0:5ff20db10a96 | 1181 | xShouldDelay = pdTRUE; |
fep | 0:5ff20db10a96 | 1182 | } |
fep | 0:5ff20db10a96 | 1183 | else |
fep | 0:5ff20db10a96 | 1184 | { |
fep | 0:5ff20db10a96 | 1185 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1186 | } |
fep | 0:5ff20db10a96 | 1187 | } |
fep | 0:5ff20db10a96 | 1188 | |
fep | 0:5ff20db10a96 | 1189 | /* Update the wake time ready for the next call. */ |
fep | 0:5ff20db10a96 | 1190 | *pxPreviousWakeTime = xTimeToWake; |
fep | 0:5ff20db10a96 | 1191 | |
fep | 0:5ff20db10a96 | 1192 | if( xShouldDelay != pdFALSE ) |
fep | 0:5ff20db10a96 | 1193 | { |
fep | 0:5ff20db10a96 | 1194 | traceTASK_DELAY_UNTIL( xTimeToWake ); |
fep | 0:5ff20db10a96 | 1195 | |
fep | 0:5ff20db10a96 | 1196 | /* prvAddCurrentTaskToDelayedList() needs the block time, not |
fep | 0:5ff20db10a96 | 1197 | the time to wake, so subtract the current tick count. */ |
fep | 0:5ff20db10a96 | 1198 | prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE ); |
fep | 0:5ff20db10a96 | 1199 | } |
fep | 0:5ff20db10a96 | 1200 | else |
fep | 0:5ff20db10a96 | 1201 | { |
fep | 0:5ff20db10a96 | 1202 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1203 | } |
fep | 0:5ff20db10a96 | 1204 | } |
fep | 0:5ff20db10a96 | 1205 | xAlreadyYielded = xTaskResumeAll(); |
fep | 0:5ff20db10a96 | 1206 | |
fep | 0:5ff20db10a96 | 1207 | /* Force a reschedule if xTaskResumeAll has not already done so, we may |
fep | 0:5ff20db10a96 | 1208 | have put ourselves to sleep. */ |
fep | 0:5ff20db10a96 | 1209 | if( xAlreadyYielded == pdFALSE ) |
fep | 0:5ff20db10a96 | 1210 | { |
fep | 0:5ff20db10a96 | 1211 | portYIELD_WITHIN_API(); |
fep | 0:5ff20db10a96 | 1212 | } |
fep | 0:5ff20db10a96 | 1213 | else |
fep | 0:5ff20db10a96 | 1214 | { |
fep | 0:5ff20db10a96 | 1215 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1216 | } |
fep | 0:5ff20db10a96 | 1217 | } |
fep | 0:5ff20db10a96 | 1218 | |
fep | 0:5ff20db10a96 | 1219 | #endif /* INCLUDE_vTaskDelayUntil */ |
fep | 0:5ff20db10a96 | 1220 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1221 | |
fep | 0:5ff20db10a96 | 1222 | #if ( INCLUDE_vTaskDelay == 1 ) |
fep | 0:5ff20db10a96 | 1223 | |
fep | 0:5ff20db10a96 | 1224 | void vTaskDelay( const TickType_t xTicksToDelay ) |
fep | 0:5ff20db10a96 | 1225 | { |
fep | 0:5ff20db10a96 | 1226 | BaseType_t xAlreadyYielded = pdFALSE; |
fep | 0:5ff20db10a96 | 1227 | |
fep | 0:5ff20db10a96 | 1228 | /* A delay time of zero just forces a reschedule. */ |
fep | 0:5ff20db10a96 | 1229 | if( xTicksToDelay > ( TickType_t ) 0U ) |
fep | 0:5ff20db10a96 | 1230 | { |
fep | 0:5ff20db10a96 | 1231 | configASSERT( uxSchedulerSuspended == 0 ); |
fep | 0:5ff20db10a96 | 1232 | vTaskSuspendAll(); |
fep | 0:5ff20db10a96 | 1233 | { |
fep | 0:5ff20db10a96 | 1234 | traceTASK_DELAY(); |
fep | 0:5ff20db10a96 | 1235 | |
fep | 0:5ff20db10a96 | 1236 | /* A task that is removed from the event list while the |
fep | 0:5ff20db10a96 | 1237 | scheduler is suspended will not get placed in the ready |
fep | 0:5ff20db10a96 | 1238 | list or removed from the blocked list until the scheduler |
fep | 0:5ff20db10a96 | 1239 | is resumed. |
fep | 0:5ff20db10a96 | 1240 | |
fep | 0:5ff20db10a96 | 1241 | This task cannot be in an event list as it is the currently |
fep | 0:5ff20db10a96 | 1242 | executing task. */ |
fep | 0:5ff20db10a96 | 1243 | prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE ); |
fep | 0:5ff20db10a96 | 1244 | } |
fep | 0:5ff20db10a96 | 1245 | xAlreadyYielded = xTaskResumeAll(); |
fep | 0:5ff20db10a96 | 1246 | } |
fep | 0:5ff20db10a96 | 1247 | else |
fep | 0:5ff20db10a96 | 1248 | { |
fep | 0:5ff20db10a96 | 1249 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1250 | } |
fep | 0:5ff20db10a96 | 1251 | |
fep | 0:5ff20db10a96 | 1252 | /* Force a reschedule if xTaskResumeAll has not already done so, we may |
fep | 0:5ff20db10a96 | 1253 | have put ourselves to sleep. */ |
fep | 0:5ff20db10a96 | 1254 | if( xAlreadyYielded == pdFALSE ) |
fep | 0:5ff20db10a96 | 1255 | { |
fep | 0:5ff20db10a96 | 1256 | portYIELD_WITHIN_API(); |
fep | 0:5ff20db10a96 | 1257 | } |
fep | 0:5ff20db10a96 | 1258 | else |
fep | 0:5ff20db10a96 | 1259 | { |
fep | 0:5ff20db10a96 | 1260 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1261 | } |
fep | 0:5ff20db10a96 | 1262 | } |
fep | 0:5ff20db10a96 | 1263 | |
fep | 0:5ff20db10a96 | 1264 | #endif /* INCLUDE_vTaskDelay */ |
fep | 0:5ff20db10a96 | 1265 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1266 | |
fep | 0:5ff20db10a96 | 1267 | #if( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) ) |
fep | 0:5ff20db10a96 | 1268 | |
fep | 0:5ff20db10a96 | 1269 | eTaskState eTaskGetState( TaskHandle_t xTask ) |
fep | 0:5ff20db10a96 | 1270 | { |
fep | 0:5ff20db10a96 | 1271 | eTaskState eReturn; |
fep | 0:5ff20db10a96 | 1272 | List_t *pxStateList; |
fep | 0:5ff20db10a96 | 1273 | const TCB_t * const pxTCB = ( TCB_t * ) xTask; |
fep | 0:5ff20db10a96 | 1274 | |
fep | 0:5ff20db10a96 | 1275 | configASSERT( pxTCB ); |
fep | 0:5ff20db10a96 | 1276 | |
fep | 0:5ff20db10a96 | 1277 | if( pxTCB == pxCurrentTCB ) |
fep | 0:5ff20db10a96 | 1278 | { |
fep | 0:5ff20db10a96 | 1279 | /* The task calling this function is querying its own state. */ |
fep | 0:5ff20db10a96 | 1280 | eReturn = eRunning; |
fep | 0:5ff20db10a96 | 1281 | } |
fep | 0:5ff20db10a96 | 1282 | else |
fep | 0:5ff20db10a96 | 1283 | { |
fep | 0:5ff20db10a96 | 1284 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 1285 | { |
fep | 0:5ff20db10a96 | 1286 | pxStateList = ( List_t * ) listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 1287 | } |
fep | 0:5ff20db10a96 | 1288 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 1289 | |
fep | 0:5ff20db10a96 | 1290 | if( ( pxStateList == pxDelayedTaskList ) || ( pxStateList == pxOverflowDelayedTaskList ) ) |
fep | 0:5ff20db10a96 | 1291 | { |
fep | 0:5ff20db10a96 | 1292 | /* The task being queried is referenced from one of the Blocked |
fep | 0:5ff20db10a96 | 1293 | lists. */ |
fep | 0:5ff20db10a96 | 1294 | eReturn = eBlocked; |
fep | 0:5ff20db10a96 | 1295 | } |
fep | 0:5ff20db10a96 | 1296 | |
fep | 0:5ff20db10a96 | 1297 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 1298 | else if( pxStateList == &xSuspendedTaskList ) |
fep | 0:5ff20db10a96 | 1299 | { |
fep | 0:5ff20db10a96 | 1300 | /* The task being queried is referenced from the suspended |
fep | 0:5ff20db10a96 | 1301 | list. Is it genuinely suspended or is it block |
fep | 0:5ff20db10a96 | 1302 | indefinitely? */ |
fep | 0:5ff20db10a96 | 1303 | if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ) |
fep | 0:5ff20db10a96 | 1304 | { |
fep | 0:5ff20db10a96 | 1305 | eReturn = eSuspended; |
fep | 0:5ff20db10a96 | 1306 | } |
fep | 0:5ff20db10a96 | 1307 | else |
fep | 0:5ff20db10a96 | 1308 | { |
fep | 0:5ff20db10a96 | 1309 | eReturn = eBlocked; |
fep | 0:5ff20db10a96 | 1310 | } |
fep | 0:5ff20db10a96 | 1311 | } |
fep | 0:5ff20db10a96 | 1312 | #endif |
fep | 0:5ff20db10a96 | 1313 | |
fep | 0:5ff20db10a96 | 1314 | #if ( INCLUDE_vTaskDelete == 1 ) |
fep | 0:5ff20db10a96 | 1315 | else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) ) |
fep | 0:5ff20db10a96 | 1316 | { |
fep | 0:5ff20db10a96 | 1317 | /* The task being queried is referenced from the deleted |
fep | 0:5ff20db10a96 | 1318 | tasks list, or it is not referenced from any lists at |
fep | 0:5ff20db10a96 | 1319 | all. */ |
fep | 0:5ff20db10a96 | 1320 | eReturn = eDeleted; |
fep | 0:5ff20db10a96 | 1321 | } |
fep | 0:5ff20db10a96 | 1322 | #endif |
fep | 0:5ff20db10a96 | 1323 | |
fep | 0:5ff20db10a96 | 1324 | else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */ |
fep | 0:5ff20db10a96 | 1325 | { |
fep | 0:5ff20db10a96 | 1326 | /* If the task is not in any other state, it must be in the |
fep | 0:5ff20db10a96 | 1327 | Ready (including pending ready) state. */ |
fep | 0:5ff20db10a96 | 1328 | eReturn = eReady; |
fep | 0:5ff20db10a96 | 1329 | } |
fep | 0:5ff20db10a96 | 1330 | } |
fep | 0:5ff20db10a96 | 1331 | |
fep | 0:5ff20db10a96 | 1332 | return eReturn; |
fep | 0:5ff20db10a96 | 1333 | } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */ |
fep | 0:5ff20db10a96 | 1334 | |
fep | 0:5ff20db10a96 | 1335 | #endif /* INCLUDE_eTaskGetState */ |
fep | 0:5ff20db10a96 | 1336 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1337 | |
fep | 0:5ff20db10a96 | 1338 | #if ( INCLUDE_uxTaskPriorityGet == 1 ) |
fep | 0:5ff20db10a96 | 1339 | |
fep | 0:5ff20db10a96 | 1340 | UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask ) |
fep | 0:5ff20db10a96 | 1341 | { |
fep | 0:5ff20db10a96 | 1342 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 1343 | UBaseType_t uxReturn; |
fep | 0:5ff20db10a96 | 1344 | |
fep | 0:5ff20db10a96 | 1345 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 1346 | { |
fep | 0:5ff20db10a96 | 1347 | /* If null is passed in here then it is the priority of the that |
fep | 0:5ff20db10a96 | 1348 | called uxTaskPriorityGet() that is being queried. */ |
fep | 0:5ff20db10a96 | 1349 | pxTCB = prvGetTCBFromHandle( xTask ); |
fep | 0:5ff20db10a96 | 1350 | uxReturn = pxTCB->uxPriority; |
fep | 0:5ff20db10a96 | 1351 | } |
fep | 0:5ff20db10a96 | 1352 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 1353 | |
fep | 0:5ff20db10a96 | 1354 | return uxReturn; |
fep | 0:5ff20db10a96 | 1355 | } |
fep | 0:5ff20db10a96 | 1356 | |
fep | 0:5ff20db10a96 | 1357 | #endif /* INCLUDE_uxTaskPriorityGet */ |
fep | 0:5ff20db10a96 | 1358 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1359 | |
fep | 0:5ff20db10a96 | 1360 | #if ( INCLUDE_uxTaskPriorityGet == 1 ) |
fep | 0:5ff20db10a96 | 1361 | |
fep | 0:5ff20db10a96 | 1362 | UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask ) |
fep | 0:5ff20db10a96 | 1363 | { |
fep | 0:5ff20db10a96 | 1364 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 1365 | UBaseType_t uxReturn, uxSavedInterruptState; |
fep | 0:5ff20db10a96 | 1366 | |
fep | 0:5ff20db10a96 | 1367 | /* RTOS ports that support interrupt nesting have the concept of a |
fep | 0:5ff20db10a96 | 1368 | maximum system call (or maximum API call) interrupt priority. |
fep | 0:5ff20db10a96 | 1369 | Interrupts that are above the maximum system call priority are keep |
fep | 0:5ff20db10a96 | 1370 | permanently enabled, even when the RTOS kernel is in a critical section, |
fep | 0:5ff20db10a96 | 1371 | but cannot make any calls to FreeRTOS API functions. If configASSERT() |
fep | 0:5ff20db10a96 | 1372 | is defined in FreeRTOSConfig.h then |
fep | 0:5ff20db10a96 | 1373 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
fep | 0:5ff20db10a96 | 1374 | failure if a FreeRTOS API function is called from an interrupt that has |
fep | 0:5ff20db10a96 | 1375 | been assigned a priority above the configured maximum system call |
fep | 0:5ff20db10a96 | 1376 | priority. Only FreeRTOS functions that end in FromISR can be called |
fep | 0:5ff20db10a96 | 1377 | from interrupts that have been assigned a priority at or (logically) |
fep | 0:5ff20db10a96 | 1378 | below the maximum system call interrupt priority. FreeRTOS maintains a |
fep | 0:5ff20db10a96 | 1379 | separate interrupt safe API to ensure interrupt entry is as fast and as |
fep | 0:5ff20db10a96 | 1380 | simple as possible. More information (albeit Cortex-M specific) is |
fep | 0:5ff20db10a96 | 1381 | provided on the following link: |
fep | 0:5ff20db10a96 | 1382 | http://www.freertos.org/RTOS-Cortex-M3-M4.html */ |
fep | 0:5ff20db10a96 | 1383 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
fep | 0:5ff20db10a96 | 1384 | |
fep | 0:5ff20db10a96 | 1385 | uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR(); |
fep | 0:5ff20db10a96 | 1386 | { |
fep | 0:5ff20db10a96 | 1387 | /* If null is passed in here then it is the priority of the calling |
fep | 0:5ff20db10a96 | 1388 | task that is being queried. */ |
fep | 0:5ff20db10a96 | 1389 | pxTCB = prvGetTCBFromHandle( xTask ); |
fep | 0:5ff20db10a96 | 1390 | uxReturn = pxTCB->uxPriority; |
fep | 0:5ff20db10a96 | 1391 | } |
fep | 0:5ff20db10a96 | 1392 | portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState ); |
fep | 0:5ff20db10a96 | 1393 | |
fep | 0:5ff20db10a96 | 1394 | return uxReturn; |
fep | 0:5ff20db10a96 | 1395 | } |
fep | 0:5ff20db10a96 | 1396 | |
fep | 0:5ff20db10a96 | 1397 | #endif /* INCLUDE_uxTaskPriorityGet */ |
fep | 0:5ff20db10a96 | 1398 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1399 | |
fep | 0:5ff20db10a96 | 1400 | #if ( INCLUDE_vTaskPrioritySet == 1 ) |
fep | 0:5ff20db10a96 | 1401 | |
fep | 0:5ff20db10a96 | 1402 | void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority ) |
fep | 0:5ff20db10a96 | 1403 | { |
fep | 0:5ff20db10a96 | 1404 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 1405 | UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry; |
fep | 0:5ff20db10a96 | 1406 | BaseType_t xYieldRequired = pdFALSE; |
fep | 0:5ff20db10a96 | 1407 | |
fep | 0:5ff20db10a96 | 1408 | configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) ); |
fep | 0:5ff20db10a96 | 1409 | |
fep | 0:5ff20db10a96 | 1410 | /* Ensure the new priority is valid. */ |
fep | 0:5ff20db10a96 | 1411 | if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) |
fep | 0:5ff20db10a96 | 1412 | { |
fep | 0:5ff20db10a96 | 1413 | uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; |
fep | 0:5ff20db10a96 | 1414 | } |
fep | 0:5ff20db10a96 | 1415 | else |
fep | 0:5ff20db10a96 | 1416 | { |
fep | 0:5ff20db10a96 | 1417 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1418 | } |
fep | 0:5ff20db10a96 | 1419 | |
fep | 0:5ff20db10a96 | 1420 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 1421 | { |
fep | 0:5ff20db10a96 | 1422 | /* If null is passed in here then it is the priority of the calling |
fep | 0:5ff20db10a96 | 1423 | task that is being changed. */ |
fep | 0:5ff20db10a96 | 1424 | pxTCB = prvGetTCBFromHandle( xTask ); |
fep | 0:5ff20db10a96 | 1425 | |
fep | 0:5ff20db10a96 | 1426 | traceTASK_PRIORITY_SET( pxTCB, uxNewPriority ); |
fep | 0:5ff20db10a96 | 1427 | |
fep | 0:5ff20db10a96 | 1428 | #if ( configUSE_MUTEXES == 1 ) |
fep | 0:5ff20db10a96 | 1429 | { |
fep | 0:5ff20db10a96 | 1430 | uxCurrentBasePriority = pxTCB->uxBasePriority; |
fep | 0:5ff20db10a96 | 1431 | } |
fep | 0:5ff20db10a96 | 1432 | #else |
fep | 0:5ff20db10a96 | 1433 | { |
fep | 0:5ff20db10a96 | 1434 | uxCurrentBasePriority = pxTCB->uxPriority; |
fep | 0:5ff20db10a96 | 1435 | } |
fep | 0:5ff20db10a96 | 1436 | #endif |
fep | 0:5ff20db10a96 | 1437 | |
fep | 0:5ff20db10a96 | 1438 | if( uxCurrentBasePriority != uxNewPriority ) |
fep | 0:5ff20db10a96 | 1439 | { |
fep | 0:5ff20db10a96 | 1440 | /* The priority change may have readied a task of higher |
fep | 0:5ff20db10a96 | 1441 | priority than the calling task. */ |
fep | 0:5ff20db10a96 | 1442 | if( uxNewPriority > uxCurrentBasePriority ) |
fep | 0:5ff20db10a96 | 1443 | { |
fep | 0:5ff20db10a96 | 1444 | if( pxTCB != pxCurrentTCB ) |
fep | 0:5ff20db10a96 | 1445 | { |
fep | 0:5ff20db10a96 | 1446 | /* The priority of a task other than the currently |
fep | 0:5ff20db10a96 | 1447 | running task is being raised. Is the priority being |
fep | 0:5ff20db10a96 | 1448 | raised above that of the running task? */ |
fep | 0:5ff20db10a96 | 1449 | if( uxNewPriority >= pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 1450 | { |
fep | 0:5ff20db10a96 | 1451 | xYieldRequired = pdTRUE; |
fep | 0:5ff20db10a96 | 1452 | } |
fep | 0:5ff20db10a96 | 1453 | else |
fep | 0:5ff20db10a96 | 1454 | { |
fep | 0:5ff20db10a96 | 1455 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1456 | } |
fep | 0:5ff20db10a96 | 1457 | } |
fep | 0:5ff20db10a96 | 1458 | else |
fep | 0:5ff20db10a96 | 1459 | { |
fep | 0:5ff20db10a96 | 1460 | /* The priority of the running task is being raised, |
fep | 0:5ff20db10a96 | 1461 | but the running task must already be the highest |
fep | 0:5ff20db10a96 | 1462 | priority task able to run so no yield is required. */ |
fep | 0:5ff20db10a96 | 1463 | } |
fep | 0:5ff20db10a96 | 1464 | } |
fep | 0:5ff20db10a96 | 1465 | else if( pxTCB == pxCurrentTCB ) |
fep | 0:5ff20db10a96 | 1466 | { |
fep | 0:5ff20db10a96 | 1467 | /* Setting the priority of the running task down means |
fep | 0:5ff20db10a96 | 1468 | there may now be another task of higher priority that |
fep | 0:5ff20db10a96 | 1469 | is ready to execute. */ |
fep | 0:5ff20db10a96 | 1470 | xYieldRequired = pdTRUE; |
fep | 0:5ff20db10a96 | 1471 | } |
fep | 0:5ff20db10a96 | 1472 | else |
fep | 0:5ff20db10a96 | 1473 | { |
fep | 0:5ff20db10a96 | 1474 | /* Setting the priority of any other task down does not |
fep | 0:5ff20db10a96 | 1475 | require a yield as the running task must be above the |
fep | 0:5ff20db10a96 | 1476 | new priority of the task being modified. */ |
fep | 0:5ff20db10a96 | 1477 | } |
fep | 0:5ff20db10a96 | 1478 | |
fep | 0:5ff20db10a96 | 1479 | /* Remember the ready list the task might be referenced from |
fep | 0:5ff20db10a96 | 1480 | before its uxPriority member is changed so the |
fep | 0:5ff20db10a96 | 1481 | taskRESET_READY_PRIORITY() macro can function correctly. */ |
fep | 0:5ff20db10a96 | 1482 | uxPriorityUsedOnEntry = pxTCB->uxPriority; |
fep | 0:5ff20db10a96 | 1483 | |
fep | 0:5ff20db10a96 | 1484 | #if ( configUSE_MUTEXES == 1 ) |
fep | 0:5ff20db10a96 | 1485 | { |
fep | 0:5ff20db10a96 | 1486 | /* Only change the priority being used if the task is not |
fep | 0:5ff20db10a96 | 1487 | currently using an inherited priority. */ |
fep | 0:5ff20db10a96 | 1488 | if( pxTCB->uxBasePriority == pxTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 1489 | { |
fep | 0:5ff20db10a96 | 1490 | pxTCB->uxPriority = uxNewPriority; |
fep | 0:5ff20db10a96 | 1491 | } |
fep | 0:5ff20db10a96 | 1492 | else |
fep | 0:5ff20db10a96 | 1493 | { |
fep | 0:5ff20db10a96 | 1494 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1495 | } |
fep | 0:5ff20db10a96 | 1496 | |
fep | 0:5ff20db10a96 | 1497 | /* The base priority gets set whatever. */ |
fep | 0:5ff20db10a96 | 1498 | pxTCB->uxBasePriority = uxNewPriority; |
fep | 0:5ff20db10a96 | 1499 | } |
fep | 0:5ff20db10a96 | 1500 | #else |
fep | 0:5ff20db10a96 | 1501 | { |
fep | 0:5ff20db10a96 | 1502 | pxTCB->uxPriority = uxNewPriority; |
fep | 0:5ff20db10a96 | 1503 | } |
fep | 0:5ff20db10a96 | 1504 | #endif |
fep | 0:5ff20db10a96 | 1505 | |
fep | 0:5ff20db10a96 | 1506 | /* Only reset the event list item value if the value is not |
fep | 0:5ff20db10a96 | 1507 | being used for anything else. */ |
fep | 0:5ff20db10a96 | 1508 | if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) |
fep | 0:5ff20db10a96 | 1509 | { |
fep | 0:5ff20db10a96 | 1510 | listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
fep | 0:5ff20db10a96 | 1511 | } |
fep | 0:5ff20db10a96 | 1512 | else |
fep | 0:5ff20db10a96 | 1513 | { |
fep | 0:5ff20db10a96 | 1514 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1515 | } |
fep | 0:5ff20db10a96 | 1516 | |
fep | 0:5ff20db10a96 | 1517 | /* If the task is in the blocked or suspended list we need do |
fep | 0:5ff20db10a96 | 1518 | nothing more than change it's priority variable. However, if |
fep | 0:5ff20db10a96 | 1519 | the task is in a ready list it needs to be removed and placed |
fep | 0:5ff20db10a96 | 1520 | in the list appropriate to its new priority. */ |
fep | 0:5ff20db10a96 | 1521 | if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE ) |
fep | 0:5ff20db10a96 | 1522 | { |
fep | 0:5ff20db10a96 | 1523 | /* The task is currently in its ready list - remove before adding |
fep | 0:5ff20db10a96 | 1524 | it to it's new ready list. As we are in a critical section we |
fep | 0:5ff20db10a96 | 1525 | can do this even if the scheduler is suspended. */ |
fep | 0:5ff20db10a96 | 1526 | if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
fep | 0:5ff20db10a96 | 1527 | { |
fep | 0:5ff20db10a96 | 1528 | /* It is known that the task is in its ready list so |
fep | 0:5ff20db10a96 | 1529 | there is no need to check again and the port level |
fep | 0:5ff20db10a96 | 1530 | reset macro can be called directly. */ |
fep | 0:5ff20db10a96 | 1531 | portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority ); |
fep | 0:5ff20db10a96 | 1532 | } |
fep | 0:5ff20db10a96 | 1533 | else |
fep | 0:5ff20db10a96 | 1534 | { |
fep | 0:5ff20db10a96 | 1535 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1536 | } |
fep | 0:5ff20db10a96 | 1537 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 1538 | } |
fep | 0:5ff20db10a96 | 1539 | else |
fep | 0:5ff20db10a96 | 1540 | { |
fep | 0:5ff20db10a96 | 1541 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1542 | } |
fep | 0:5ff20db10a96 | 1543 | |
fep | 0:5ff20db10a96 | 1544 | if( xYieldRequired != pdFALSE ) |
fep | 0:5ff20db10a96 | 1545 | { |
fep | 0:5ff20db10a96 | 1546 | taskYIELD_IF_USING_PREEMPTION(); |
fep | 0:5ff20db10a96 | 1547 | } |
fep | 0:5ff20db10a96 | 1548 | else |
fep | 0:5ff20db10a96 | 1549 | { |
fep | 0:5ff20db10a96 | 1550 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1551 | } |
fep | 0:5ff20db10a96 | 1552 | |
fep | 0:5ff20db10a96 | 1553 | /* Remove compiler warning about unused variables when the port |
fep | 0:5ff20db10a96 | 1554 | optimised task selection is not being used. */ |
fep | 0:5ff20db10a96 | 1555 | ( void ) uxPriorityUsedOnEntry; |
fep | 0:5ff20db10a96 | 1556 | } |
fep | 0:5ff20db10a96 | 1557 | } |
fep | 0:5ff20db10a96 | 1558 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 1559 | } |
fep | 0:5ff20db10a96 | 1560 | |
fep | 0:5ff20db10a96 | 1561 | #endif /* INCLUDE_vTaskPrioritySet */ |
fep | 0:5ff20db10a96 | 1562 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1563 | |
fep | 0:5ff20db10a96 | 1564 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 1565 | |
fep | 0:5ff20db10a96 | 1566 | void vTaskSuspend( TaskHandle_t xTaskToSuspend ) |
fep | 0:5ff20db10a96 | 1567 | { |
fep | 0:5ff20db10a96 | 1568 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 1569 | |
fep | 0:5ff20db10a96 | 1570 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 1571 | { |
fep | 0:5ff20db10a96 | 1572 | /* If null is passed in here then it is the running task that is |
fep | 0:5ff20db10a96 | 1573 | being suspended. */ |
fep | 0:5ff20db10a96 | 1574 | pxTCB = prvGetTCBFromHandle( xTaskToSuspend ); |
fep | 0:5ff20db10a96 | 1575 | |
fep | 0:5ff20db10a96 | 1576 | traceTASK_SUSPEND( pxTCB ); |
fep | 0:5ff20db10a96 | 1577 | |
fep | 0:5ff20db10a96 | 1578 | /* Remove task from the ready/delayed list and place in the |
fep | 0:5ff20db10a96 | 1579 | suspended list. */ |
fep | 0:5ff20db10a96 | 1580 | if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
fep | 0:5ff20db10a96 | 1581 | { |
fep | 0:5ff20db10a96 | 1582 | taskRESET_READY_PRIORITY( pxTCB->uxPriority ); |
fep | 0:5ff20db10a96 | 1583 | } |
fep | 0:5ff20db10a96 | 1584 | else |
fep | 0:5ff20db10a96 | 1585 | { |
fep | 0:5ff20db10a96 | 1586 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1587 | } |
fep | 0:5ff20db10a96 | 1588 | |
fep | 0:5ff20db10a96 | 1589 | /* Is the task waiting on an event also? */ |
fep | 0:5ff20db10a96 | 1590 | if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) |
fep | 0:5ff20db10a96 | 1591 | { |
fep | 0:5ff20db10a96 | 1592 | ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 1593 | } |
fep | 0:5ff20db10a96 | 1594 | else |
fep | 0:5ff20db10a96 | 1595 | { |
fep | 0:5ff20db10a96 | 1596 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1597 | } |
fep | 0:5ff20db10a96 | 1598 | |
fep | 0:5ff20db10a96 | 1599 | vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 1600 | } |
fep | 0:5ff20db10a96 | 1601 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 1602 | |
fep | 0:5ff20db10a96 | 1603 | if( xSchedulerRunning != pdFALSE ) |
fep | 0:5ff20db10a96 | 1604 | { |
fep | 0:5ff20db10a96 | 1605 | /* Reset the next expected unblock time in case it referred to the |
fep | 0:5ff20db10a96 | 1606 | task that is now in the Suspended state. */ |
fep | 0:5ff20db10a96 | 1607 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 1608 | { |
fep | 0:5ff20db10a96 | 1609 | prvResetNextTaskUnblockTime(); |
fep | 0:5ff20db10a96 | 1610 | } |
fep | 0:5ff20db10a96 | 1611 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 1612 | } |
fep | 0:5ff20db10a96 | 1613 | else |
fep | 0:5ff20db10a96 | 1614 | { |
fep | 0:5ff20db10a96 | 1615 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1616 | } |
fep | 0:5ff20db10a96 | 1617 | |
fep | 0:5ff20db10a96 | 1618 | if( pxTCB == pxCurrentTCB ) |
fep | 0:5ff20db10a96 | 1619 | { |
fep | 0:5ff20db10a96 | 1620 | if( xSchedulerRunning != pdFALSE ) |
fep | 0:5ff20db10a96 | 1621 | { |
fep | 0:5ff20db10a96 | 1622 | /* The current task has just been suspended. */ |
fep | 0:5ff20db10a96 | 1623 | configASSERT( uxSchedulerSuspended == 0 ); |
fep | 0:5ff20db10a96 | 1624 | portYIELD_WITHIN_API(); |
fep | 0:5ff20db10a96 | 1625 | } |
fep | 0:5ff20db10a96 | 1626 | else |
fep | 0:5ff20db10a96 | 1627 | { |
fep | 0:5ff20db10a96 | 1628 | /* The scheduler is not running, but the task that was pointed |
fep | 0:5ff20db10a96 | 1629 | to by pxCurrentTCB has just been suspended and pxCurrentTCB |
fep | 0:5ff20db10a96 | 1630 | must be adjusted to point to a different task. */ |
fep | 0:5ff20db10a96 | 1631 | if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) |
fep | 0:5ff20db10a96 | 1632 | { |
fep | 0:5ff20db10a96 | 1633 | /* No other tasks are ready, so set pxCurrentTCB back to |
fep | 0:5ff20db10a96 | 1634 | NULL so when the next task is created pxCurrentTCB will |
fep | 0:5ff20db10a96 | 1635 | be set to point to it no matter what its relative priority |
fep | 0:5ff20db10a96 | 1636 | is. */ |
fep | 0:5ff20db10a96 | 1637 | pxCurrentTCB = NULL; |
fep | 0:5ff20db10a96 | 1638 | } |
fep | 0:5ff20db10a96 | 1639 | else |
fep | 0:5ff20db10a96 | 1640 | { |
fep | 0:5ff20db10a96 | 1641 | vTaskSwitchContext(); |
fep | 0:5ff20db10a96 | 1642 | } |
fep | 0:5ff20db10a96 | 1643 | } |
fep | 0:5ff20db10a96 | 1644 | } |
fep | 0:5ff20db10a96 | 1645 | else |
fep | 0:5ff20db10a96 | 1646 | { |
fep | 0:5ff20db10a96 | 1647 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1648 | } |
fep | 0:5ff20db10a96 | 1649 | } |
fep | 0:5ff20db10a96 | 1650 | |
fep | 0:5ff20db10a96 | 1651 | #endif /* INCLUDE_vTaskSuspend */ |
fep | 0:5ff20db10a96 | 1652 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1653 | |
fep | 0:5ff20db10a96 | 1654 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 1655 | |
fep | 0:5ff20db10a96 | 1656 | static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) |
fep | 0:5ff20db10a96 | 1657 | { |
fep | 0:5ff20db10a96 | 1658 | BaseType_t xReturn = pdFALSE; |
fep | 0:5ff20db10a96 | 1659 | const TCB_t * const pxTCB = ( TCB_t * ) xTask; |
fep | 0:5ff20db10a96 | 1660 | |
fep | 0:5ff20db10a96 | 1661 | /* Accesses xPendingReadyList so must be called from a critical |
fep | 0:5ff20db10a96 | 1662 | section. */ |
fep | 0:5ff20db10a96 | 1663 | |
fep | 0:5ff20db10a96 | 1664 | /* It does not make sense to check if the calling task is suspended. */ |
fep | 0:5ff20db10a96 | 1665 | configASSERT( xTask ); |
fep | 0:5ff20db10a96 | 1666 | |
fep | 0:5ff20db10a96 | 1667 | /* Is the task being resumed actually in the suspended list? */ |
fep | 0:5ff20db10a96 | 1668 | if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE ) |
fep | 0:5ff20db10a96 | 1669 | { |
fep | 0:5ff20db10a96 | 1670 | /* Has the task already been resumed from within an ISR? */ |
fep | 0:5ff20db10a96 | 1671 | if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE ) |
fep | 0:5ff20db10a96 | 1672 | { |
fep | 0:5ff20db10a96 | 1673 | /* Is it in the suspended list because it is in the Suspended |
fep | 0:5ff20db10a96 | 1674 | state, or because is is blocked with no timeout? */ |
fep | 0:5ff20db10a96 | 1675 | if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) |
fep | 0:5ff20db10a96 | 1676 | { |
fep | 0:5ff20db10a96 | 1677 | xReturn = pdTRUE; |
fep | 0:5ff20db10a96 | 1678 | } |
fep | 0:5ff20db10a96 | 1679 | else |
fep | 0:5ff20db10a96 | 1680 | { |
fep | 0:5ff20db10a96 | 1681 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1682 | } |
fep | 0:5ff20db10a96 | 1683 | } |
fep | 0:5ff20db10a96 | 1684 | else |
fep | 0:5ff20db10a96 | 1685 | { |
fep | 0:5ff20db10a96 | 1686 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1687 | } |
fep | 0:5ff20db10a96 | 1688 | } |
fep | 0:5ff20db10a96 | 1689 | else |
fep | 0:5ff20db10a96 | 1690 | { |
fep | 0:5ff20db10a96 | 1691 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1692 | } |
fep | 0:5ff20db10a96 | 1693 | |
fep | 0:5ff20db10a96 | 1694 | return xReturn; |
fep | 0:5ff20db10a96 | 1695 | } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */ |
fep | 0:5ff20db10a96 | 1696 | |
fep | 0:5ff20db10a96 | 1697 | #endif /* INCLUDE_vTaskSuspend */ |
fep | 0:5ff20db10a96 | 1698 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1699 | |
fep | 0:5ff20db10a96 | 1700 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 1701 | |
fep | 0:5ff20db10a96 | 1702 | void vTaskResume( TaskHandle_t xTaskToResume ) |
fep | 0:5ff20db10a96 | 1703 | { |
fep | 0:5ff20db10a96 | 1704 | TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume; |
fep | 0:5ff20db10a96 | 1705 | |
fep | 0:5ff20db10a96 | 1706 | /* It does not make sense to resume the calling task. */ |
fep | 0:5ff20db10a96 | 1707 | configASSERT( xTaskToResume ); |
fep | 0:5ff20db10a96 | 1708 | |
fep | 0:5ff20db10a96 | 1709 | /* The parameter cannot be NULL as it is impossible to resume the |
fep | 0:5ff20db10a96 | 1710 | currently executing task. */ |
fep | 0:5ff20db10a96 | 1711 | if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB ) ) |
fep | 0:5ff20db10a96 | 1712 | { |
fep | 0:5ff20db10a96 | 1713 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 1714 | { |
fep | 0:5ff20db10a96 | 1715 | if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE ) |
fep | 0:5ff20db10a96 | 1716 | { |
fep | 0:5ff20db10a96 | 1717 | traceTASK_RESUME( pxTCB ); |
fep | 0:5ff20db10a96 | 1718 | |
fep | 0:5ff20db10a96 | 1719 | /* As we are in a critical section we can access the ready |
fep | 0:5ff20db10a96 | 1720 | lists even if the scheduler is suspended. */ |
fep | 0:5ff20db10a96 | 1721 | ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 1722 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 1723 | |
fep | 0:5ff20db10a96 | 1724 | /* We may have just resumed a higher priority task. */ |
fep | 0:5ff20db10a96 | 1725 | if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 1726 | { |
fep | 0:5ff20db10a96 | 1727 | /* This yield may not cause the task just resumed to run, |
fep | 0:5ff20db10a96 | 1728 | but will leave the lists in the correct state for the |
fep | 0:5ff20db10a96 | 1729 | next yield. */ |
fep | 0:5ff20db10a96 | 1730 | taskYIELD_IF_USING_PREEMPTION(); |
fep | 0:5ff20db10a96 | 1731 | } |
fep | 0:5ff20db10a96 | 1732 | else |
fep | 0:5ff20db10a96 | 1733 | { |
fep | 0:5ff20db10a96 | 1734 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1735 | } |
fep | 0:5ff20db10a96 | 1736 | } |
fep | 0:5ff20db10a96 | 1737 | else |
fep | 0:5ff20db10a96 | 1738 | { |
fep | 0:5ff20db10a96 | 1739 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1740 | } |
fep | 0:5ff20db10a96 | 1741 | } |
fep | 0:5ff20db10a96 | 1742 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 1743 | } |
fep | 0:5ff20db10a96 | 1744 | else |
fep | 0:5ff20db10a96 | 1745 | { |
fep | 0:5ff20db10a96 | 1746 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1747 | } |
fep | 0:5ff20db10a96 | 1748 | } |
fep | 0:5ff20db10a96 | 1749 | |
fep | 0:5ff20db10a96 | 1750 | #endif /* INCLUDE_vTaskSuspend */ |
fep | 0:5ff20db10a96 | 1751 | |
fep | 0:5ff20db10a96 | 1752 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1753 | |
fep | 0:5ff20db10a96 | 1754 | #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) |
fep | 0:5ff20db10a96 | 1755 | |
fep | 0:5ff20db10a96 | 1756 | BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) |
fep | 0:5ff20db10a96 | 1757 | { |
fep | 0:5ff20db10a96 | 1758 | BaseType_t xYieldRequired = pdFALSE; |
fep | 0:5ff20db10a96 | 1759 | TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume; |
fep | 0:5ff20db10a96 | 1760 | UBaseType_t uxSavedInterruptStatus; |
fep | 0:5ff20db10a96 | 1761 | |
fep | 0:5ff20db10a96 | 1762 | configASSERT( xTaskToResume ); |
fep | 0:5ff20db10a96 | 1763 | |
fep | 0:5ff20db10a96 | 1764 | /* RTOS ports that support interrupt nesting have the concept of a |
fep | 0:5ff20db10a96 | 1765 | maximum system call (or maximum API call) interrupt priority. |
fep | 0:5ff20db10a96 | 1766 | Interrupts that are above the maximum system call priority are keep |
fep | 0:5ff20db10a96 | 1767 | permanently enabled, even when the RTOS kernel is in a critical section, |
fep | 0:5ff20db10a96 | 1768 | but cannot make any calls to FreeRTOS API functions. If configASSERT() |
fep | 0:5ff20db10a96 | 1769 | is defined in FreeRTOSConfig.h then |
fep | 0:5ff20db10a96 | 1770 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
fep | 0:5ff20db10a96 | 1771 | failure if a FreeRTOS API function is called from an interrupt that has |
fep | 0:5ff20db10a96 | 1772 | been assigned a priority above the configured maximum system call |
fep | 0:5ff20db10a96 | 1773 | priority. Only FreeRTOS functions that end in FromISR can be called |
fep | 0:5ff20db10a96 | 1774 | from interrupts that have been assigned a priority at or (logically) |
fep | 0:5ff20db10a96 | 1775 | below the maximum system call interrupt priority. FreeRTOS maintains a |
fep | 0:5ff20db10a96 | 1776 | separate interrupt safe API to ensure interrupt entry is as fast and as |
fep | 0:5ff20db10a96 | 1777 | simple as possible. More information (albeit Cortex-M specific) is |
fep | 0:5ff20db10a96 | 1778 | provided on the following link: |
fep | 0:5ff20db10a96 | 1779 | http://www.freertos.org/RTOS-Cortex-M3-M4.html */ |
fep | 0:5ff20db10a96 | 1780 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
fep | 0:5ff20db10a96 | 1781 | |
fep | 0:5ff20db10a96 | 1782 | uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); |
fep | 0:5ff20db10a96 | 1783 | { |
fep | 0:5ff20db10a96 | 1784 | if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE ) |
fep | 0:5ff20db10a96 | 1785 | { |
fep | 0:5ff20db10a96 | 1786 | traceTASK_RESUME_FROM_ISR( pxTCB ); |
fep | 0:5ff20db10a96 | 1787 | |
fep | 0:5ff20db10a96 | 1788 | /* Check the ready lists can be accessed. */ |
fep | 0:5ff20db10a96 | 1789 | if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) |
fep | 0:5ff20db10a96 | 1790 | { |
fep | 0:5ff20db10a96 | 1791 | /* Ready lists can be accessed so move the task from the |
fep | 0:5ff20db10a96 | 1792 | suspended list to the ready list directly. */ |
fep | 0:5ff20db10a96 | 1793 | if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 1794 | { |
fep | 0:5ff20db10a96 | 1795 | xYieldRequired = pdTRUE; |
fep | 0:5ff20db10a96 | 1796 | } |
fep | 0:5ff20db10a96 | 1797 | else |
fep | 0:5ff20db10a96 | 1798 | { |
fep | 0:5ff20db10a96 | 1799 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1800 | } |
fep | 0:5ff20db10a96 | 1801 | |
fep | 0:5ff20db10a96 | 1802 | ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 1803 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 1804 | } |
fep | 0:5ff20db10a96 | 1805 | else |
fep | 0:5ff20db10a96 | 1806 | { |
fep | 0:5ff20db10a96 | 1807 | /* The delayed or ready lists cannot be accessed so the task |
fep | 0:5ff20db10a96 | 1808 | is held in the pending ready list until the scheduler is |
fep | 0:5ff20db10a96 | 1809 | unsuspended. */ |
fep | 0:5ff20db10a96 | 1810 | vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 1811 | } |
fep | 0:5ff20db10a96 | 1812 | } |
fep | 0:5ff20db10a96 | 1813 | else |
fep | 0:5ff20db10a96 | 1814 | { |
fep | 0:5ff20db10a96 | 1815 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1816 | } |
fep | 0:5ff20db10a96 | 1817 | } |
fep | 0:5ff20db10a96 | 1818 | portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); |
fep | 0:5ff20db10a96 | 1819 | |
fep | 0:5ff20db10a96 | 1820 | return xYieldRequired; |
fep | 0:5ff20db10a96 | 1821 | } |
fep | 0:5ff20db10a96 | 1822 | |
fep | 0:5ff20db10a96 | 1823 | #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */ |
fep | 0:5ff20db10a96 | 1824 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1825 | |
fep | 0:5ff20db10a96 | 1826 | void vTaskStartScheduler( void ) |
fep | 0:5ff20db10a96 | 1827 | { |
fep | 0:5ff20db10a96 | 1828 | BaseType_t xReturn; |
fep | 0:5ff20db10a96 | 1829 | |
fep | 0:5ff20db10a96 | 1830 | /* Add the idle task at the lowest priority. */ |
fep | 0:5ff20db10a96 | 1831 | #if( configSUPPORT_STATIC_ALLOCATION == 1 ) |
fep | 0:5ff20db10a96 | 1832 | { |
fep | 0:5ff20db10a96 | 1833 | StaticTask_t *pxIdleTaskTCBBuffer = NULL; |
fep | 0:5ff20db10a96 | 1834 | StackType_t *pxIdleTaskStackBuffer = NULL; |
fep | 0:5ff20db10a96 | 1835 | uint32_t ulIdleTaskStackSize; |
fep | 0:5ff20db10a96 | 1836 | |
fep | 0:5ff20db10a96 | 1837 | /* The Idle task is created using user provided RAM - obtain the |
fep | 0:5ff20db10a96 | 1838 | address of the RAM then create the idle task. */ |
fep | 0:5ff20db10a96 | 1839 | vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize ); |
fep | 0:5ff20db10a96 | 1840 | xIdleTaskHandle = xTaskCreateStatic( prvIdleTask, |
fep | 0:5ff20db10a96 | 1841 | "IDLE", |
fep | 0:5ff20db10a96 | 1842 | ulIdleTaskStackSize, |
fep | 0:5ff20db10a96 | 1843 | ( void * ) NULL, |
fep | 0:5ff20db10a96 | 1844 | ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), |
fep | 0:5ff20db10a96 | 1845 | pxIdleTaskStackBuffer, |
fep | 0:5ff20db10a96 | 1846 | pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ |
fep | 0:5ff20db10a96 | 1847 | |
fep | 0:5ff20db10a96 | 1848 | if( xIdleTaskHandle != NULL ) |
fep | 0:5ff20db10a96 | 1849 | { |
fep | 0:5ff20db10a96 | 1850 | xReturn = pdPASS; |
fep | 0:5ff20db10a96 | 1851 | } |
fep | 0:5ff20db10a96 | 1852 | else |
fep | 0:5ff20db10a96 | 1853 | { |
fep | 0:5ff20db10a96 | 1854 | xReturn = pdFAIL; |
fep | 0:5ff20db10a96 | 1855 | } |
fep | 0:5ff20db10a96 | 1856 | } |
fep | 0:5ff20db10a96 | 1857 | #else |
fep | 0:5ff20db10a96 | 1858 | { |
fep | 0:5ff20db10a96 | 1859 | /* The Idle task is being created using dynamically allocated RAM. */ |
fep | 0:5ff20db10a96 | 1860 | xReturn = xTaskCreate( prvIdleTask, |
fep | 0:5ff20db10a96 | 1861 | "IDLE", configMINIMAL_STACK_SIZE, |
fep | 0:5ff20db10a96 | 1862 | ( void * ) NULL, |
fep | 0:5ff20db10a96 | 1863 | ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), |
fep | 0:5ff20db10a96 | 1864 | &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ |
fep | 0:5ff20db10a96 | 1865 | } |
fep | 0:5ff20db10a96 | 1866 | #endif /* configSUPPORT_STATIC_ALLOCATION */ |
fep | 0:5ff20db10a96 | 1867 | |
fep | 0:5ff20db10a96 | 1868 | #if ( configUSE_TIMERS == 1 ) |
fep | 0:5ff20db10a96 | 1869 | { |
fep | 0:5ff20db10a96 | 1870 | if( xReturn == pdPASS ) |
fep | 0:5ff20db10a96 | 1871 | { |
fep | 0:5ff20db10a96 | 1872 | xReturn = xTimerCreateTimerTask(); |
fep | 0:5ff20db10a96 | 1873 | } |
fep | 0:5ff20db10a96 | 1874 | else |
fep | 0:5ff20db10a96 | 1875 | { |
fep | 0:5ff20db10a96 | 1876 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 1877 | } |
fep | 0:5ff20db10a96 | 1878 | } |
fep | 0:5ff20db10a96 | 1879 | #endif /* configUSE_TIMERS */ |
fep | 0:5ff20db10a96 | 1880 | |
fep | 0:5ff20db10a96 | 1881 | if( xReturn == pdPASS ) |
fep | 0:5ff20db10a96 | 1882 | { |
fep | 0:5ff20db10a96 | 1883 | /* Interrupts are turned off here, to ensure a tick does not occur |
fep | 0:5ff20db10a96 | 1884 | before or during the call to xPortStartScheduler(). The stacks of |
fep | 0:5ff20db10a96 | 1885 | the created tasks contain a status word with interrupts switched on |
fep | 0:5ff20db10a96 | 1886 | so interrupts will automatically get re-enabled when the first task |
fep | 0:5ff20db10a96 | 1887 | starts to run. */ |
fep | 0:5ff20db10a96 | 1888 | portDISABLE_INTERRUPTS(); |
fep | 0:5ff20db10a96 | 1889 | |
fep | 0:5ff20db10a96 | 1890 | #if ( configUSE_NEWLIB_REENTRANT == 1 ) |
fep | 0:5ff20db10a96 | 1891 | { |
fep | 0:5ff20db10a96 | 1892 | /* Switch Newlib's _impure_ptr variable to point to the _reent |
fep | 0:5ff20db10a96 | 1893 | structure specific to the task that will run first. */ |
fep | 0:5ff20db10a96 | 1894 | _impure_ptr = &( pxCurrentTCB->xNewLib_reent ); |
fep | 0:5ff20db10a96 | 1895 | } |
fep | 0:5ff20db10a96 | 1896 | #endif /* configUSE_NEWLIB_REENTRANT */ |
fep | 0:5ff20db10a96 | 1897 | |
fep | 0:5ff20db10a96 | 1898 | xNextTaskUnblockTime = portMAX_DELAY; |
fep | 0:5ff20db10a96 | 1899 | xSchedulerRunning = pdTRUE; |
fep | 0:5ff20db10a96 | 1900 | xTickCount = ( TickType_t ) 0U; |
fep | 0:5ff20db10a96 | 1901 | |
fep | 0:5ff20db10a96 | 1902 | /* If configGENERATE_RUN_TIME_STATS is defined then the following |
fep | 0:5ff20db10a96 | 1903 | macro must be defined to configure the timer/counter used to generate |
fep | 0:5ff20db10a96 | 1904 | the run time counter time base. */ |
fep | 0:5ff20db10a96 | 1905 | portCONFIGURE_TIMER_FOR_RUN_TIME_STATS(); |
fep | 0:5ff20db10a96 | 1906 | |
fep | 0:5ff20db10a96 | 1907 | /* Setting up the timer tick is hardware specific and thus in the |
fep | 0:5ff20db10a96 | 1908 | portable interface. */ |
fep | 0:5ff20db10a96 | 1909 | if( xPortStartScheduler() != pdFALSE ) |
fep | 0:5ff20db10a96 | 1910 | { |
fep | 0:5ff20db10a96 | 1911 | /* Should not reach here as if the scheduler is running the |
fep | 0:5ff20db10a96 | 1912 | function will not return. */ |
fep | 0:5ff20db10a96 | 1913 | } |
fep | 0:5ff20db10a96 | 1914 | else |
fep | 0:5ff20db10a96 | 1915 | { |
fep | 0:5ff20db10a96 | 1916 | /* Should only reach here if a task calls xTaskEndScheduler(). */ |
fep | 0:5ff20db10a96 | 1917 | } |
fep | 0:5ff20db10a96 | 1918 | } |
fep | 0:5ff20db10a96 | 1919 | else |
fep | 0:5ff20db10a96 | 1920 | { |
fep | 0:5ff20db10a96 | 1921 | /* This line will only be reached if the kernel could not be started, |
fep | 0:5ff20db10a96 | 1922 | because there was not enough FreeRTOS heap to create the idle task |
fep | 0:5ff20db10a96 | 1923 | or the timer task. */ |
fep | 0:5ff20db10a96 | 1924 | configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY ); |
fep | 0:5ff20db10a96 | 1925 | } |
fep | 0:5ff20db10a96 | 1926 | |
fep | 0:5ff20db10a96 | 1927 | /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0, |
fep | 0:5ff20db10a96 | 1928 | meaning xIdleTaskHandle is not used anywhere else. */ |
fep | 0:5ff20db10a96 | 1929 | ( void ) xIdleTaskHandle; |
fep | 0:5ff20db10a96 | 1930 | } |
fep | 0:5ff20db10a96 | 1931 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1932 | |
fep | 0:5ff20db10a96 | 1933 | void vTaskEndScheduler( void ) |
fep | 0:5ff20db10a96 | 1934 | { |
fep | 0:5ff20db10a96 | 1935 | /* Stop the scheduler interrupts and call the portable scheduler end |
fep | 0:5ff20db10a96 | 1936 | routine so the original ISRs can be restored if necessary. The port |
fep | 0:5ff20db10a96 | 1937 | layer must ensure interrupts enable bit is left in the correct state. */ |
fep | 0:5ff20db10a96 | 1938 | portDISABLE_INTERRUPTS(); |
fep | 0:5ff20db10a96 | 1939 | xSchedulerRunning = pdFALSE; |
fep | 0:5ff20db10a96 | 1940 | vPortEndScheduler(); |
fep | 0:5ff20db10a96 | 1941 | } |
fep | 0:5ff20db10a96 | 1942 | /*----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1943 | |
fep | 0:5ff20db10a96 | 1944 | void vTaskSuspendAll( void ) |
fep | 0:5ff20db10a96 | 1945 | { |
fep | 0:5ff20db10a96 | 1946 | /* A critical section is not required as the variable is of type |
fep | 0:5ff20db10a96 | 1947 | BaseType_t. Please read Richard Barry's reply in the following link to a |
fep | 0:5ff20db10a96 | 1948 | post in the FreeRTOS support forum before reporting this as a bug! - |
fep | 0:5ff20db10a96 | 1949 | http://goo.gl/wu4acr */ |
fep | 0:5ff20db10a96 | 1950 | ++uxSchedulerSuspended; |
fep | 0:5ff20db10a96 | 1951 | } |
fep | 0:5ff20db10a96 | 1952 | /*----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 1953 | |
fep | 0:5ff20db10a96 | 1954 | #if ( configUSE_TICKLESS_IDLE != 0 ) |
fep | 0:5ff20db10a96 | 1955 | |
fep | 0:5ff20db10a96 | 1956 | static TickType_t prvGetExpectedIdleTime( void ) |
fep | 0:5ff20db10a96 | 1957 | { |
fep | 0:5ff20db10a96 | 1958 | TickType_t xReturn; |
fep | 0:5ff20db10a96 | 1959 | UBaseType_t uxHigherPriorityReadyTasks = pdFALSE; |
fep | 0:5ff20db10a96 | 1960 | |
fep | 0:5ff20db10a96 | 1961 | /* uxHigherPriorityReadyTasks takes care of the case where |
fep | 0:5ff20db10a96 | 1962 | configUSE_PREEMPTION is 0, so there may be tasks above the idle priority |
fep | 0:5ff20db10a96 | 1963 | task that are in the Ready state, even though the idle task is |
fep | 0:5ff20db10a96 | 1964 | running. */ |
fep | 0:5ff20db10a96 | 1965 | #if( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) |
fep | 0:5ff20db10a96 | 1966 | { |
fep | 0:5ff20db10a96 | 1967 | if( uxTopReadyPriority > tskIDLE_PRIORITY ) |
fep | 0:5ff20db10a96 | 1968 | { |
fep | 0:5ff20db10a96 | 1969 | uxHigherPriorityReadyTasks = pdTRUE; |
fep | 0:5ff20db10a96 | 1970 | } |
fep | 0:5ff20db10a96 | 1971 | } |
fep | 0:5ff20db10a96 | 1972 | #else |
fep | 0:5ff20db10a96 | 1973 | { |
fep | 0:5ff20db10a96 | 1974 | const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01; |
fep | 0:5ff20db10a96 | 1975 | |
fep | 0:5ff20db10a96 | 1976 | /* When port optimised task selection is used the uxTopReadyPriority |
fep | 0:5ff20db10a96 | 1977 | variable is used as a bit map. If bits other than the least |
fep | 0:5ff20db10a96 | 1978 | significant bit are set then there are tasks that have a priority |
fep | 0:5ff20db10a96 | 1979 | above the idle priority that are in the Ready state. This takes |
fep | 0:5ff20db10a96 | 1980 | care of the case where the co-operative scheduler is in use. */ |
fep | 0:5ff20db10a96 | 1981 | if( uxTopReadyPriority > uxLeastSignificantBit ) |
fep | 0:5ff20db10a96 | 1982 | { |
fep | 0:5ff20db10a96 | 1983 | uxHigherPriorityReadyTasks = pdTRUE; |
fep | 0:5ff20db10a96 | 1984 | } |
fep | 0:5ff20db10a96 | 1985 | } |
fep | 0:5ff20db10a96 | 1986 | #endif |
fep | 0:5ff20db10a96 | 1987 | |
fep | 0:5ff20db10a96 | 1988 | if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY ) |
fep | 0:5ff20db10a96 | 1989 | { |
fep | 0:5ff20db10a96 | 1990 | xReturn = 0; |
fep | 0:5ff20db10a96 | 1991 | } |
fep | 0:5ff20db10a96 | 1992 | else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 ) |
fep | 0:5ff20db10a96 | 1993 | { |
fep | 0:5ff20db10a96 | 1994 | /* There are other idle priority tasks in the ready state. If |
fep | 0:5ff20db10a96 | 1995 | time slicing is used then the very next tick interrupt must be |
fep | 0:5ff20db10a96 | 1996 | processed. */ |
fep | 0:5ff20db10a96 | 1997 | xReturn = 0; |
fep | 0:5ff20db10a96 | 1998 | } |
fep | 0:5ff20db10a96 | 1999 | else if( uxHigherPriorityReadyTasks != pdFALSE ) |
fep | 0:5ff20db10a96 | 2000 | { |
fep | 0:5ff20db10a96 | 2001 | /* There are tasks in the Ready state that have a priority above the |
fep | 0:5ff20db10a96 | 2002 | idle priority. This path can only be reached if |
fep | 0:5ff20db10a96 | 2003 | configUSE_PREEMPTION is 0. */ |
fep | 0:5ff20db10a96 | 2004 | xReturn = 0; |
fep | 0:5ff20db10a96 | 2005 | } |
fep | 0:5ff20db10a96 | 2006 | else |
fep | 0:5ff20db10a96 | 2007 | { |
fep | 0:5ff20db10a96 | 2008 | xReturn = xNextTaskUnblockTime - xTickCount; |
fep | 0:5ff20db10a96 | 2009 | } |
fep | 0:5ff20db10a96 | 2010 | |
fep | 0:5ff20db10a96 | 2011 | return xReturn; |
fep | 0:5ff20db10a96 | 2012 | } |
fep | 0:5ff20db10a96 | 2013 | |
fep | 0:5ff20db10a96 | 2014 | #endif /* configUSE_TICKLESS_IDLE */ |
fep | 0:5ff20db10a96 | 2015 | /*----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2016 | |
fep | 0:5ff20db10a96 | 2017 | BaseType_t xTaskResumeAll( void ) |
fep | 0:5ff20db10a96 | 2018 | { |
fep | 0:5ff20db10a96 | 2019 | TCB_t *pxTCB = NULL; |
fep | 0:5ff20db10a96 | 2020 | BaseType_t xAlreadyYielded = pdFALSE; |
fep | 0:5ff20db10a96 | 2021 | |
fep | 0:5ff20db10a96 | 2022 | /* If uxSchedulerSuspended is zero then this function does not match a |
fep | 0:5ff20db10a96 | 2023 | previous call to vTaskSuspendAll(). */ |
fep | 0:5ff20db10a96 | 2024 | configASSERT( uxSchedulerSuspended ); |
fep | 0:5ff20db10a96 | 2025 | |
fep | 0:5ff20db10a96 | 2026 | /* It is possible that an ISR caused a task to be removed from an event |
fep | 0:5ff20db10a96 | 2027 | list while the scheduler was suspended. If this was the case then the |
fep | 0:5ff20db10a96 | 2028 | removed task will have been added to the xPendingReadyList. Once the |
fep | 0:5ff20db10a96 | 2029 | scheduler has been resumed it is safe to move all the pending ready |
fep | 0:5ff20db10a96 | 2030 | tasks from this list into their appropriate ready list. */ |
fep | 0:5ff20db10a96 | 2031 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 2032 | { |
fep | 0:5ff20db10a96 | 2033 | --uxSchedulerSuspended; |
fep | 0:5ff20db10a96 | 2034 | |
fep | 0:5ff20db10a96 | 2035 | if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) |
fep | 0:5ff20db10a96 | 2036 | { |
fep | 0:5ff20db10a96 | 2037 | if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U ) |
fep | 0:5ff20db10a96 | 2038 | { |
fep | 0:5ff20db10a96 | 2039 | /* Move any readied tasks from the pending list into the |
fep | 0:5ff20db10a96 | 2040 | appropriate ready list. */ |
fep | 0:5ff20db10a96 | 2041 | while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE ) |
fep | 0:5ff20db10a96 | 2042 | { |
fep | 0:5ff20db10a96 | 2043 | pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); |
fep | 0:5ff20db10a96 | 2044 | ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 2045 | ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 2046 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 2047 | |
fep | 0:5ff20db10a96 | 2048 | /* If the moved task has a priority higher than the current |
fep | 0:5ff20db10a96 | 2049 | task then a yield must be performed. */ |
fep | 0:5ff20db10a96 | 2050 | if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 2051 | { |
fep | 0:5ff20db10a96 | 2052 | xYieldPending = pdTRUE; |
fep | 0:5ff20db10a96 | 2053 | } |
fep | 0:5ff20db10a96 | 2054 | else |
fep | 0:5ff20db10a96 | 2055 | { |
fep | 0:5ff20db10a96 | 2056 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2057 | } |
fep | 0:5ff20db10a96 | 2058 | } |
fep | 0:5ff20db10a96 | 2059 | |
fep | 0:5ff20db10a96 | 2060 | if( pxTCB != NULL ) |
fep | 0:5ff20db10a96 | 2061 | { |
fep | 0:5ff20db10a96 | 2062 | /* A task was unblocked while the scheduler was suspended, |
fep | 0:5ff20db10a96 | 2063 | which may have prevented the next unblock time from being |
fep | 0:5ff20db10a96 | 2064 | re-calculated, in which case re-calculate it now. Mainly |
fep | 0:5ff20db10a96 | 2065 | important for low power tickless implementations, where |
fep | 0:5ff20db10a96 | 2066 | this can prevent an unnecessary exit from low power |
fep | 0:5ff20db10a96 | 2067 | state. */ |
fep | 0:5ff20db10a96 | 2068 | prvResetNextTaskUnblockTime(); |
fep | 0:5ff20db10a96 | 2069 | } |
fep | 0:5ff20db10a96 | 2070 | |
fep | 0:5ff20db10a96 | 2071 | /* If any ticks occurred while the scheduler was suspended then |
fep | 0:5ff20db10a96 | 2072 | they should be processed now. This ensures the tick count does |
fep | 0:5ff20db10a96 | 2073 | not slip, and that any delayed tasks are resumed at the correct |
fep | 0:5ff20db10a96 | 2074 | time. */ |
fep | 0:5ff20db10a96 | 2075 | { |
fep | 0:5ff20db10a96 | 2076 | UBaseType_t uxPendedCounts = uxPendedTicks; /* Non-volatile copy. */ |
fep | 0:5ff20db10a96 | 2077 | |
fep | 0:5ff20db10a96 | 2078 | if( uxPendedCounts > ( UBaseType_t ) 0U ) |
fep | 0:5ff20db10a96 | 2079 | { |
fep | 0:5ff20db10a96 | 2080 | do |
fep | 0:5ff20db10a96 | 2081 | { |
fep | 0:5ff20db10a96 | 2082 | if( xTaskIncrementTick() != pdFALSE ) |
fep | 0:5ff20db10a96 | 2083 | { |
fep | 0:5ff20db10a96 | 2084 | xYieldPending = pdTRUE; |
fep | 0:5ff20db10a96 | 2085 | } |
fep | 0:5ff20db10a96 | 2086 | else |
fep | 0:5ff20db10a96 | 2087 | { |
fep | 0:5ff20db10a96 | 2088 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2089 | } |
fep | 0:5ff20db10a96 | 2090 | --uxPendedCounts; |
fep | 0:5ff20db10a96 | 2091 | } while( uxPendedCounts > ( UBaseType_t ) 0U ); |
fep | 0:5ff20db10a96 | 2092 | |
fep | 0:5ff20db10a96 | 2093 | uxPendedTicks = 0; |
fep | 0:5ff20db10a96 | 2094 | } |
fep | 0:5ff20db10a96 | 2095 | else |
fep | 0:5ff20db10a96 | 2096 | { |
fep | 0:5ff20db10a96 | 2097 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2098 | } |
fep | 0:5ff20db10a96 | 2099 | } |
fep | 0:5ff20db10a96 | 2100 | |
fep | 0:5ff20db10a96 | 2101 | if( xYieldPending != pdFALSE ) |
fep | 0:5ff20db10a96 | 2102 | { |
fep | 0:5ff20db10a96 | 2103 | #if( configUSE_PREEMPTION != 0 ) |
fep | 0:5ff20db10a96 | 2104 | { |
fep | 0:5ff20db10a96 | 2105 | xAlreadyYielded = pdTRUE; |
fep | 0:5ff20db10a96 | 2106 | } |
fep | 0:5ff20db10a96 | 2107 | #endif |
fep | 0:5ff20db10a96 | 2108 | taskYIELD_IF_USING_PREEMPTION(); |
fep | 0:5ff20db10a96 | 2109 | } |
fep | 0:5ff20db10a96 | 2110 | else |
fep | 0:5ff20db10a96 | 2111 | { |
fep | 0:5ff20db10a96 | 2112 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2113 | } |
fep | 0:5ff20db10a96 | 2114 | } |
fep | 0:5ff20db10a96 | 2115 | } |
fep | 0:5ff20db10a96 | 2116 | else |
fep | 0:5ff20db10a96 | 2117 | { |
fep | 0:5ff20db10a96 | 2118 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2119 | } |
fep | 0:5ff20db10a96 | 2120 | } |
fep | 0:5ff20db10a96 | 2121 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 2122 | |
fep | 0:5ff20db10a96 | 2123 | return xAlreadyYielded; |
fep | 0:5ff20db10a96 | 2124 | } |
fep | 0:5ff20db10a96 | 2125 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2126 | |
fep | 0:5ff20db10a96 | 2127 | TickType_t xTaskGetTickCount( void ) |
fep | 0:5ff20db10a96 | 2128 | { |
fep | 0:5ff20db10a96 | 2129 | TickType_t xTicks; |
fep | 0:5ff20db10a96 | 2130 | |
fep | 0:5ff20db10a96 | 2131 | /* Critical section required if running on a 16 bit processor. */ |
fep | 0:5ff20db10a96 | 2132 | portTICK_TYPE_ENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 2133 | { |
fep | 0:5ff20db10a96 | 2134 | xTicks = xTickCount; |
fep | 0:5ff20db10a96 | 2135 | } |
fep | 0:5ff20db10a96 | 2136 | portTICK_TYPE_EXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 2137 | |
fep | 0:5ff20db10a96 | 2138 | return xTicks; |
fep | 0:5ff20db10a96 | 2139 | } |
fep | 0:5ff20db10a96 | 2140 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2141 | |
fep | 0:5ff20db10a96 | 2142 | TickType_t xTaskGetTickCountFromISR( void ) |
fep | 0:5ff20db10a96 | 2143 | { |
fep | 0:5ff20db10a96 | 2144 | TickType_t xReturn; |
fep | 0:5ff20db10a96 | 2145 | UBaseType_t uxSavedInterruptStatus; |
fep | 0:5ff20db10a96 | 2146 | |
fep | 0:5ff20db10a96 | 2147 | /* RTOS ports that support interrupt nesting have the concept of a maximum |
fep | 0:5ff20db10a96 | 2148 | system call (or maximum API call) interrupt priority. Interrupts that are |
fep | 0:5ff20db10a96 | 2149 | above the maximum system call priority are kept permanently enabled, even |
fep | 0:5ff20db10a96 | 2150 | when the RTOS kernel is in a critical section, but cannot make any calls to |
fep | 0:5ff20db10a96 | 2151 | FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h |
fep | 0:5ff20db10a96 | 2152 | then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
fep | 0:5ff20db10a96 | 2153 | failure if a FreeRTOS API function is called from an interrupt that has been |
fep | 0:5ff20db10a96 | 2154 | assigned a priority above the configured maximum system call priority. |
fep | 0:5ff20db10a96 | 2155 | Only FreeRTOS functions that end in FromISR can be called from interrupts |
fep | 0:5ff20db10a96 | 2156 | that have been assigned a priority at or (logically) below the maximum |
fep | 0:5ff20db10a96 | 2157 | system call interrupt priority. FreeRTOS maintains a separate interrupt |
fep | 0:5ff20db10a96 | 2158 | safe API to ensure interrupt entry is as fast and as simple as possible. |
fep | 0:5ff20db10a96 | 2159 | More information (albeit Cortex-M specific) is provided on the following |
fep | 0:5ff20db10a96 | 2160 | link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ |
fep | 0:5ff20db10a96 | 2161 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
fep | 0:5ff20db10a96 | 2162 | |
fep | 0:5ff20db10a96 | 2163 | uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR(); |
fep | 0:5ff20db10a96 | 2164 | { |
fep | 0:5ff20db10a96 | 2165 | xReturn = xTickCount; |
fep | 0:5ff20db10a96 | 2166 | } |
fep | 0:5ff20db10a96 | 2167 | portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); |
fep | 0:5ff20db10a96 | 2168 | |
fep | 0:5ff20db10a96 | 2169 | return xReturn; |
fep | 0:5ff20db10a96 | 2170 | } |
fep | 0:5ff20db10a96 | 2171 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2172 | |
fep | 0:5ff20db10a96 | 2173 | UBaseType_t uxTaskGetNumberOfTasks( void ) |
fep | 0:5ff20db10a96 | 2174 | { |
fep | 0:5ff20db10a96 | 2175 | /* A critical section is not required because the variables are of type |
fep | 0:5ff20db10a96 | 2176 | BaseType_t. */ |
fep | 0:5ff20db10a96 | 2177 | return uxCurrentNumberOfTasks; |
fep | 0:5ff20db10a96 | 2178 | } |
fep | 0:5ff20db10a96 | 2179 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2180 | |
fep | 0:5ff20db10a96 | 2181 | char *pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
fep | 0:5ff20db10a96 | 2182 | { |
fep | 0:5ff20db10a96 | 2183 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 2184 | |
fep | 0:5ff20db10a96 | 2185 | /* If null is passed in here then the name of the calling task is being |
fep | 0:5ff20db10a96 | 2186 | queried. */ |
fep | 0:5ff20db10a96 | 2187 | pxTCB = prvGetTCBFromHandle( xTaskToQuery ); |
fep | 0:5ff20db10a96 | 2188 | configASSERT( pxTCB ); |
fep | 0:5ff20db10a96 | 2189 | return &( pxTCB->pcTaskName[ 0 ] ); |
fep | 0:5ff20db10a96 | 2190 | } |
fep | 0:5ff20db10a96 | 2191 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2192 | |
fep | 0:5ff20db10a96 | 2193 | #if ( INCLUDE_xTaskGetHandle == 1 ) |
fep | 0:5ff20db10a96 | 2194 | |
fep | 0:5ff20db10a96 | 2195 | static TCB_t *prvSearchForNameWithinSingleList( List_t *pxList, const char pcNameToQuery[] ) |
fep | 0:5ff20db10a96 | 2196 | { |
fep | 0:5ff20db10a96 | 2197 | TCB_t *pxNextTCB, *pxFirstTCB, *pxReturn = NULL; |
fep | 0:5ff20db10a96 | 2198 | UBaseType_t x; |
fep | 0:5ff20db10a96 | 2199 | char cNextChar; |
fep | 0:5ff20db10a96 | 2200 | |
fep | 0:5ff20db10a96 | 2201 | /* This function is called with the scheduler suspended. */ |
fep | 0:5ff20db10a96 | 2202 | |
fep | 0:5ff20db10a96 | 2203 | if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) |
fep | 0:5ff20db10a96 | 2204 | { |
fep | 0:5ff20db10a96 | 2205 | listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); |
fep | 0:5ff20db10a96 | 2206 | |
fep | 0:5ff20db10a96 | 2207 | do |
fep | 0:5ff20db10a96 | 2208 | { |
fep | 0:5ff20db10a96 | 2209 | listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); |
fep | 0:5ff20db10a96 | 2210 | |
fep | 0:5ff20db10a96 | 2211 | /* Check each character in the name looking for a match or |
fep | 0:5ff20db10a96 | 2212 | mismatch. */ |
fep | 0:5ff20db10a96 | 2213 | for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) |
fep | 0:5ff20db10a96 | 2214 | { |
fep | 0:5ff20db10a96 | 2215 | cNextChar = pxNextTCB->pcTaskName[ x ]; |
fep | 0:5ff20db10a96 | 2216 | |
fep | 0:5ff20db10a96 | 2217 | if( cNextChar != pcNameToQuery[ x ] ) |
fep | 0:5ff20db10a96 | 2218 | { |
fep | 0:5ff20db10a96 | 2219 | /* Characters didn't match. */ |
fep | 0:5ff20db10a96 | 2220 | break; |
fep | 0:5ff20db10a96 | 2221 | } |
fep | 0:5ff20db10a96 | 2222 | else if( cNextChar == 0x00 ) |
fep | 0:5ff20db10a96 | 2223 | { |
fep | 0:5ff20db10a96 | 2224 | /* Both strings terminated, a match must have been |
fep | 0:5ff20db10a96 | 2225 | found. */ |
fep | 0:5ff20db10a96 | 2226 | pxReturn = pxNextTCB; |
fep | 0:5ff20db10a96 | 2227 | break; |
fep | 0:5ff20db10a96 | 2228 | } |
fep | 0:5ff20db10a96 | 2229 | else |
fep | 0:5ff20db10a96 | 2230 | { |
fep | 0:5ff20db10a96 | 2231 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2232 | } |
fep | 0:5ff20db10a96 | 2233 | } |
fep | 0:5ff20db10a96 | 2234 | |
fep | 0:5ff20db10a96 | 2235 | if( pxReturn != NULL ) |
fep | 0:5ff20db10a96 | 2236 | { |
fep | 0:5ff20db10a96 | 2237 | /* The handle has been found. */ |
fep | 0:5ff20db10a96 | 2238 | break; |
fep | 0:5ff20db10a96 | 2239 | } |
fep | 0:5ff20db10a96 | 2240 | |
fep | 0:5ff20db10a96 | 2241 | } while( pxNextTCB != pxFirstTCB ); |
fep | 0:5ff20db10a96 | 2242 | } |
fep | 0:5ff20db10a96 | 2243 | else |
fep | 0:5ff20db10a96 | 2244 | { |
fep | 0:5ff20db10a96 | 2245 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2246 | } |
fep | 0:5ff20db10a96 | 2247 | |
fep | 0:5ff20db10a96 | 2248 | return pxReturn; |
fep | 0:5ff20db10a96 | 2249 | } |
fep | 0:5ff20db10a96 | 2250 | |
fep | 0:5ff20db10a96 | 2251 | #endif /* INCLUDE_xTaskGetHandle */ |
fep | 0:5ff20db10a96 | 2252 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2253 | |
fep | 0:5ff20db10a96 | 2254 | #if ( INCLUDE_xTaskGetHandle == 1 ) |
fep | 0:5ff20db10a96 | 2255 | |
fep | 0:5ff20db10a96 | 2256 | TaskHandle_t xTaskGetHandle( const char *pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
fep | 0:5ff20db10a96 | 2257 | { |
fep | 0:5ff20db10a96 | 2258 | UBaseType_t uxQueue = configMAX_PRIORITIES; |
fep | 0:5ff20db10a96 | 2259 | TCB_t* pxTCB; |
fep | 0:5ff20db10a96 | 2260 | |
fep | 0:5ff20db10a96 | 2261 | /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */ |
fep | 0:5ff20db10a96 | 2262 | configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN ); |
fep | 0:5ff20db10a96 | 2263 | |
fep | 0:5ff20db10a96 | 2264 | vTaskSuspendAll(); |
fep | 0:5ff20db10a96 | 2265 | { |
fep | 0:5ff20db10a96 | 2266 | /* Search the ready lists. */ |
fep | 0:5ff20db10a96 | 2267 | do |
fep | 0:5ff20db10a96 | 2268 | { |
fep | 0:5ff20db10a96 | 2269 | uxQueue--; |
fep | 0:5ff20db10a96 | 2270 | pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery ); |
fep | 0:5ff20db10a96 | 2271 | |
fep | 0:5ff20db10a96 | 2272 | if( pxTCB != NULL ) |
fep | 0:5ff20db10a96 | 2273 | { |
fep | 0:5ff20db10a96 | 2274 | /* Found the handle. */ |
fep | 0:5ff20db10a96 | 2275 | break; |
fep | 0:5ff20db10a96 | 2276 | } |
fep | 0:5ff20db10a96 | 2277 | |
fep | 0:5ff20db10a96 | 2278 | } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
fep | 0:5ff20db10a96 | 2279 | |
fep | 0:5ff20db10a96 | 2280 | /* Search the delayed lists. */ |
fep | 0:5ff20db10a96 | 2281 | if( pxTCB == NULL ) |
fep | 0:5ff20db10a96 | 2282 | { |
fep | 0:5ff20db10a96 | 2283 | pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery ); |
fep | 0:5ff20db10a96 | 2284 | } |
fep | 0:5ff20db10a96 | 2285 | |
fep | 0:5ff20db10a96 | 2286 | if( pxTCB == NULL ) |
fep | 0:5ff20db10a96 | 2287 | { |
fep | 0:5ff20db10a96 | 2288 | pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery ); |
fep | 0:5ff20db10a96 | 2289 | } |
fep | 0:5ff20db10a96 | 2290 | |
fep | 0:5ff20db10a96 | 2291 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 2292 | { |
fep | 0:5ff20db10a96 | 2293 | if( pxTCB == NULL ) |
fep | 0:5ff20db10a96 | 2294 | { |
fep | 0:5ff20db10a96 | 2295 | /* Search the suspended list. */ |
fep | 0:5ff20db10a96 | 2296 | pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery ); |
fep | 0:5ff20db10a96 | 2297 | } |
fep | 0:5ff20db10a96 | 2298 | } |
fep | 0:5ff20db10a96 | 2299 | #endif |
fep | 0:5ff20db10a96 | 2300 | |
fep | 0:5ff20db10a96 | 2301 | #if( INCLUDE_vTaskDelete == 1 ) |
fep | 0:5ff20db10a96 | 2302 | { |
fep | 0:5ff20db10a96 | 2303 | if( pxTCB == NULL ) |
fep | 0:5ff20db10a96 | 2304 | { |
fep | 0:5ff20db10a96 | 2305 | /* Search the deleted list. */ |
fep | 0:5ff20db10a96 | 2306 | pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery ); |
fep | 0:5ff20db10a96 | 2307 | } |
fep | 0:5ff20db10a96 | 2308 | } |
fep | 0:5ff20db10a96 | 2309 | #endif |
fep | 0:5ff20db10a96 | 2310 | } |
fep | 0:5ff20db10a96 | 2311 | ( void ) xTaskResumeAll(); |
fep | 0:5ff20db10a96 | 2312 | |
fep | 0:5ff20db10a96 | 2313 | return ( TaskHandle_t ) pxTCB; |
fep | 0:5ff20db10a96 | 2314 | } |
fep | 0:5ff20db10a96 | 2315 | |
fep | 0:5ff20db10a96 | 2316 | #endif /* INCLUDE_xTaskGetHandle */ |
fep | 0:5ff20db10a96 | 2317 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2318 | |
fep | 0:5ff20db10a96 | 2319 | #if ( configUSE_TRACE_FACILITY == 1 ) |
fep | 0:5ff20db10a96 | 2320 | |
fep | 0:5ff20db10a96 | 2321 | UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime ) |
fep | 0:5ff20db10a96 | 2322 | { |
fep | 0:5ff20db10a96 | 2323 | UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES; |
fep | 0:5ff20db10a96 | 2324 | |
fep | 0:5ff20db10a96 | 2325 | vTaskSuspendAll(); |
fep | 0:5ff20db10a96 | 2326 | { |
fep | 0:5ff20db10a96 | 2327 | /* Is there a space in the array for each task in the system? */ |
fep | 0:5ff20db10a96 | 2328 | if( uxArraySize >= uxCurrentNumberOfTasks ) |
fep | 0:5ff20db10a96 | 2329 | { |
fep | 0:5ff20db10a96 | 2330 | /* Fill in an TaskStatus_t structure with information on each |
fep | 0:5ff20db10a96 | 2331 | task in the Ready state. */ |
fep | 0:5ff20db10a96 | 2332 | do |
fep | 0:5ff20db10a96 | 2333 | { |
fep | 0:5ff20db10a96 | 2334 | uxQueue--; |
fep | 0:5ff20db10a96 | 2335 | uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ); |
fep | 0:5ff20db10a96 | 2336 | |
fep | 0:5ff20db10a96 | 2337 | } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
fep | 0:5ff20db10a96 | 2338 | |
fep | 0:5ff20db10a96 | 2339 | /* Fill in an TaskStatus_t structure with information on each |
fep | 0:5ff20db10a96 | 2340 | task in the Blocked state. */ |
fep | 0:5ff20db10a96 | 2341 | uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ); |
fep | 0:5ff20db10a96 | 2342 | uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ); |
fep | 0:5ff20db10a96 | 2343 | |
fep | 0:5ff20db10a96 | 2344 | #if( INCLUDE_vTaskDelete == 1 ) |
fep | 0:5ff20db10a96 | 2345 | { |
fep | 0:5ff20db10a96 | 2346 | /* Fill in an TaskStatus_t structure with information on |
fep | 0:5ff20db10a96 | 2347 | each task that has been deleted but not yet cleaned up. */ |
fep | 0:5ff20db10a96 | 2348 | uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ); |
fep | 0:5ff20db10a96 | 2349 | } |
fep | 0:5ff20db10a96 | 2350 | #endif |
fep | 0:5ff20db10a96 | 2351 | |
fep | 0:5ff20db10a96 | 2352 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 2353 | { |
fep | 0:5ff20db10a96 | 2354 | /* Fill in an TaskStatus_t structure with information on |
fep | 0:5ff20db10a96 | 2355 | each task in the Suspended state. */ |
fep | 0:5ff20db10a96 | 2356 | uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ); |
fep | 0:5ff20db10a96 | 2357 | } |
fep | 0:5ff20db10a96 | 2358 | #endif |
fep | 0:5ff20db10a96 | 2359 | |
fep | 0:5ff20db10a96 | 2360 | #if ( configGENERATE_RUN_TIME_STATS == 1) |
fep | 0:5ff20db10a96 | 2361 | { |
fep | 0:5ff20db10a96 | 2362 | if( pulTotalRunTime != NULL ) |
fep | 0:5ff20db10a96 | 2363 | { |
fep | 0:5ff20db10a96 | 2364 | #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE |
fep | 0:5ff20db10a96 | 2365 | portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) ); |
fep | 0:5ff20db10a96 | 2366 | #else |
fep | 0:5ff20db10a96 | 2367 | *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); |
fep | 0:5ff20db10a96 | 2368 | #endif |
fep | 0:5ff20db10a96 | 2369 | } |
fep | 0:5ff20db10a96 | 2370 | } |
fep | 0:5ff20db10a96 | 2371 | #else |
fep | 0:5ff20db10a96 | 2372 | { |
fep | 0:5ff20db10a96 | 2373 | if( pulTotalRunTime != NULL ) |
fep | 0:5ff20db10a96 | 2374 | { |
fep | 0:5ff20db10a96 | 2375 | *pulTotalRunTime = 0; |
fep | 0:5ff20db10a96 | 2376 | } |
fep | 0:5ff20db10a96 | 2377 | } |
fep | 0:5ff20db10a96 | 2378 | #endif |
fep | 0:5ff20db10a96 | 2379 | } |
fep | 0:5ff20db10a96 | 2380 | else |
fep | 0:5ff20db10a96 | 2381 | { |
fep | 0:5ff20db10a96 | 2382 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2383 | } |
fep | 0:5ff20db10a96 | 2384 | } |
fep | 0:5ff20db10a96 | 2385 | ( void ) xTaskResumeAll(); |
fep | 0:5ff20db10a96 | 2386 | |
fep | 0:5ff20db10a96 | 2387 | return uxTask; |
fep | 0:5ff20db10a96 | 2388 | } |
fep | 0:5ff20db10a96 | 2389 | |
fep | 0:5ff20db10a96 | 2390 | #endif /* configUSE_TRACE_FACILITY */ |
fep | 0:5ff20db10a96 | 2391 | /*----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2392 | |
fep | 0:5ff20db10a96 | 2393 | #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) |
fep | 0:5ff20db10a96 | 2394 | |
fep | 0:5ff20db10a96 | 2395 | TaskHandle_t xTaskGetIdleTaskHandle( void ) |
fep | 0:5ff20db10a96 | 2396 | { |
fep | 0:5ff20db10a96 | 2397 | /* If xTaskGetIdleTaskHandle() is called before the scheduler has been |
fep | 0:5ff20db10a96 | 2398 | started, then xIdleTaskHandle will be NULL. */ |
fep | 0:5ff20db10a96 | 2399 | configASSERT( ( xIdleTaskHandle != NULL ) ); |
fep | 0:5ff20db10a96 | 2400 | return xIdleTaskHandle; |
fep | 0:5ff20db10a96 | 2401 | } |
fep | 0:5ff20db10a96 | 2402 | |
fep | 0:5ff20db10a96 | 2403 | #endif /* INCLUDE_xTaskGetIdleTaskHandle */ |
fep | 0:5ff20db10a96 | 2404 | /*----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2405 | |
fep | 0:5ff20db10a96 | 2406 | /* This conditional compilation should use inequality to 0, not equality to 1. |
fep | 0:5ff20db10a96 | 2407 | This is to ensure vTaskStepTick() is available when user defined low power mode |
fep | 0:5ff20db10a96 | 2408 | implementations require configUSE_TICKLESS_IDLE to be set to a value other than |
fep | 0:5ff20db10a96 | 2409 | 1. */ |
fep | 0:5ff20db10a96 | 2410 | #if ( configUSE_TICKLESS_IDLE != 0 ) |
fep | 0:5ff20db10a96 | 2411 | |
fep | 0:5ff20db10a96 | 2412 | void vTaskStepTick( const TickType_t xTicksToJump ) |
fep | 0:5ff20db10a96 | 2413 | { |
fep | 0:5ff20db10a96 | 2414 | /* Correct the tick count value after a period during which the tick |
fep | 0:5ff20db10a96 | 2415 | was suppressed. Note this does *not* call the tick hook function for |
fep | 0:5ff20db10a96 | 2416 | each stepped tick. */ |
fep | 0:5ff20db10a96 | 2417 | configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime ); |
fep | 0:5ff20db10a96 | 2418 | xTickCount += xTicksToJump; |
fep | 0:5ff20db10a96 | 2419 | traceINCREASE_TICK_COUNT( xTicksToJump ); |
fep | 0:5ff20db10a96 | 2420 | } |
fep | 0:5ff20db10a96 | 2421 | |
fep | 0:5ff20db10a96 | 2422 | #endif /* configUSE_TICKLESS_IDLE */ |
fep | 0:5ff20db10a96 | 2423 | /*----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2424 | |
fep | 0:5ff20db10a96 | 2425 | #if ( INCLUDE_xTaskAbortDelay == 1 ) |
fep | 0:5ff20db10a96 | 2426 | |
fep | 0:5ff20db10a96 | 2427 | BaseType_t xTaskAbortDelay( TaskHandle_t xTask ) |
fep | 0:5ff20db10a96 | 2428 | { |
fep | 0:5ff20db10a96 | 2429 | TCB_t *pxTCB = ( TCB_t * ) xTask; |
fep | 0:5ff20db10a96 | 2430 | BaseType_t xReturn = pdFALSE; |
fep | 0:5ff20db10a96 | 2431 | |
fep | 0:5ff20db10a96 | 2432 | configASSERT( pxTCB ); |
fep | 0:5ff20db10a96 | 2433 | |
fep | 0:5ff20db10a96 | 2434 | vTaskSuspendAll(); |
fep | 0:5ff20db10a96 | 2435 | { |
fep | 0:5ff20db10a96 | 2436 | /* A task can only be prematurely removed from the Blocked state if |
fep | 0:5ff20db10a96 | 2437 | it is actually in the Blocked state. */ |
fep | 0:5ff20db10a96 | 2438 | if( eTaskGetState( xTask ) == eBlocked ) |
fep | 0:5ff20db10a96 | 2439 | { |
fep | 0:5ff20db10a96 | 2440 | /* Remove the reference to the task from the blocked list. An |
fep | 0:5ff20db10a96 | 2441 | interrupt won't touch the xStateListItem because the |
fep | 0:5ff20db10a96 | 2442 | scheduler is suspended. */ |
fep | 0:5ff20db10a96 | 2443 | ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 2444 | |
fep | 0:5ff20db10a96 | 2445 | /* Is the task waiting on an event also? If so remove it from |
fep | 0:5ff20db10a96 | 2446 | the event list too. Interrupts can touch the event list item, |
fep | 0:5ff20db10a96 | 2447 | even though the scheduler is suspended, so a critical section |
fep | 0:5ff20db10a96 | 2448 | is used. */ |
fep | 0:5ff20db10a96 | 2449 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 2450 | { |
fep | 0:5ff20db10a96 | 2451 | if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) |
fep | 0:5ff20db10a96 | 2452 | { |
fep | 0:5ff20db10a96 | 2453 | ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 2454 | pxTCB->ucDelayAborted = pdTRUE; |
fep | 0:5ff20db10a96 | 2455 | } |
fep | 0:5ff20db10a96 | 2456 | else |
fep | 0:5ff20db10a96 | 2457 | { |
fep | 0:5ff20db10a96 | 2458 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2459 | } |
fep | 0:5ff20db10a96 | 2460 | } |
fep | 0:5ff20db10a96 | 2461 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 2462 | |
fep | 0:5ff20db10a96 | 2463 | /* Place the unblocked task into the appropriate ready list. */ |
fep | 0:5ff20db10a96 | 2464 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 2465 | |
fep | 0:5ff20db10a96 | 2466 | /* A task being unblocked cannot cause an immediate context |
fep | 0:5ff20db10a96 | 2467 | switch if preemption is turned off. */ |
fep | 0:5ff20db10a96 | 2468 | #if ( configUSE_PREEMPTION == 1 ) |
fep | 0:5ff20db10a96 | 2469 | { |
fep | 0:5ff20db10a96 | 2470 | /* Preemption is on, but a context switch should only be |
fep | 0:5ff20db10a96 | 2471 | performed if the unblocked task has a priority that is |
fep | 0:5ff20db10a96 | 2472 | equal to or higher than the currently executing task. */ |
fep | 0:5ff20db10a96 | 2473 | if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 2474 | { |
fep | 0:5ff20db10a96 | 2475 | /* Pend the yield to be performed when the scheduler |
fep | 0:5ff20db10a96 | 2476 | is unsuspended. */ |
fep | 0:5ff20db10a96 | 2477 | xYieldPending = pdTRUE; |
fep | 0:5ff20db10a96 | 2478 | } |
fep | 0:5ff20db10a96 | 2479 | else |
fep | 0:5ff20db10a96 | 2480 | { |
fep | 0:5ff20db10a96 | 2481 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2482 | } |
fep | 0:5ff20db10a96 | 2483 | } |
fep | 0:5ff20db10a96 | 2484 | #endif /* configUSE_PREEMPTION */ |
fep | 0:5ff20db10a96 | 2485 | } |
fep | 0:5ff20db10a96 | 2486 | else |
fep | 0:5ff20db10a96 | 2487 | { |
fep | 0:5ff20db10a96 | 2488 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2489 | } |
fep | 0:5ff20db10a96 | 2490 | } |
fep | 0:5ff20db10a96 | 2491 | xTaskResumeAll(); |
fep | 0:5ff20db10a96 | 2492 | |
fep | 0:5ff20db10a96 | 2493 | return xReturn; |
fep | 0:5ff20db10a96 | 2494 | } |
fep | 0:5ff20db10a96 | 2495 | |
fep | 0:5ff20db10a96 | 2496 | #endif /* INCLUDE_xTaskAbortDelay */ |
fep | 0:5ff20db10a96 | 2497 | /*----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2498 | |
fep | 0:5ff20db10a96 | 2499 | BaseType_t xTaskIncrementTick( void ) |
fep | 0:5ff20db10a96 | 2500 | { |
fep | 0:5ff20db10a96 | 2501 | TCB_t * pxTCB; |
fep | 0:5ff20db10a96 | 2502 | TickType_t xItemValue; |
fep | 0:5ff20db10a96 | 2503 | BaseType_t xSwitchRequired = pdFALSE; |
fep | 0:5ff20db10a96 | 2504 | |
fep | 0:5ff20db10a96 | 2505 | /* Called by the portable layer each time a tick interrupt occurs. |
fep | 0:5ff20db10a96 | 2506 | Increments the tick then checks to see if the new tick value will cause any |
fep | 0:5ff20db10a96 | 2507 | tasks to be unblocked. */ |
fep | 0:5ff20db10a96 | 2508 | traceTASK_INCREMENT_TICK( xTickCount ); |
fep | 0:5ff20db10a96 | 2509 | if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) |
fep | 0:5ff20db10a96 | 2510 | { |
fep | 0:5ff20db10a96 | 2511 | /* Minor optimisation. The tick count cannot change in this |
fep | 0:5ff20db10a96 | 2512 | block. */ |
fep | 0:5ff20db10a96 | 2513 | const TickType_t xConstTickCount = xTickCount + 1; |
fep | 0:5ff20db10a96 | 2514 | |
fep | 0:5ff20db10a96 | 2515 | /* Increment the RTOS tick, switching the delayed and overflowed |
fep | 0:5ff20db10a96 | 2516 | delayed lists if it wraps to 0. */ |
fep | 0:5ff20db10a96 | 2517 | xTickCount = xConstTickCount; |
fep | 0:5ff20db10a96 | 2518 | |
fep | 0:5ff20db10a96 | 2519 | if( xConstTickCount == ( TickType_t ) 0U ) |
fep | 0:5ff20db10a96 | 2520 | { |
fep | 0:5ff20db10a96 | 2521 | taskSWITCH_DELAYED_LISTS(); |
fep | 0:5ff20db10a96 | 2522 | } |
fep | 0:5ff20db10a96 | 2523 | else |
fep | 0:5ff20db10a96 | 2524 | { |
fep | 0:5ff20db10a96 | 2525 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2526 | } |
fep | 0:5ff20db10a96 | 2527 | |
fep | 0:5ff20db10a96 | 2528 | /* See if this tick has made a timeout expire. Tasks are stored in |
fep | 0:5ff20db10a96 | 2529 | the queue in the order of their wake time - meaning once one task |
fep | 0:5ff20db10a96 | 2530 | has been found whose block time has not expired there is no need to |
fep | 0:5ff20db10a96 | 2531 | look any further down the list. */ |
fep | 0:5ff20db10a96 | 2532 | if( xConstTickCount >= xNextTaskUnblockTime ) |
fep | 0:5ff20db10a96 | 2533 | { |
fep | 0:5ff20db10a96 | 2534 | for( ;; ) |
fep | 0:5ff20db10a96 | 2535 | { |
fep | 0:5ff20db10a96 | 2536 | if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) |
fep | 0:5ff20db10a96 | 2537 | { |
fep | 0:5ff20db10a96 | 2538 | /* The delayed list is empty. Set xNextTaskUnblockTime |
fep | 0:5ff20db10a96 | 2539 | to the maximum possible value so it is extremely |
fep | 0:5ff20db10a96 | 2540 | unlikely that the |
fep | 0:5ff20db10a96 | 2541 | if( xTickCount >= xNextTaskUnblockTime ) test will pass |
fep | 0:5ff20db10a96 | 2542 | next time through. */ |
fep | 0:5ff20db10a96 | 2543 | xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
fep | 0:5ff20db10a96 | 2544 | break; |
fep | 0:5ff20db10a96 | 2545 | } |
fep | 0:5ff20db10a96 | 2546 | else |
fep | 0:5ff20db10a96 | 2547 | { |
fep | 0:5ff20db10a96 | 2548 | /* The delayed list is not empty, get the value of the |
fep | 0:5ff20db10a96 | 2549 | item at the head of the delayed list. This is the time |
fep | 0:5ff20db10a96 | 2550 | at which the task at the head of the delayed list must |
fep | 0:5ff20db10a96 | 2551 | be removed from the Blocked state. */ |
fep | 0:5ff20db10a96 | 2552 | pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); |
fep | 0:5ff20db10a96 | 2553 | xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 2554 | |
fep | 0:5ff20db10a96 | 2555 | if( xConstTickCount < xItemValue ) |
fep | 0:5ff20db10a96 | 2556 | { |
fep | 0:5ff20db10a96 | 2557 | /* It is not time to unblock this item yet, but the |
fep | 0:5ff20db10a96 | 2558 | item value is the time at which the task at the head |
fep | 0:5ff20db10a96 | 2559 | of the blocked list must be removed from the Blocked |
fep | 0:5ff20db10a96 | 2560 | state - so record the item value in |
fep | 0:5ff20db10a96 | 2561 | xNextTaskUnblockTime. */ |
fep | 0:5ff20db10a96 | 2562 | xNextTaskUnblockTime = xItemValue; |
fep | 0:5ff20db10a96 | 2563 | break; |
fep | 0:5ff20db10a96 | 2564 | } |
fep | 0:5ff20db10a96 | 2565 | else |
fep | 0:5ff20db10a96 | 2566 | { |
fep | 0:5ff20db10a96 | 2567 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2568 | } |
fep | 0:5ff20db10a96 | 2569 | |
fep | 0:5ff20db10a96 | 2570 | /* It is time to remove the item from the Blocked state. */ |
fep | 0:5ff20db10a96 | 2571 | ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 2572 | |
fep | 0:5ff20db10a96 | 2573 | /* Is the task waiting on an event also? If so remove |
fep | 0:5ff20db10a96 | 2574 | it from the event list. */ |
fep | 0:5ff20db10a96 | 2575 | if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) |
fep | 0:5ff20db10a96 | 2576 | { |
fep | 0:5ff20db10a96 | 2577 | ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 2578 | } |
fep | 0:5ff20db10a96 | 2579 | else |
fep | 0:5ff20db10a96 | 2580 | { |
fep | 0:5ff20db10a96 | 2581 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2582 | } |
fep | 0:5ff20db10a96 | 2583 | |
fep | 0:5ff20db10a96 | 2584 | /* Place the unblocked task into the appropriate ready |
fep | 0:5ff20db10a96 | 2585 | list. */ |
fep | 0:5ff20db10a96 | 2586 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 2587 | |
fep | 0:5ff20db10a96 | 2588 | /* A task being unblocked cannot cause an immediate |
fep | 0:5ff20db10a96 | 2589 | context switch if preemption is turned off. */ |
fep | 0:5ff20db10a96 | 2590 | #if ( configUSE_PREEMPTION == 1 ) |
fep | 0:5ff20db10a96 | 2591 | { |
fep | 0:5ff20db10a96 | 2592 | /* Preemption is on, but a context switch should |
fep | 0:5ff20db10a96 | 2593 | only be performed if the unblocked task has a |
fep | 0:5ff20db10a96 | 2594 | priority that is equal to or higher than the |
fep | 0:5ff20db10a96 | 2595 | currently executing task. */ |
fep | 0:5ff20db10a96 | 2596 | if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 2597 | { |
fep | 0:5ff20db10a96 | 2598 | xSwitchRequired = pdTRUE; |
fep | 0:5ff20db10a96 | 2599 | } |
fep | 0:5ff20db10a96 | 2600 | else |
fep | 0:5ff20db10a96 | 2601 | { |
fep | 0:5ff20db10a96 | 2602 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2603 | } |
fep | 0:5ff20db10a96 | 2604 | } |
fep | 0:5ff20db10a96 | 2605 | #endif /* configUSE_PREEMPTION */ |
fep | 0:5ff20db10a96 | 2606 | } |
fep | 0:5ff20db10a96 | 2607 | } |
fep | 0:5ff20db10a96 | 2608 | } |
fep | 0:5ff20db10a96 | 2609 | |
fep | 0:5ff20db10a96 | 2610 | /* Tasks of equal priority to the currently running task will share |
fep | 0:5ff20db10a96 | 2611 | processing time (time slice) if preemption is on, and the application |
fep | 0:5ff20db10a96 | 2612 | writer has not explicitly turned time slicing off. */ |
fep | 0:5ff20db10a96 | 2613 | #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) |
fep | 0:5ff20db10a96 | 2614 | { |
fep | 0:5ff20db10a96 | 2615 | if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 ) |
fep | 0:5ff20db10a96 | 2616 | { |
fep | 0:5ff20db10a96 | 2617 | xSwitchRequired = pdTRUE; |
fep | 0:5ff20db10a96 | 2618 | } |
fep | 0:5ff20db10a96 | 2619 | else |
fep | 0:5ff20db10a96 | 2620 | { |
fep | 0:5ff20db10a96 | 2621 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2622 | } |
fep | 0:5ff20db10a96 | 2623 | } |
fep | 0:5ff20db10a96 | 2624 | #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */ |
fep | 0:5ff20db10a96 | 2625 | |
fep | 0:5ff20db10a96 | 2626 | #if ( configUSE_TICK_HOOK == 1 ) |
fep | 0:5ff20db10a96 | 2627 | { |
fep | 0:5ff20db10a96 | 2628 | /* Guard against the tick hook being called when the pended tick |
fep | 0:5ff20db10a96 | 2629 | count is being unwound (when the scheduler is being unlocked). */ |
fep | 0:5ff20db10a96 | 2630 | if( uxPendedTicks == ( UBaseType_t ) 0U ) |
fep | 0:5ff20db10a96 | 2631 | { |
fep | 0:5ff20db10a96 | 2632 | vApplicationTickHook(); |
fep | 0:5ff20db10a96 | 2633 | } |
fep | 0:5ff20db10a96 | 2634 | else |
fep | 0:5ff20db10a96 | 2635 | { |
fep | 0:5ff20db10a96 | 2636 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2637 | } |
fep | 0:5ff20db10a96 | 2638 | } |
fep | 0:5ff20db10a96 | 2639 | #endif /* configUSE_TICK_HOOK */ |
fep | 0:5ff20db10a96 | 2640 | } |
fep | 0:5ff20db10a96 | 2641 | else |
fep | 0:5ff20db10a96 | 2642 | { |
fep | 0:5ff20db10a96 | 2643 | ++uxPendedTicks; |
fep | 0:5ff20db10a96 | 2644 | |
fep | 0:5ff20db10a96 | 2645 | /* The tick hook gets called at regular intervals, even if the |
fep | 0:5ff20db10a96 | 2646 | scheduler is locked. */ |
fep | 0:5ff20db10a96 | 2647 | #if ( configUSE_TICK_HOOK == 1 ) |
fep | 0:5ff20db10a96 | 2648 | { |
fep | 0:5ff20db10a96 | 2649 | vApplicationTickHook(); |
fep | 0:5ff20db10a96 | 2650 | } |
fep | 0:5ff20db10a96 | 2651 | #endif |
fep | 0:5ff20db10a96 | 2652 | } |
fep | 0:5ff20db10a96 | 2653 | |
fep | 0:5ff20db10a96 | 2654 | #if ( configUSE_PREEMPTION == 1 ) |
fep | 0:5ff20db10a96 | 2655 | { |
fep | 0:5ff20db10a96 | 2656 | if( xYieldPending != pdFALSE ) |
fep | 0:5ff20db10a96 | 2657 | { |
fep | 0:5ff20db10a96 | 2658 | xSwitchRequired = pdTRUE; |
fep | 0:5ff20db10a96 | 2659 | } |
fep | 0:5ff20db10a96 | 2660 | else |
fep | 0:5ff20db10a96 | 2661 | { |
fep | 0:5ff20db10a96 | 2662 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2663 | } |
fep | 0:5ff20db10a96 | 2664 | } |
fep | 0:5ff20db10a96 | 2665 | #endif /* configUSE_PREEMPTION */ |
fep | 0:5ff20db10a96 | 2666 | |
fep | 0:5ff20db10a96 | 2667 | return xSwitchRequired; |
fep | 0:5ff20db10a96 | 2668 | } |
fep | 0:5ff20db10a96 | 2669 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2670 | |
fep | 0:5ff20db10a96 | 2671 | #if ( configUSE_APPLICATION_TASK_TAG == 1 ) |
fep | 0:5ff20db10a96 | 2672 | |
fep | 0:5ff20db10a96 | 2673 | void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction ) |
fep | 0:5ff20db10a96 | 2674 | { |
fep | 0:5ff20db10a96 | 2675 | TCB_t *xTCB; |
fep | 0:5ff20db10a96 | 2676 | |
fep | 0:5ff20db10a96 | 2677 | /* If xTask is NULL then it is the task hook of the calling task that is |
fep | 0:5ff20db10a96 | 2678 | getting set. */ |
fep | 0:5ff20db10a96 | 2679 | if( xTask == NULL ) |
fep | 0:5ff20db10a96 | 2680 | { |
fep | 0:5ff20db10a96 | 2681 | xTCB = ( TCB_t * ) pxCurrentTCB; |
fep | 0:5ff20db10a96 | 2682 | } |
fep | 0:5ff20db10a96 | 2683 | else |
fep | 0:5ff20db10a96 | 2684 | { |
fep | 0:5ff20db10a96 | 2685 | xTCB = ( TCB_t * ) xTask; |
fep | 0:5ff20db10a96 | 2686 | } |
fep | 0:5ff20db10a96 | 2687 | |
fep | 0:5ff20db10a96 | 2688 | /* Save the hook function in the TCB. A critical section is required as |
fep | 0:5ff20db10a96 | 2689 | the value can be accessed from an interrupt. */ |
fep | 0:5ff20db10a96 | 2690 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 2691 | xTCB->pxTaskTag = pxHookFunction; |
fep | 0:5ff20db10a96 | 2692 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 2693 | } |
fep | 0:5ff20db10a96 | 2694 | |
fep | 0:5ff20db10a96 | 2695 | #endif /* configUSE_APPLICATION_TASK_TAG */ |
fep | 0:5ff20db10a96 | 2696 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2697 | |
fep | 0:5ff20db10a96 | 2698 | #if ( configUSE_APPLICATION_TASK_TAG == 1 ) |
fep | 0:5ff20db10a96 | 2699 | |
fep | 0:5ff20db10a96 | 2700 | TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) |
fep | 0:5ff20db10a96 | 2701 | { |
fep | 0:5ff20db10a96 | 2702 | TCB_t *xTCB; |
fep | 0:5ff20db10a96 | 2703 | TaskHookFunction_t xReturn; |
fep | 0:5ff20db10a96 | 2704 | |
fep | 0:5ff20db10a96 | 2705 | /* If xTask is NULL then we are setting our own task hook. */ |
fep | 0:5ff20db10a96 | 2706 | if( xTask == NULL ) |
fep | 0:5ff20db10a96 | 2707 | { |
fep | 0:5ff20db10a96 | 2708 | xTCB = ( TCB_t * ) pxCurrentTCB; |
fep | 0:5ff20db10a96 | 2709 | } |
fep | 0:5ff20db10a96 | 2710 | else |
fep | 0:5ff20db10a96 | 2711 | { |
fep | 0:5ff20db10a96 | 2712 | xTCB = ( TCB_t * ) xTask; |
fep | 0:5ff20db10a96 | 2713 | } |
fep | 0:5ff20db10a96 | 2714 | |
fep | 0:5ff20db10a96 | 2715 | /* Save the hook function in the TCB. A critical section is required as |
fep | 0:5ff20db10a96 | 2716 | the value can be accessed from an interrupt. */ |
fep | 0:5ff20db10a96 | 2717 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 2718 | { |
fep | 0:5ff20db10a96 | 2719 | xReturn = xTCB->pxTaskTag; |
fep | 0:5ff20db10a96 | 2720 | } |
fep | 0:5ff20db10a96 | 2721 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 2722 | |
fep | 0:5ff20db10a96 | 2723 | return xReturn; |
fep | 0:5ff20db10a96 | 2724 | } |
fep | 0:5ff20db10a96 | 2725 | |
fep | 0:5ff20db10a96 | 2726 | #endif /* configUSE_APPLICATION_TASK_TAG */ |
fep | 0:5ff20db10a96 | 2727 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2728 | |
fep | 0:5ff20db10a96 | 2729 | #if ( configUSE_APPLICATION_TASK_TAG == 1 ) |
fep | 0:5ff20db10a96 | 2730 | |
fep | 0:5ff20db10a96 | 2731 | BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter ) |
fep | 0:5ff20db10a96 | 2732 | { |
fep | 0:5ff20db10a96 | 2733 | TCB_t *xTCB; |
fep | 0:5ff20db10a96 | 2734 | BaseType_t xReturn; |
fep | 0:5ff20db10a96 | 2735 | |
fep | 0:5ff20db10a96 | 2736 | /* If xTask is NULL then we are calling our own task hook. */ |
fep | 0:5ff20db10a96 | 2737 | if( xTask == NULL ) |
fep | 0:5ff20db10a96 | 2738 | { |
fep | 0:5ff20db10a96 | 2739 | xTCB = ( TCB_t * ) pxCurrentTCB; |
fep | 0:5ff20db10a96 | 2740 | } |
fep | 0:5ff20db10a96 | 2741 | else |
fep | 0:5ff20db10a96 | 2742 | { |
fep | 0:5ff20db10a96 | 2743 | xTCB = ( TCB_t * ) xTask; |
fep | 0:5ff20db10a96 | 2744 | } |
fep | 0:5ff20db10a96 | 2745 | |
fep | 0:5ff20db10a96 | 2746 | if( xTCB->pxTaskTag != NULL ) |
fep | 0:5ff20db10a96 | 2747 | { |
fep | 0:5ff20db10a96 | 2748 | xReturn = xTCB->pxTaskTag( pvParameter ); |
fep | 0:5ff20db10a96 | 2749 | } |
fep | 0:5ff20db10a96 | 2750 | else |
fep | 0:5ff20db10a96 | 2751 | { |
fep | 0:5ff20db10a96 | 2752 | xReturn = pdFAIL; |
fep | 0:5ff20db10a96 | 2753 | } |
fep | 0:5ff20db10a96 | 2754 | |
fep | 0:5ff20db10a96 | 2755 | return xReturn; |
fep | 0:5ff20db10a96 | 2756 | } |
fep | 0:5ff20db10a96 | 2757 | |
fep | 0:5ff20db10a96 | 2758 | #endif /* configUSE_APPLICATION_TASK_TAG */ |
fep | 0:5ff20db10a96 | 2759 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2760 | |
fep | 0:5ff20db10a96 | 2761 | void vTaskSwitchContext( void ) |
fep | 0:5ff20db10a96 | 2762 | { |
fep | 0:5ff20db10a96 | 2763 | if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE ) |
fep | 0:5ff20db10a96 | 2764 | { |
fep | 0:5ff20db10a96 | 2765 | /* The scheduler is currently suspended - do not allow a context |
fep | 0:5ff20db10a96 | 2766 | switch. */ |
fep | 0:5ff20db10a96 | 2767 | xYieldPending = pdTRUE; |
fep | 0:5ff20db10a96 | 2768 | } |
fep | 0:5ff20db10a96 | 2769 | else |
fep | 0:5ff20db10a96 | 2770 | { |
fep | 0:5ff20db10a96 | 2771 | xYieldPending = pdFALSE; |
fep | 0:5ff20db10a96 | 2772 | traceTASK_SWITCHED_OUT(); |
fep | 0:5ff20db10a96 | 2773 | |
fep | 0:5ff20db10a96 | 2774 | #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
fep | 0:5ff20db10a96 | 2775 | { |
fep | 0:5ff20db10a96 | 2776 | #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE |
fep | 0:5ff20db10a96 | 2777 | portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime ); |
fep | 0:5ff20db10a96 | 2778 | #else |
fep | 0:5ff20db10a96 | 2779 | ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); |
fep | 0:5ff20db10a96 | 2780 | #endif |
fep | 0:5ff20db10a96 | 2781 | |
fep | 0:5ff20db10a96 | 2782 | /* Add the amount of time the task has been running to the |
fep | 0:5ff20db10a96 | 2783 | accumulated time so far. The time the task started running was |
fep | 0:5ff20db10a96 | 2784 | stored in ulTaskSwitchedInTime. Note that there is no overflow |
fep | 0:5ff20db10a96 | 2785 | protection here so count values are only valid until the timer |
fep | 0:5ff20db10a96 | 2786 | overflows. The guard against negative values is to protect |
fep | 0:5ff20db10a96 | 2787 | against suspect run time stat counter implementations - which |
fep | 0:5ff20db10a96 | 2788 | are provided by the application, not the kernel. */ |
fep | 0:5ff20db10a96 | 2789 | if( ulTotalRunTime > ulTaskSwitchedInTime ) |
fep | 0:5ff20db10a96 | 2790 | { |
fep | 0:5ff20db10a96 | 2791 | pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime ); |
fep | 0:5ff20db10a96 | 2792 | } |
fep | 0:5ff20db10a96 | 2793 | else |
fep | 0:5ff20db10a96 | 2794 | { |
fep | 0:5ff20db10a96 | 2795 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 2796 | } |
fep | 0:5ff20db10a96 | 2797 | ulTaskSwitchedInTime = ulTotalRunTime; |
fep | 0:5ff20db10a96 | 2798 | } |
fep | 0:5ff20db10a96 | 2799 | #endif /* configGENERATE_RUN_TIME_STATS */ |
fep | 0:5ff20db10a96 | 2800 | |
fep | 0:5ff20db10a96 | 2801 | /* Check for stack overflow, if configured. */ |
fep | 0:5ff20db10a96 | 2802 | taskCHECK_FOR_STACK_OVERFLOW(); |
fep | 0:5ff20db10a96 | 2803 | |
fep | 0:5ff20db10a96 | 2804 | /* Select a new task to run using either the generic C or port |
fep | 0:5ff20db10a96 | 2805 | optimised asm code. */ |
fep | 0:5ff20db10a96 | 2806 | taskSELECT_HIGHEST_PRIORITY_TASK(); |
fep | 0:5ff20db10a96 | 2807 | traceTASK_SWITCHED_IN(); |
fep | 0:5ff20db10a96 | 2808 | |
fep | 0:5ff20db10a96 | 2809 | #if ( configUSE_NEWLIB_REENTRANT == 1 ) |
fep | 0:5ff20db10a96 | 2810 | { |
fep | 0:5ff20db10a96 | 2811 | /* Switch Newlib's _impure_ptr variable to point to the _reent |
fep | 0:5ff20db10a96 | 2812 | structure specific to this task. */ |
fep | 0:5ff20db10a96 | 2813 | _impure_ptr = &( pxCurrentTCB->xNewLib_reent ); |
fep | 0:5ff20db10a96 | 2814 | } |
fep | 0:5ff20db10a96 | 2815 | #endif /* configUSE_NEWLIB_REENTRANT */ |
fep | 0:5ff20db10a96 | 2816 | } |
fep | 0:5ff20db10a96 | 2817 | } |
fep | 0:5ff20db10a96 | 2818 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2819 | |
fep | 0:5ff20db10a96 | 2820 | void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait ) |
fep | 0:5ff20db10a96 | 2821 | { |
fep | 0:5ff20db10a96 | 2822 | configASSERT( pxEventList ); |
fep | 0:5ff20db10a96 | 2823 | |
fep | 0:5ff20db10a96 | 2824 | /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE |
fep | 0:5ff20db10a96 | 2825 | SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */ |
fep | 0:5ff20db10a96 | 2826 | |
fep | 0:5ff20db10a96 | 2827 | /* Place the event list item of the TCB in the appropriate event list. |
fep | 0:5ff20db10a96 | 2828 | This is placed in the list in priority order so the highest priority task |
fep | 0:5ff20db10a96 | 2829 | is the first to be woken by the event. The queue that contains the event |
fep | 0:5ff20db10a96 | 2830 | list is locked, preventing simultaneous access from interrupts. */ |
fep | 0:5ff20db10a96 | 2831 | vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 2832 | |
fep | 0:5ff20db10a96 | 2833 | prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); |
fep | 0:5ff20db10a96 | 2834 | } |
fep | 0:5ff20db10a96 | 2835 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2836 | |
fep | 0:5ff20db10a96 | 2837 | void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait ) |
fep | 0:5ff20db10a96 | 2838 | { |
fep | 0:5ff20db10a96 | 2839 | configASSERT( pxEventList ); |
fep | 0:5ff20db10a96 | 2840 | |
fep | 0:5ff20db10a96 | 2841 | /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by |
fep | 0:5ff20db10a96 | 2842 | the event groups implementation. */ |
fep | 0:5ff20db10a96 | 2843 | configASSERT( uxSchedulerSuspended != 0 ); |
fep | 0:5ff20db10a96 | 2844 | |
fep | 0:5ff20db10a96 | 2845 | /* Store the item value in the event list item. It is safe to access the |
fep | 0:5ff20db10a96 | 2846 | event list item here as interrupts won't access the event list item of a |
fep | 0:5ff20db10a96 | 2847 | task that is not in the Blocked state. */ |
fep | 0:5ff20db10a96 | 2848 | listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); |
fep | 0:5ff20db10a96 | 2849 | |
fep | 0:5ff20db10a96 | 2850 | /* Place the event list item of the TCB at the end of the appropriate event |
fep | 0:5ff20db10a96 | 2851 | list. It is safe to access the event list here because it is part of an |
fep | 0:5ff20db10a96 | 2852 | event group implementation - and interrupts don't access event groups |
fep | 0:5ff20db10a96 | 2853 | directly (instead they access them indirectly by pending function calls to |
fep | 0:5ff20db10a96 | 2854 | the task level). */ |
fep | 0:5ff20db10a96 | 2855 | vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 2856 | |
fep | 0:5ff20db10a96 | 2857 | prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); |
fep | 0:5ff20db10a96 | 2858 | } |
fep | 0:5ff20db10a96 | 2859 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2860 | |
fep | 0:5ff20db10a96 | 2861 | #if( configUSE_TIMERS == 1 ) |
fep | 0:5ff20db10a96 | 2862 | |
fep | 0:5ff20db10a96 | 2863 | void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) |
fep | 0:5ff20db10a96 | 2864 | { |
fep | 0:5ff20db10a96 | 2865 | configASSERT( pxEventList ); |
fep | 0:5ff20db10a96 | 2866 | |
fep | 0:5ff20db10a96 | 2867 | /* This function should not be called by application code hence the |
fep | 0:5ff20db10a96 | 2868 | 'Restricted' in its name. It is not part of the public API. It is |
fep | 0:5ff20db10a96 | 2869 | designed for use by kernel code, and has special calling requirements - |
fep | 0:5ff20db10a96 | 2870 | it should be called with the scheduler suspended. */ |
fep | 0:5ff20db10a96 | 2871 | |
fep | 0:5ff20db10a96 | 2872 | |
fep | 0:5ff20db10a96 | 2873 | /* Place the event list item of the TCB in the appropriate event list. |
fep | 0:5ff20db10a96 | 2874 | In this case it is assume that this is the only task that is going to |
fep | 0:5ff20db10a96 | 2875 | be waiting on this event list, so the faster vListInsertEnd() function |
fep | 0:5ff20db10a96 | 2876 | can be used in place of vListInsert. */ |
fep | 0:5ff20db10a96 | 2877 | vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 2878 | |
fep | 0:5ff20db10a96 | 2879 | /* If the task should block indefinitely then set the block time to a |
fep | 0:5ff20db10a96 | 2880 | value that will be recognised as an indefinite delay inside the |
fep | 0:5ff20db10a96 | 2881 | prvAddCurrentTaskToDelayedList() function. */ |
fep | 0:5ff20db10a96 | 2882 | if( xWaitIndefinitely != pdFALSE ) |
fep | 0:5ff20db10a96 | 2883 | { |
fep | 0:5ff20db10a96 | 2884 | xTicksToWait = portMAX_DELAY; |
fep | 0:5ff20db10a96 | 2885 | } |
fep | 0:5ff20db10a96 | 2886 | |
fep | 0:5ff20db10a96 | 2887 | traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) ); |
fep | 0:5ff20db10a96 | 2888 | prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely ); |
fep | 0:5ff20db10a96 | 2889 | } |
fep | 0:5ff20db10a96 | 2890 | |
fep | 0:5ff20db10a96 | 2891 | #endif /* configUSE_TIMERS */ |
fep | 0:5ff20db10a96 | 2892 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2893 | |
fep | 0:5ff20db10a96 | 2894 | BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) |
fep | 0:5ff20db10a96 | 2895 | { |
fep | 0:5ff20db10a96 | 2896 | TCB_t *pxUnblockedTCB; |
fep | 0:5ff20db10a96 | 2897 | BaseType_t xReturn; |
fep | 0:5ff20db10a96 | 2898 | |
fep | 0:5ff20db10a96 | 2899 | /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be |
fep | 0:5ff20db10a96 | 2900 | called from a critical section within an ISR. */ |
fep | 0:5ff20db10a96 | 2901 | |
fep | 0:5ff20db10a96 | 2902 | /* The event list is sorted in priority order, so the first in the list can |
fep | 0:5ff20db10a96 | 2903 | be removed as it is known to be the highest priority. Remove the TCB from |
fep | 0:5ff20db10a96 | 2904 | the delayed list, and add it to the ready list. |
fep | 0:5ff20db10a96 | 2905 | |
fep | 0:5ff20db10a96 | 2906 | If an event is for a queue that is locked then this function will never |
fep | 0:5ff20db10a96 | 2907 | get called - the lock count on the queue will get modified instead. This |
fep | 0:5ff20db10a96 | 2908 | means exclusive access to the event list is guaranteed here. |
fep | 0:5ff20db10a96 | 2909 | |
fep | 0:5ff20db10a96 | 2910 | This function assumes that a check has already been made to ensure that |
fep | 0:5ff20db10a96 | 2911 | pxEventList is not empty. */ |
fep | 0:5ff20db10a96 | 2912 | pxUnblockedTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); |
fep | 0:5ff20db10a96 | 2913 | configASSERT( pxUnblockedTCB ); |
fep | 0:5ff20db10a96 | 2914 | ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 2915 | |
fep | 0:5ff20db10a96 | 2916 | if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) |
fep | 0:5ff20db10a96 | 2917 | { |
fep | 0:5ff20db10a96 | 2918 | ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 2919 | prvAddTaskToReadyList( pxUnblockedTCB ); |
fep | 0:5ff20db10a96 | 2920 | } |
fep | 0:5ff20db10a96 | 2921 | else |
fep | 0:5ff20db10a96 | 2922 | { |
fep | 0:5ff20db10a96 | 2923 | /* The delayed and ready lists cannot be accessed, so hold this task |
fep | 0:5ff20db10a96 | 2924 | pending until the scheduler is resumed. */ |
fep | 0:5ff20db10a96 | 2925 | vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 2926 | } |
fep | 0:5ff20db10a96 | 2927 | |
fep | 0:5ff20db10a96 | 2928 | if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 2929 | { |
fep | 0:5ff20db10a96 | 2930 | /* Return true if the task removed from the event list has a higher |
fep | 0:5ff20db10a96 | 2931 | priority than the calling task. This allows the calling task to know if |
fep | 0:5ff20db10a96 | 2932 | it should force a context switch now. */ |
fep | 0:5ff20db10a96 | 2933 | xReturn = pdTRUE; |
fep | 0:5ff20db10a96 | 2934 | |
fep | 0:5ff20db10a96 | 2935 | /* Mark that a yield is pending in case the user is not using the |
fep | 0:5ff20db10a96 | 2936 | "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ |
fep | 0:5ff20db10a96 | 2937 | xYieldPending = pdTRUE; |
fep | 0:5ff20db10a96 | 2938 | } |
fep | 0:5ff20db10a96 | 2939 | else |
fep | 0:5ff20db10a96 | 2940 | { |
fep | 0:5ff20db10a96 | 2941 | xReturn = pdFALSE; |
fep | 0:5ff20db10a96 | 2942 | } |
fep | 0:5ff20db10a96 | 2943 | |
fep | 0:5ff20db10a96 | 2944 | #if( configUSE_TICKLESS_IDLE != 0 ) |
fep | 0:5ff20db10a96 | 2945 | { |
fep | 0:5ff20db10a96 | 2946 | /* If a task is blocked on a kernel object then xNextTaskUnblockTime |
fep | 0:5ff20db10a96 | 2947 | might be set to the blocked task's time out time. If the task is |
fep | 0:5ff20db10a96 | 2948 | unblocked for a reason other than a timeout xNextTaskUnblockTime is |
fep | 0:5ff20db10a96 | 2949 | normally left unchanged, because it is automatically reset to a new |
fep | 0:5ff20db10a96 | 2950 | value when the tick count equals xNextTaskUnblockTime. However if |
fep | 0:5ff20db10a96 | 2951 | tickless idling is used it might be more important to enter sleep mode |
fep | 0:5ff20db10a96 | 2952 | at the earliest possible time - so reset xNextTaskUnblockTime here to |
fep | 0:5ff20db10a96 | 2953 | ensure it is updated at the earliest possible time. */ |
fep | 0:5ff20db10a96 | 2954 | prvResetNextTaskUnblockTime(); |
fep | 0:5ff20db10a96 | 2955 | } |
fep | 0:5ff20db10a96 | 2956 | #endif |
fep | 0:5ff20db10a96 | 2957 | |
fep | 0:5ff20db10a96 | 2958 | return xReturn; |
fep | 0:5ff20db10a96 | 2959 | } |
fep | 0:5ff20db10a96 | 2960 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 2961 | |
fep | 0:5ff20db10a96 | 2962 | BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue ) |
fep | 0:5ff20db10a96 | 2963 | { |
fep | 0:5ff20db10a96 | 2964 | TCB_t *pxUnblockedTCB; |
fep | 0:5ff20db10a96 | 2965 | BaseType_t xReturn; |
fep | 0:5ff20db10a96 | 2966 | |
fep | 0:5ff20db10a96 | 2967 | /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by |
fep | 0:5ff20db10a96 | 2968 | the event flags implementation. */ |
fep | 0:5ff20db10a96 | 2969 | configASSERT( uxSchedulerSuspended != pdFALSE ); |
fep | 0:5ff20db10a96 | 2970 | |
fep | 0:5ff20db10a96 | 2971 | /* Store the new item value in the event list. */ |
fep | 0:5ff20db10a96 | 2972 | listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); |
fep | 0:5ff20db10a96 | 2973 | |
fep | 0:5ff20db10a96 | 2974 | /* Remove the event list form the event flag. Interrupts do not access |
fep | 0:5ff20db10a96 | 2975 | event flags. */ |
fep | 0:5ff20db10a96 | 2976 | pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem ); |
fep | 0:5ff20db10a96 | 2977 | configASSERT( pxUnblockedTCB ); |
fep | 0:5ff20db10a96 | 2978 | ( void ) uxListRemove( pxEventListItem ); |
fep | 0:5ff20db10a96 | 2979 | |
fep | 0:5ff20db10a96 | 2980 | /* Remove the task from the delayed list and add it to the ready list. The |
fep | 0:5ff20db10a96 | 2981 | scheduler is suspended so interrupts will not be accessing the ready |
fep | 0:5ff20db10a96 | 2982 | lists. */ |
fep | 0:5ff20db10a96 | 2983 | ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 2984 | prvAddTaskToReadyList( pxUnblockedTCB ); |
fep | 0:5ff20db10a96 | 2985 | |
fep | 0:5ff20db10a96 | 2986 | if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 2987 | { |
fep | 0:5ff20db10a96 | 2988 | /* Return true if the task removed from the event list has |
fep | 0:5ff20db10a96 | 2989 | a higher priority than the calling task. This allows |
fep | 0:5ff20db10a96 | 2990 | the calling task to know if it should force a context |
fep | 0:5ff20db10a96 | 2991 | switch now. */ |
fep | 0:5ff20db10a96 | 2992 | xReturn = pdTRUE; |
fep | 0:5ff20db10a96 | 2993 | |
fep | 0:5ff20db10a96 | 2994 | /* Mark that a yield is pending in case the user is not using the |
fep | 0:5ff20db10a96 | 2995 | "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ |
fep | 0:5ff20db10a96 | 2996 | xYieldPending = pdTRUE; |
fep | 0:5ff20db10a96 | 2997 | } |
fep | 0:5ff20db10a96 | 2998 | else |
fep | 0:5ff20db10a96 | 2999 | { |
fep | 0:5ff20db10a96 | 3000 | xReturn = pdFALSE; |
fep | 0:5ff20db10a96 | 3001 | } |
fep | 0:5ff20db10a96 | 3002 | |
fep | 0:5ff20db10a96 | 3003 | return xReturn; |
fep | 0:5ff20db10a96 | 3004 | } |
fep | 0:5ff20db10a96 | 3005 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3006 | |
fep | 0:5ff20db10a96 | 3007 | void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) |
fep | 0:5ff20db10a96 | 3008 | { |
fep | 0:5ff20db10a96 | 3009 | configASSERT( pxTimeOut ); |
fep | 0:5ff20db10a96 | 3010 | pxTimeOut->xOverflowCount = xNumOfOverflows; |
fep | 0:5ff20db10a96 | 3011 | pxTimeOut->xTimeOnEntering = xTickCount; |
fep | 0:5ff20db10a96 | 3012 | } |
fep | 0:5ff20db10a96 | 3013 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3014 | |
fep | 0:5ff20db10a96 | 3015 | BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait ) |
fep | 0:5ff20db10a96 | 3016 | { |
fep | 0:5ff20db10a96 | 3017 | BaseType_t xReturn; |
fep | 0:5ff20db10a96 | 3018 | |
fep | 0:5ff20db10a96 | 3019 | configASSERT( pxTimeOut ); |
fep | 0:5ff20db10a96 | 3020 | configASSERT( pxTicksToWait ); |
fep | 0:5ff20db10a96 | 3021 | |
fep | 0:5ff20db10a96 | 3022 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 3023 | { |
fep | 0:5ff20db10a96 | 3024 | /* Minor optimisation. The tick count cannot change in this block. */ |
fep | 0:5ff20db10a96 | 3025 | const TickType_t xConstTickCount = xTickCount; |
fep | 0:5ff20db10a96 | 3026 | |
fep | 0:5ff20db10a96 | 3027 | #if( INCLUDE_xTaskAbortDelay == 1 ) |
fep | 0:5ff20db10a96 | 3028 | if( pxCurrentTCB->ucDelayAborted != pdFALSE ) |
fep | 0:5ff20db10a96 | 3029 | { |
fep | 0:5ff20db10a96 | 3030 | /* The delay was aborted, which is not the same as a time out, |
fep | 0:5ff20db10a96 | 3031 | but has the same result. */ |
fep | 0:5ff20db10a96 | 3032 | pxCurrentTCB->ucDelayAborted = pdFALSE; |
fep | 0:5ff20db10a96 | 3033 | xReturn = pdTRUE; |
fep | 0:5ff20db10a96 | 3034 | } |
fep | 0:5ff20db10a96 | 3035 | else |
fep | 0:5ff20db10a96 | 3036 | #endif |
fep | 0:5ff20db10a96 | 3037 | |
fep | 0:5ff20db10a96 | 3038 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 3039 | if( *pxTicksToWait == portMAX_DELAY ) |
fep | 0:5ff20db10a96 | 3040 | { |
fep | 0:5ff20db10a96 | 3041 | /* If INCLUDE_vTaskSuspend is set to 1 and the block time |
fep | 0:5ff20db10a96 | 3042 | specified is the maximum block time then the task should block |
fep | 0:5ff20db10a96 | 3043 | indefinitely, and therefore never time out. */ |
fep | 0:5ff20db10a96 | 3044 | xReturn = pdFALSE; |
fep | 0:5ff20db10a96 | 3045 | } |
fep | 0:5ff20db10a96 | 3046 | else |
fep | 0:5ff20db10a96 | 3047 | #endif |
fep | 0:5ff20db10a96 | 3048 | |
fep | 0:5ff20db10a96 | 3049 | if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */ |
fep | 0:5ff20db10a96 | 3050 | { |
fep | 0:5ff20db10a96 | 3051 | /* The tick count is greater than the time at which |
fep | 0:5ff20db10a96 | 3052 | vTaskSetTimeout() was called, but has also overflowed since |
fep | 0:5ff20db10a96 | 3053 | vTaskSetTimeOut() was called. It must have wrapped all the way |
fep | 0:5ff20db10a96 | 3054 | around and gone past again. This passed since vTaskSetTimeout() |
fep | 0:5ff20db10a96 | 3055 | was called. */ |
fep | 0:5ff20db10a96 | 3056 | xReturn = pdTRUE; |
fep | 0:5ff20db10a96 | 3057 | } |
fep | 0:5ff20db10a96 | 3058 | else if( ( ( TickType_t ) ( xConstTickCount - pxTimeOut->xTimeOnEntering ) ) < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */ |
fep | 0:5ff20db10a96 | 3059 | { |
fep | 0:5ff20db10a96 | 3060 | /* Not a genuine timeout. Adjust parameters for time remaining. */ |
fep | 0:5ff20db10a96 | 3061 | *pxTicksToWait -= ( xConstTickCount - pxTimeOut->xTimeOnEntering ); |
fep | 0:5ff20db10a96 | 3062 | vTaskSetTimeOutState( pxTimeOut ); |
fep | 0:5ff20db10a96 | 3063 | xReturn = pdFALSE; |
fep | 0:5ff20db10a96 | 3064 | } |
fep | 0:5ff20db10a96 | 3065 | else |
fep | 0:5ff20db10a96 | 3066 | { |
fep | 0:5ff20db10a96 | 3067 | xReturn = pdTRUE; |
fep | 0:5ff20db10a96 | 3068 | } |
fep | 0:5ff20db10a96 | 3069 | } |
fep | 0:5ff20db10a96 | 3070 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 3071 | |
fep | 0:5ff20db10a96 | 3072 | return xReturn; |
fep | 0:5ff20db10a96 | 3073 | } |
fep | 0:5ff20db10a96 | 3074 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3075 | |
fep | 0:5ff20db10a96 | 3076 | void vTaskMissedYield( void ) |
fep | 0:5ff20db10a96 | 3077 | { |
fep | 0:5ff20db10a96 | 3078 | xYieldPending = pdTRUE; |
fep | 0:5ff20db10a96 | 3079 | } |
fep | 0:5ff20db10a96 | 3080 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3081 | |
fep | 0:5ff20db10a96 | 3082 | #if ( configUSE_TRACE_FACILITY == 1 ) |
fep | 0:5ff20db10a96 | 3083 | |
fep | 0:5ff20db10a96 | 3084 | UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) |
fep | 0:5ff20db10a96 | 3085 | { |
fep | 0:5ff20db10a96 | 3086 | UBaseType_t uxReturn; |
fep | 0:5ff20db10a96 | 3087 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 3088 | |
fep | 0:5ff20db10a96 | 3089 | if( xTask != NULL ) |
fep | 0:5ff20db10a96 | 3090 | { |
fep | 0:5ff20db10a96 | 3091 | pxTCB = ( TCB_t * ) xTask; |
fep | 0:5ff20db10a96 | 3092 | uxReturn = pxTCB->uxTaskNumber; |
fep | 0:5ff20db10a96 | 3093 | } |
fep | 0:5ff20db10a96 | 3094 | else |
fep | 0:5ff20db10a96 | 3095 | { |
fep | 0:5ff20db10a96 | 3096 | uxReturn = 0U; |
fep | 0:5ff20db10a96 | 3097 | } |
fep | 0:5ff20db10a96 | 3098 | |
fep | 0:5ff20db10a96 | 3099 | return uxReturn; |
fep | 0:5ff20db10a96 | 3100 | } |
fep | 0:5ff20db10a96 | 3101 | |
fep | 0:5ff20db10a96 | 3102 | #endif /* configUSE_TRACE_FACILITY */ |
fep | 0:5ff20db10a96 | 3103 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3104 | |
fep | 0:5ff20db10a96 | 3105 | #if ( configUSE_TRACE_FACILITY == 1 ) |
fep | 0:5ff20db10a96 | 3106 | |
fep | 0:5ff20db10a96 | 3107 | void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle ) |
fep | 0:5ff20db10a96 | 3108 | { |
fep | 0:5ff20db10a96 | 3109 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 3110 | |
fep | 0:5ff20db10a96 | 3111 | if( xTask != NULL ) |
fep | 0:5ff20db10a96 | 3112 | { |
fep | 0:5ff20db10a96 | 3113 | pxTCB = ( TCB_t * ) xTask; |
fep | 0:5ff20db10a96 | 3114 | pxTCB->uxTaskNumber = uxHandle; |
fep | 0:5ff20db10a96 | 3115 | } |
fep | 0:5ff20db10a96 | 3116 | } |
fep | 0:5ff20db10a96 | 3117 | |
fep | 0:5ff20db10a96 | 3118 | #endif /* configUSE_TRACE_FACILITY */ |
fep | 0:5ff20db10a96 | 3119 | |
fep | 0:5ff20db10a96 | 3120 | /* |
fep | 0:5ff20db10a96 | 3121 | * ----------------------------------------------------------- |
fep | 0:5ff20db10a96 | 3122 | * The Idle task. |
fep | 0:5ff20db10a96 | 3123 | * ---------------------------------------------------------- |
fep | 0:5ff20db10a96 | 3124 | * |
fep | 0:5ff20db10a96 | 3125 | * The portTASK_FUNCTION() macro is used to allow port/compiler specific |
fep | 0:5ff20db10a96 | 3126 | * language extensions. The equivalent prototype for this function is: |
fep | 0:5ff20db10a96 | 3127 | * |
fep | 0:5ff20db10a96 | 3128 | * void prvIdleTask( void *pvParameters ); |
fep | 0:5ff20db10a96 | 3129 | * |
fep | 0:5ff20db10a96 | 3130 | */ |
fep | 0:5ff20db10a96 | 3131 | static portTASK_FUNCTION( prvIdleTask, pvParameters ) |
fep | 0:5ff20db10a96 | 3132 | { |
fep | 0:5ff20db10a96 | 3133 | /* Stop warnings. */ |
fep | 0:5ff20db10a96 | 3134 | ( void ) pvParameters; |
fep | 0:5ff20db10a96 | 3135 | |
fep | 0:5ff20db10a96 | 3136 | /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE |
fep | 0:5ff20db10a96 | 3137 | SCHEDULER IS STARTED. **/ |
fep | 0:5ff20db10a96 | 3138 | |
fep | 0:5ff20db10a96 | 3139 | for( ;; ) |
fep | 0:5ff20db10a96 | 3140 | { |
fep | 0:5ff20db10a96 | 3141 | /* See if any tasks have deleted themselves - if so then the idle task |
fep | 0:5ff20db10a96 | 3142 | is responsible for freeing the deleted task's TCB and stack. */ |
fep | 0:5ff20db10a96 | 3143 | prvCheckTasksWaitingTermination(); |
fep | 0:5ff20db10a96 | 3144 | |
fep | 0:5ff20db10a96 | 3145 | #if ( configUSE_PREEMPTION == 0 ) |
fep | 0:5ff20db10a96 | 3146 | { |
fep | 0:5ff20db10a96 | 3147 | /* If we are not using preemption we keep forcing a task switch to |
fep | 0:5ff20db10a96 | 3148 | see if any other task has become available. If we are using |
fep | 0:5ff20db10a96 | 3149 | preemption we don't need to do this as any task becoming available |
fep | 0:5ff20db10a96 | 3150 | will automatically get the processor anyway. */ |
fep | 0:5ff20db10a96 | 3151 | taskYIELD(); |
fep | 0:5ff20db10a96 | 3152 | } |
fep | 0:5ff20db10a96 | 3153 | #endif /* configUSE_PREEMPTION */ |
fep | 0:5ff20db10a96 | 3154 | |
fep | 0:5ff20db10a96 | 3155 | #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) |
fep | 0:5ff20db10a96 | 3156 | { |
fep | 0:5ff20db10a96 | 3157 | /* When using preemption tasks of equal priority will be |
fep | 0:5ff20db10a96 | 3158 | timesliced. If a task that is sharing the idle priority is ready |
fep | 0:5ff20db10a96 | 3159 | to run then the idle task should yield before the end of the |
fep | 0:5ff20db10a96 | 3160 | timeslice. |
fep | 0:5ff20db10a96 | 3161 | |
fep | 0:5ff20db10a96 | 3162 | A critical region is not required here as we are just reading from |
fep | 0:5ff20db10a96 | 3163 | the list, and an occasional incorrect value will not matter. If |
fep | 0:5ff20db10a96 | 3164 | the ready list at the idle priority contains more than one task |
fep | 0:5ff20db10a96 | 3165 | then a task other than the idle task is ready to execute. */ |
fep | 0:5ff20db10a96 | 3166 | if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 ) |
fep | 0:5ff20db10a96 | 3167 | { |
fep | 0:5ff20db10a96 | 3168 | taskYIELD(); |
fep | 0:5ff20db10a96 | 3169 | } |
fep | 0:5ff20db10a96 | 3170 | else |
fep | 0:5ff20db10a96 | 3171 | { |
fep | 0:5ff20db10a96 | 3172 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3173 | } |
fep | 0:5ff20db10a96 | 3174 | } |
fep | 0:5ff20db10a96 | 3175 | #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */ |
fep | 0:5ff20db10a96 | 3176 | |
fep | 0:5ff20db10a96 | 3177 | #if ( configUSE_IDLE_HOOK == 1 ) |
fep | 0:5ff20db10a96 | 3178 | { |
fep | 0:5ff20db10a96 | 3179 | extern void vApplicationIdleHook( void ); |
fep | 0:5ff20db10a96 | 3180 | |
fep | 0:5ff20db10a96 | 3181 | /* Call the user defined function from within the idle task. This |
fep | 0:5ff20db10a96 | 3182 | allows the application designer to add background functionality |
fep | 0:5ff20db10a96 | 3183 | without the overhead of a separate task. |
fep | 0:5ff20db10a96 | 3184 | NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, |
fep | 0:5ff20db10a96 | 3185 | CALL A FUNCTION THAT MIGHT BLOCK. */ |
fep | 0:5ff20db10a96 | 3186 | vApplicationIdleHook(); |
fep | 0:5ff20db10a96 | 3187 | } |
fep | 0:5ff20db10a96 | 3188 | #endif /* configUSE_IDLE_HOOK */ |
fep | 0:5ff20db10a96 | 3189 | |
fep | 0:5ff20db10a96 | 3190 | /* This conditional compilation should use inequality to 0, not equality |
fep | 0:5ff20db10a96 | 3191 | to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when |
fep | 0:5ff20db10a96 | 3192 | user defined low power mode implementations require |
fep | 0:5ff20db10a96 | 3193 | configUSE_TICKLESS_IDLE to be set to a value other than 1. */ |
fep | 0:5ff20db10a96 | 3194 | #if ( configUSE_TICKLESS_IDLE != 0 ) |
fep | 0:5ff20db10a96 | 3195 | { |
fep | 0:5ff20db10a96 | 3196 | TickType_t xExpectedIdleTime; |
fep | 0:5ff20db10a96 | 3197 | |
fep | 0:5ff20db10a96 | 3198 | /* It is not desirable to suspend then resume the scheduler on |
fep | 0:5ff20db10a96 | 3199 | each iteration of the idle task. Therefore, a preliminary |
fep | 0:5ff20db10a96 | 3200 | test of the expected idle time is performed without the |
fep | 0:5ff20db10a96 | 3201 | scheduler suspended. The result here is not necessarily |
fep | 0:5ff20db10a96 | 3202 | valid. */ |
fep | 0:5ff20db10a96 | 3203 | xExpectedIdleTime = prvGetExpectedIdleTime(); |
fep | 0:5ff20db10a96 | 3204 | |
fep | 0:5ff20db10a96 | 3205 | if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) |
fep | 0:5ff20db10a96 | 3206 | { |
fep | 0:5ff20db10a96 | 3207 | vTaskSuspendAll(); |
fep | 0:5ff20db10a96 | 3208 | { |
fep | 0:5ff20db10a96 | 3209 | /* Now the scheduler is suspended, the expected idle |
fep | 0:5ff20db10a96 | 3210 | time can be sampled again, and this time its value can |
fep | 0:5ff20db10a96 | 3211 | be used. */ |
fep | 0:5ff20db10a96 | 3212 | configASSERT( xNextTaskUnblockTime >= xTickCount ); |
fep | 0:5ff20db10a96 | 3213 | xExpectedIdleTime = prvGetExpectedIdleTime(); |
fep | 0:5ff20db10a96 | 3214 | |
fep | 0:5ff20db10a96 | 3215 | if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) |
fep | 0:5ff20db10a96 | 3216 | { |
fep | 0:5ff20db10a96 | 3217 | traceLOW_POWER_IDLE_BEGIN(); |
fep | 0:5ff20db10a96 | 3218 | portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ); |
fep | 0:5ff20db10a96 | 3219 | traceLOW_POWER_IDLE_END(); |
fep | 0:5ff20db10a96 | 3220 | } |
fep | 0:5ff20db10a96 | 3221 | else |
fep | 0:5ff20db10a96 | 3222 | { |
fep | 0:5ff20db10a96 | 3223 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3224 | } |
fep | 0:5ff20db10a96 | 3225 | } |
fep | 0:5ff20db10a96 | 3226 | ( void ) xTaskResumeAll(); |
fep | 0:5ff20db10a96 | 3227 | } |
fep | 0:5ff20db10a96 | 3228 | else |
fep | 0:5ff20db10a96 | 3229 | { |
fep | 0:5ff20db10a96 | 3230 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3231 | } |
fep | 0:5ff20db10a96 | 3232 | } |
fep | 0:5ff20db10a96 | 3233 | #endif /* configUSE_TICKLESS_IDLE */ |
fep | 0:5ff20db10a96 | 3234 | } |
fep | 0:5ff20db10a96 | 3235 | } |
fep | 0:5ff20db10a96 | 3236 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3237 | |
fep | 0:5ff20db10a96 | 3238 | #if( configUSE_TICKLESS_IDLE != 0 ) |
fep | 0:5ff20db10a96 | 3239 | |
fep | 0:5ff20db10a96 | 3240 | eSleepModeStatus eTaskConfirmSleepModeStatus( void ) |
fep | 0:5ff20db10a96 | 3241 | { |
fep | 0:5ff20db10a96 | 3242 | /* The idle task exists in addition to the application tasks. */ |
fep | 0:5ff20db10a96 | 3243 | const UBaseType_t uxNonApplicationTasks = 1; |
fep | 0:5ff20db10a96 | 3244 | eSleepModeStatus eReturn = eStandardSleep; |
fep | 0:5ff20db10a96 | 3245 | |
fep | 0:5ff20db10a96 | 3246 | if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 ) |
fep | 0:5ff20db10a96 | 3247 | { |
fep | 0:5ff20db10a96 | 3248 | /* A task was made ready while the scheduler was suspended. */ |
fep | 0:5ff20db10a96 | 3249 | eReturn = eAbortSleep; |
fep | 0:5ff20db10a96 | 3250 | } |
fep | 0:5ff20db10a96 | 3251 | else if( xYieldPending != pdFALSE ) |
fep | 0:5ff20db10a96 | 3252 | { |
fep | 0:5ff20db10a96 | 3253 | /* A yield was pended while the scheduler was suspended. */ |
fep | 0:5ff20db10a96 | 3254 | eReturn = eAbortSleep; |
fep | 0:5ff20db10a96 | 3255 | } |
fep | 0:5ff20db10a96 | 3256 | else |
fep | 0:5ff20db10a96 | 3257 | { |
fep | 0:5ff20db10a96 | 3258 | /* If all the tasks are in the suspended list (which might mean they |
fep | 0:5ff20db10a96 | 3259 | have an infinite block time rather than actually being suspended) |
fep | 0:5ff20db10a96 | 3260 | then it is safe to turn all clocks off and just wait for external |
fep | 0:5ff20db10a96 | 3261 | interrupts. */ |
fep | 0:5ff20db10a96 | 3262 | if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) ) |
fep | 0:5ff20db10a96 | 3263 | { |
fep | 0:5ff20db10a96 | 3264 | eReturn = eNoTasksWaitingTimeout; |
fep | 0:5ff20db10a96 | 3265 | } |
fep | 0:5ff20db10a96 | 3266 | else |
fep | 0:5ff20db10a96 | 3267 | { |
fep | 0:5ff20db10a96 | 3268 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3269 | } |
fep | 0:5ff20db10a96 | 3270 | } |
fep | 0:5ff20db10a96 | 3271 | |
fep | 0:5ff20db10a96 | 3272 | return eReturn; |
fep | 0:5ff20db10a96 | 3273 | } |
fep | 0:5ff20db10a96 | 3274 | |
fep | 0:5ff20db10a96 | 3275 | #endif /* configUSE_TICKLESS_IDLE */ |
fep | 0:5ff20db10a96 | 3276 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3277 | |
fep | 0:5ff20db10a96 | 3278 | #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) |
fep | 0:5ff20db10a96 | 3279 | |
fep | 0:5ff20db10a96 | 3280 | void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue ) |
fep | 0:5ff20db10a96 | 3281 | { |
fep | 0:5ff20db10a96 | 3282 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 3283 | |
fep | 0:5ff20db10a96 | 3284 | if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) |
fep | 0:5ff20db10a96 | 3285 | { |
fep | 0:5ff20db10a96 | 3286 | pxTCB = prvGetTCBFromHandle( xTaskToSet ); |
fep | 0:5ff20db10a96 | 3287 | pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue; |
fep | 0:5ff20db10a96 | 3288 | } |
fep | 0:5ff20db10a96 | 3289 | } |
fep | 0:5ff20db10a96 | 3290 | |
fep | 0:5ff20db10a96 | 3291 | #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */ |
fep | 0:5ff20db10a96 | 3292 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3293 | |
fep | 0:5ff20db10a96 | 3294 | #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) |
fep | 0:5ff20db10a96 | 3295 | |
fep | 0:5ff20db10a96 | 3296 | void *pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex ) |
fep | 0:5ff20db10a96 | 3297 | { |
fep | 0:5ff20db10a96 | 3298 | void *pvReturn = NULL; |
fep | 0:5ff20db10a96 | 3299 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 3300 | |
fep | 0:5ff20db10a96 | 3301 | if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) |
fep | 0:5ff20db10a96 | 3302 | { |
fep | 0:5ff20db10a96 | 3303 | pxTCB = prvGetTCBFromHandle( xTaskToQuery ); |
fep | 0:5ff20db10a96 | 3304 | pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ]; |
fep | 0:5ff20db10a96 | 3305 | } |
fep | 0:5ff20db10a96 | 3306 | else |
fep | 0:5ff20db10a96 | 3307 | { |
fep | 0:5ff20db10a96 | 3308 | pvReturn = NULL; |
fep | 0:5ff20db10a96 | 3309 | } |
fep | 0:5ff20db10a96 | 3310 | |
fep | 0:5ff20db10a96 | 3311 | return pvReturn; |
fep | 0:5ff20db10a96 | 3312 | } |
fep | 0:5ff20db10a96 | 3313 | |
fep | 0:5ff20db10a96 | 3314 | #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */ |
fep | 0:5ff20db10a96 | 3315 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3316 | |
fep | 0:5ff20db10a96 | 3317 | #if ( portUSING_MPU_WRAPPERS == 1 ) |
fep | 0:5ff20db10a96 | 3318 | |
fep | 0:5ff20db10a96 | 3319 | void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions ) |
fep | 0:5ff20db10a96 | 3320 | { |
fep | 0:5ff20db10a96 | 3321 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 3322 | |
fep | 0:5ff20db10a96 | 3323 | /* If null is passed in here then we are modifying the MPU settings of |
fep | 0:5ff20db10a96 | 3324 | the calling task. */ |
fep | 0:5ff20db10a96 | 3325 | pxTCB = prvGetTCBFromHandle( xTaskToModify ); |
fep | 0:5ff20db10a96 | 3326 | |
fep | 0:5ff20db10a96 | 3327 | vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 ); |
fep | 0:5ff20db10a96 | 3328 | } |
fep | 0:5ff20db10a96 | 3329 | |
fep | 0:5ff20db10a96 | 3330 | #endif /* portUSING_MPU_WRAPPERS */ |
fep | 0:5ff20db10a96 | 3331 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3332 | |
fep | 0:5ff20db10a96 | 3333 | static void prvInitialiseTaskLists( void ) |
fep | 0:5ff20db10a96 | 3334 | { |
fep | 0:5ff20db10a96 | 3335 | UBaseType_t uxPriority; |
fep | 0:5ff20db10a96 | 3336 | |
fep | 0:5ff20db10a96 | 3337 | for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ ) |
fep | 0:5ff20db10a96 | 3338 | { |
fep | 0:5ff20db10a96 | 3339 | vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) ); |
fep | 0:5ff20db10a96 | 3340 | } |
fep | 0:5ff20db10a96 | 3341 | |
fep | 0:5ff20db10a96 | 3342 | vListInitialise( &xDelayedTaskList1 ); |
fep | 0:5ff20db10a96 | 3343 | vListInitialise( &xDelayedTaskList2 ); |
fep | 0:5ff20db10a96 | 3344 | vListInitialise( &xPendingReadyList ); |
fep | 0:5ff20db10a96 | 3345 | |
fep | 0:5ff20db10a96 | 3346 | #if ( INCLUDE_vTaskDelete == 1 ) |
fep | 0:5ff20db10a96 | 3347 | { |
fep | 0:5ff20db10a96 | 3348 | vListInitialise( &xTasksWaitingTermination ); |
fep | 0:5ff20db10a96 | 3349 | } |
fep | 0:5ff20db10a96 | 3350 | #endif /* INCLUDE_vTaskDelete */ |
fep | 0:5ff20db10a96 | 3351 | |
fep | 0:5ff20db10a96 | 3352 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 3353 | { |
fep | 0:5ff20db10a96 | 3354 | vListInitialise( &xSuspendedTaskList ); |
fep | 0:5ff20db10a96 | 3355 | } |
fep | 0:5ff20db10a96 | 3356 | #endif /* INCLUDE_vTaskSuspend */ |
fep | 0:5ff20db10a96 | 3357 | |
fep | 0:5ff20db10a96 | 3358 | /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList |
fep | 0:5ff20db10a96 | 3359 | using list2. */ |
fep | 0:5ff20db10a96 | 3360 | pxDelayedTaskList = &xDelayedTaskList1; |
fep | 0:5ff20db10a96 | 3361 | pxOverflowDelayedTaskList = &xDelayedTaskList2; |
fep | 0:5ff20db10a96 | 3362 | } |
fep | 0:5ff20db10a96 | 3363 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3364 | |
fep | 0:5ff20db10a96 | 3365 | static void prvCheckTasksWaitingTermination( void ) |
fep | 0:5ff20db10a96 | 3366 | { |
fep | 0:5ff20db10a96 | 3367 | |
fep | 0:5ff20db10a96 | 3368 | /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/ |
fep | 0:5ff20db10a96 | 3369 | |
fep | 0:5ff20db10a96 | 3370 | #if ( INCLUDE_vTaskDelete == 1 ) |
fep | 0:5ff20db10a96 | 3371 | { |
fep | 0:5ff20db10a96 | 3372 | BaseType_t xListIsEmpty; |
fep | 0:5ff20db10a96 | 3373 | |
fep | 0:5ff20db10a96 | 3374 | /* ucTasksDeleted is used to prevent vTaskSuspendAll() being called |
fep | 0:5ff20db10a96 | 3375 | too often in the idle task. */ |
fep | 0:5ff20db10a96 | 3376 | while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U ) |
fep | 0:5ff20db10a96 | 3377 | { |
fep | 0:5ff20db10a96 | 3378 | vTaskSuspendAll(); |
fep | 0:5ff20db10a96 | 3379 | { |
fep | 0:5ff20db10a96 | 3380 | xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination ); |
fep | 0:5ff20db10a96 | 3381 | } |
fep | 0:5ff20db10a96 | 3382 | ( void ) xTaskResumeAll(); |
fep | 0:5ff20db10a96 | 3383 | |
fep | 0:5ff20db10a96 | 3384 | if( xListIsEmpty == pdFALSE ) |
fep | 0:5ff20db10a96 | 3385 | { |
fep | 0:5ff20db10a96 | 3386 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 3387 | |
fep | 0:5ff20db10a96 | 3388 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 3389 | { |
fep | 0:5ff20db10a96 | 3390 | pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); |
fep | 0:5ff20db10a96 | 3391 | ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 3392 | --uxCurrentNumberOfTasks; |
fep | 0:5ff20db10a96 | 3393 | --uxDeletedTasksWaitingCleanUp; |
fep | 0:5ff20db10a96 | 3394 | } |
fep | 0:5ff20db10a96 | 3395 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 3396 | |
fep | 0:5ff20db10a96 | 3397 | prvDeleteTCB( pxTCB ); |
fep | 0:5ff20db10a96 | 3398 | } |
fep | 0:5ff20db10a96 | 3399 | else |
fep | 0:5ff20db10a96 | 3400 | { |
fep | 0:5ff20db10a96 | 3401 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3402 | } |
fep | 0:5ff20db10a96 | 3403 | } |
fep | 0:5ff20db10a96 | 3404 | } |
fep | 0:5ff20db10a96 | 3405 | #endif /* INCLUDE_vTaskDelete */ |
fep | 0:5ff20db10a96 | 3406 | } |
fep | 0:5ff20db10a96 | 3407 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3408 | |
fep | 0:5ff20db10a96 | 3409 | #if( configUSE_TRACE_FACILITY == 1 ) |
fep | 0:5ff20db10a96 | 3410 | |
fep | 0:5ff20db10a96 | 3411 | void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState ) |
fep | 0:5ff20db10a96 | 3412 | { |
fep | 0:5ff20db10a96 | 3413 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 3414 | |
fep | 0:5ff20db10a96 | 3415 | /* xTask is NULL then get the state of the calling task. */ |
fep | 0:5ff20db10a96 | 3416 | pxTCB = prvGetTCBFromHandle( xTask ); |
fep | 0:5ff20db10a96 | 3417 | |
fep | 0:5ff20db10a96 | 3418 | pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB; |
fep | 0:5ff20db10a96 | 3419 | pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName [ 0 ] ); |
fep | 0:5ff20db10a96 | 3420 | pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority; |
fep | 0:5ff20db10a96 | 3421 | pxTaskStatus->pxStackBase = pxTCB->pxStack; |
fep | 0:5ff20db10a96 | 3422 | pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber; |
fep | 0:5ff20db10a96 | 3423 | |
fep | 0:5ff20db10a96 | 3424 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 3425 | { |
fep | 0:5ff20db10a96 | 3426 | /* If the task is in the suspended list then there is a chance it is |
fep | 0:5ff20db10a96 | 3427 | actually just blocked indefinitely - so really it should be reported as |
fep | 0:5ff20db10a96 | 3428 | being in the Blocked state. */ |
fep | 0:5ff20db10a96 | 3429 | if( pxTaskStatus->eCurrentState == eSuspended ) |
fep | 0:5ff20db10a96 | 3430 | { |
fep | 0:5ff20db10a96 | 3431 | vTaskSuspendAll(); |
fep | 0:5ff20db10a96 | 3432 | { |
fep | 0:5ff20db10a96 | 3433 | if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) |
fep | 0:5ff20db10a96 | 3434 | { |
fep | 0:5ff20db10a96 | 3435 | pxTaskStatus->eCurrentState = eBlocked; |
fep | 0:5ff20db10a96 | 3436 | } |
fep | 0:5ff20db10a96 | 3437 | } |
fep | 0:5ff20db10a96 | 3438 | xTaskResumeAll(); |
fep | 0:5ff20db10a96 | 3439 | } |
fep | 0:5ff20db10a96 | 3440 | } |
fep | 0:5ff20db10a96 | 3441 | #endif /* INCLUDE_vTaskSuspend */ |
fep | 0:5ff20db10a96 | 3442 | |
fep | 0:5ff20db10a96 | 3443 | #if ( configUSE_MUTEXES == 1 ) |
fep | 0:5ff20db10a96 | 3444 | { |
fep | 0:5ff20db10a96 | 3445 | pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority; |
fep | 0:5ff20db10a96 | 3446 | } |
fep | 0:5ff20db10a96 | 3447 | #else |
fep | 0:5ff20db10a96 | 3448 | { |
fep | 0:5ff20db10a96 | 3449 | pxTaskStatus->uxBasePriority = 0; |
fep | 0:5ff20db10a96 | 3450 | } |
fep | 0:5ff20db10a96 | 3451 | #endif |
fep | 0:5ff20db10a96 | 3452 | |
fep | 0:5ff20db10a96 | 3453 | #if ( configGENERATE_RUN_TIME_STATS == 1 ) |
fep | 0:5ff20db10a96 | 3454 | { |
fep | 0:5ff20db10a96 | 3455 | pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter; |
fep | 0:5ff20db10a96 | 3456 | } |
fep | 0:5ff20db10a96 | 3457 | #else |
fep | 0:5ff20db10a96 | 3458 | { |
fep | 0:5ff20db10a96 | 3459 | pxTaskStatus->ulRunTimeCounter = 0; |
fep | 0:5ff20db10a96 | 3460 | } |
fep | 0:5ff20db10a96 | 3461 | #endif |
fep | 0:5ff20db10a96 | 3462 | |
fep | 0:5ff20db10a96 | 3463 | /* Obtaining the task state is a little fiddly, so is only done if the value |
fep | 0:5ff20db10a96 | 3464 | of eState passed into this function is eInvalid - otherwise the state is |
fep | 0:5ff20db10a96 | 3465 | just set to whatever is passed in. */ |
fep | 0:5ff20db10a96 | 3466 | if( eState != eInvalid ) |
fep | 0:5ff20db10a96 | 3467 | { |
fep | 0:5ff20db10a96 | 3468 | pxTaskStatus->eCurrentState = eState; |
fep | 0:5ff20db10a96 | 3469 | } |
fep | 0:5ff20db10a96 | 3470 | else |
fep | 0:5ff20db10a96 | 3471 | { |
fep | 0:5ff20db10a96 | 3472 | pxTaskStatus->eCurrentState = eTaskGetState( xTask ); |
fep | 0:5ff20db10a96 | 3473 | } |
fep | 0:5ff20db10a96 | 3474 | |
fep | 0:5ff20db10a96 | 3475 | /* Obtaining the stack space takes some time, so the xGetFreeStackSpace |
fep | 0:5ff20db10a96 | 3476 | parameter is provided to allow it to be skipped. */ |
fep | 0:5ff20db10a96 | 3477 | if( xGetFreeStackSpace != pdFALSE ) |
fep | 0:5ff20db10a96 | 3478 | { |
fep | 0:5ff20db10a96 | 3479 | #if ( portSTACK_GROWTH > 0 ) |
fep | 0:5ff20db10a96 | 3480 | { |
fep | 0:5ff20db10a96 | 3481 | pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack ); |
fep | 0:5ff20db10a96 | 3482 | } |
fep | 0:5ff20db10a96 | 3483 | #else |
fep | 0:5ff20db10a96 | 3484 | { |
fep | 0:5ff20db10a96 | 3485 | pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack ); |
fep | 0:5ff20db10a96 | 3486 | } |
fep | 0:5ff20db10a96 | 3487 | #endif |
fep | 0:5ff20db10a96 | 3488 | } |
fep | 0:5ff20db10a96 | 3489 | else |
fep | 0:5ff20db10a96 | 3490 | { |
fep | 0:5ff20db10a96 | 3491 | pxTaskStatus->usStackHighWaterMark = 0; |
fep | 0:5ff20db10a96 | 3492 | } |
fep | 0:5ff20db10a96 | 3493 | } |
fep | 0:5ff20db10a96 | 3494 | |
fep | 0:5ff20db10a96 | 3495 | #endif /* configUSE_TRACE_FACILITY */ |
fep | 0:5ff20db10a96 | 3496 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3497 | |
fep | 0:5ff20db10a96 | 3498 | #if ( configUSE_TRACE_FACILITY == 1 ) |
fep | 0:5ff20db10a96 | 3499 | |
fep | 0:5ff20db10a96 | 3500 | static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) |
fep | 0:5ff20db10a96 | 3501 | { |
fep | 0:5ff20db10a96 | 3502 | volatile TCB_t *pxNextTCB, *pxFirstTCB; |
fep | 0:5ff20db10a96 | 3503 | UBaseType_t uxTask = 0; |
fep | 0:5ff20db10a96 | 3504 | |
fep | 0:5ff20db10a96 | 3505 | if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) |
fep | 0:5ff20db10a96 | 3506 | { |
fep | 0:5ff20db10a96 | 3507 | listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); |
fep | 0:5ff20db10a96 | 3508 | |
fep | 0:5ff20db10a96 | 3509 | /* Populate an TaskStatus_t structure within the |
fep | 0:5ff20db10a96 | 3510 | pxTaskStatusArray array for each task that is referenced from |
fep | 0:5ff20db10a96 | 3511 | pxList. See the definition of TaskStatus_t in task.h for the |
fep | 0:5ff20db10a96 | 3512 | meaning of each TaskStatus_t structure member. */ |
fep | 0:5ff20db10a96 | 3513 | do |
fep | 0:5ff20db10a96 | 3514 | { |
fep | 0:5ff20db10a96 | 3515 | listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); |
fep | 0:5ff20db10a96 | 3516 | vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState ); |
fep | 0:5ff20db10a96 | 3517 | uxTask++; |
fep | 0:5ff20db10a96 | 3518 | } while( pxNextTCB != pxFirstTCB ); |
fep | 0:5ff20db10a96 | 3519 | } |
fep | 0:5ff20db10a96 | 3520 | else |
fep | 0:5ff20db10a96 | 3521 | { |
fep | 0:5ff20db10a96 | 3522 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3523 | } |
fep | 0:5ff20db10a96 | 3524 | |
fep | 0:5ff20db10a96 | 3525 | return uxTask; |
fep | 0:5ff20db10a96 | 3526 | } |
fep | 0:5ff20db10a96 | 3527 | |
fep | 0:5ff20db10a96 | 3528 | #endif /* configUSE_TRACE_FACILITY */ |
fep | 0:5ff20db10a96 | 3529 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3530 | |
fep | 0:5ff20db10a96 | 3531 | #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) |
fep | 0:5ff20db10a96 | 3532 | |
fep | 0:5ff20db10a96 | 3533 | static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) |
fep | 0:5ff20db10a96 | 3534 | { |
fep | 0:5ff20db10a96 | 3535 | uint32_t ulCount = 0U; |
fep | 0:5ff20db10a96 | 3536 | |
fep | 0:5ff20db10a96 | 3537 | while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE ) |
fep | 0:5ff20db10a96 | 3538 | { |
fep | 0:5ff20db10a96 | 3539 | pucStackByte -= portSTACK_GROWTH; |
fep | 0:5ff20db10a96 | 3540 | ulCount++; |
fep | 0:5ff20db10a96 | 3541 | } |
fep | 0:5ff20db10a96 | 3542 | |
fep | 0:5ff20db10a96 | 3543 | ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */ |
fep | 0:5ff20db10a96 | 3544 | |
fep | 0:5ff20db10a96 | 3545 | return ( uint16_t ) ulCount; |
fep | 0:5ff20db10a96 | 3546 | } |
fep | 0:5ff20db10a96 | 3547 | |
fep | 0:5ff20db10a96 | 3548 | #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) */ |
fep | 0:5ff20db10a96 | 3549 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3550 | |
fep | 0:5ff20db10a96 | 3551 | #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) |
fep | 0:5ff20db10a96 | 3552 | |
fep | 0:5ff20db10a96 | 3553 | UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) |
fep | 0:5ff20db10a96 | 3554 | { |
fep | 0:5ff20db10a96 | 3555 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 3556 | uint8_t *pucEndOfStack; |
fep | 0:5ff20db10a96 | 3557 | UBaseType_t uxReturn; |
fep | 0:5ff20db10a96 | 3558 | |
fep | 0:5ff20db10a96 | 3559 | pxTCB = prvGetTCBFromHandle( xTask ); |
fep | 0:5ff20db10a96 | 3560 | |
fep | 0:5ff20db10a96 | 3561 | #if portSTACK_GROWTH < 0 |
fep | 0:5ff20db10a96 | 3562 | { |
fep | 0:5ff20db10a96 | 3563 | pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; |
fep | 0:5ff20db10a96 | 3564 | } |
fep | 0:5ff20db10a96 | 3565 | #else |
fep | 0:5ff20db10a96 | 3566 | { |
fep | 0:5ff20db10a96 | 3567 | pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; |
fep | 0:5ff20db10a96 | 3568 | } |
fep | 0:5ff20db10a96 | 3569 | #endif |
fep | 0:5ff20db10a96 | 3570 | |
fep | 0:5ff20db10a96 | 3571 | uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack ); |
fep | 0:5ff20db10a96 | 3572 | |
fep | 0:5ff20db10a96 | 3573 | return uxReturn; |
fep | 0:5ff20db10a96 | 3574 | } |
fep | 0:5ff20db10a96 | 3575 | |
fep | 0:5ff20db10a96 | 3576 | #endif /* INCLUDE_uxTaskGetStackHighWaterMark */ |
fep | 0:5ff20db10a96 | 3577 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3578 | |
fep | 0:5ff20db10a96 | 3579 | #if ( INCLUDE_vTaskDelete == 1 ) |
fep | 0:5ff20db10a96 | 3580 | |
fep | 0:5ff20db10a96 | 3581 | static void prvDeleteTCB( TCB_t *pxTCB ) |
fep | 0:5ff20db10a96 | 3582 | { |
fep | 0:5ff20db10a96 | 3583 | /* This call is required specifically for the TriCore port. It must be |
fep | 0:5ff20db10a96 | 3584 | above the vPortFree() calls. The call is also used by ports/demos that |
fep | 0:5ff20db10a96 | 3585 | want to allocate and clean RAM statically. */ |
fep | 0:5ff20db10a96 | 3586 | portCLEAN_UP_TCB( pxTCB ); |
fep | 0:5ff20db10a96 | 3587 | |
fep | 0:5ff20db10a96 | 3588 | /* Free up the memory allocated by the scheduler for the task. It is up |
fep | 0:5ff20db10a96 | 3589 | to the task to free any memory allocated at the application level. */ |
fep | 0:5ff20db10a96 | 3590 | #if ( configUSE_NEWLIB_REENTRANT == 1 ) |
fep | 0:5ff20db10a96 | 3591 | { |
fep | 0:5ff20db10a96 | 3592 | _reclaim_reent( &( pxTCB->xNewLib_reent ) ); |
fep | 0:5ff20db10a96 | 3593 | } |
fep | 0:5ff20db10a96 | 3594 | #endif /* configUSE_NEWLIB_REENTRANT */ |
fep | 0:5ff20db10a96 | 3595 | |
fep | 0:5ff20db10a96 | 3596 | #if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) |
fep | 0:5ff20db10a96 | 3597 | { |
fep | 0:5ff20db10a96 | 3598 | /* The task can only have been allocated dynamically - free both |
fep | 0:5ff20db10a96 | 3599 | the stack and TCB. */ |
fep | 0:5ff20db10a96 | 3600 | vPortFree( pxTCB->pxStack ); |
fep | 0:5ff20db10a96 | 3601 | vPortFree( pxTCB ); |
fep | 0:5ff20db10a96 | 3602 | } |
fep | 0:5ff20db10a96 | 3603 | #elif( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 ) |
fep | 0:5ff20db10a96 | 3604 | { |
fep | 0:5ff20db10a96 | 3605 | /* The task could have been allocated statically or dynamically, so |
fep | 0:5ff20db10a96 | 3606 | check what was statically allocated before trying to free the |
fep | 0:5ff20db10a96 | 3607 | memory. */ |
fep | 0:5ff20db10a96 | 3608 | if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ) |
fep | 0:5ff20db10a96 | 3609 | { |
fep | 0:5ff20db10a96 | 3610 | /* Both the stack and TCB were allocated dynamically, so both |
fep | 0:5ff20db10a96 | 3611 | must be freed. */ |
fep | 0:5ff20db10a96 | 3612 | vPortFree( pxTCB->pxStack ); |
fep | 0:5ff20db10a96 | 3613 | vPortFree( pxTCB ); |
fep | 0:5ff20db10a96 | 3614 | } |
fep | 0:5ff20db10a96 | 3615 | else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY ) |
fep | 0:5ff20db10a96 | 3616 | { |
fep | 0:5ff20db10a96 | 3617 | /* Only the stack was statically allocated, so the TCB is the |
fep | 0:5ff20db10a96 | 3618 | only memory that must be freed. */ |
fep | 0:5ff20db10a96 | 3619 | vPortFree( pxTCB ); |
fep | 0:5ff20db10a96 | 3620 | } |
fep | 0:5ff20db10a96 | 3621 | else |
fep | 0:5ff20db10a96 | 3622 | { |
fep | 0:5ff20db10a96 | 3623 | /* Neither the stack nor the TCB were allocated dynamically, so |
fep | 0:5ff20db10a96 | 3624 | nothing needs to be freed. */ |
fep | 0:5ff20db10a96 | 3625 | configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB ) |
fep | 0:5ff20db10a96 | 3626 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3627 | } |
fep | 0:5ff20db10a96 | 3628 | } |
fep | 0:5ff20db10a96 | 3629 | #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ |
fep | 0:5ff20db10a96 | 3630 | } |
fep | 0:5ff20db10a96 | 3631 | |
fep | 0:5ff20db10a96 | 3632 | #endif /* INCLUDE_vTaskDelete */ |
fep | 0:5ff20db10a96 | 3633 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3634 | |
fep | 0:5ff20db10a96 | 3635 | static void prvResetNextTaskUnblockTime( void ) |
fep | 0:5ff20db10a96 | 3636 | { |
fep | 0:5ff20db10a96 | 3637 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 3638 | |
fep | 0:5ff20db10a96 | 3639 | if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) |
fep | 0:5ff20db10a96 | 3640 | { |
fep | 0:5ff20db10a96 | 3641 | /* The new current delayed list is empty. Set xNextTaskUnblockTime to |
fep | 0:5ff20db10a96 | 3642 | the maximum possible value so it is extremely unlikely that the |
fep | 0:5ff20db10a96 | 3643 | if( xTickCount >= xNextTaskUnblockTime ) test will pass until |
fep | 0:5ff20db10a96 | 3644 | there is an item in the delayed list. */ |
fep | 0:5ff20db10a96 | 3645 | xNextTaskUnblockTime = portMAX_DELAY; |
fep | 0:5ff20db10a96 | 3646 | } |
fep | 0:5ff20db10a96 | 3647 | else |
fep | 0:5ff20db10a96 | 3648 | { |
fep | 0:5ff20db10a96 | 3649 | /* The new current delayed list is not empty, get the value of |
fep | 0:5ff20db10a96 | 3650 | the item at the head of the delayed list. This is the time at |
fep | 0:5ff20db10a96 | 3651 | which the task at the head of the delayed list should be removed |
fep | 0:5ff20db10a96 | 3652 | from the Blocked state. */ |
fep | 0:5ff20db10a96 | 3653 | ( pxTCB ) = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); |
fep | 0:5ff20db10a96 | 3654 | xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 3655 | } |
fep | 0:5ff20db10a96 | 3656 | } |
fep | 0:5ff20db10a96 | 3657 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3658 | |
fep | 0:5ff20db10a96 | 3659 | #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) |
fep | 0:5ff20db10a96 | 3660 | |
fep | 0:5ff20db10a96 | 3661 | TaskHandle_t xTaskGetCurrentTaskHandle( void ) |
fep | 0:5ff20db10a96 | 3662 | { |
fep | 0:5ff20db10a96 | 3663 | TaskHandle_t xReturn; |
fep | 0:5ff20db10a96 | 3664 | |
fep | 0:5ff20db10a96 | 3665 | /* A critical section is not required as this is not called from |
fep | 0:5ff20db10a96 | 3666 | an interrupt and the current TCB will always be the same for any |
fep | 0:5ff20db10a96 | 3667 | individual execution thread. */ |
fep | 0:5ff20db10a96 | 3668 | xReturn = pxCurrentTCB; |
fep | 0:5ff20db10a96 | 3669 | |
fep | 0:5ff20db10a96 | 3670 | return xReturn; |
fep | 0:5ff20db10a96 | 3671 | } |
fep | 0:5ff20db10a96 | 3672 | |
fep | 0:5ff20db10a96 | 3673 | #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */ |
fep | 0:5ff20db10a96 | 3674 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3675 | |
fep | 0:5ff20db10a96 | 3676 | #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) |
fep | 0:5ff20db10a96 | 3677 | |
fep | 0:5ff20db10a96 | 3678 | BaseType_t xTaskGetSchedulerState( void ) |
fep | 0:5ff20db10a96 | 3679 | { |
fep | 0:5ff20db10a96 | 3680 | BaseType_t xReturn; |
fep | 0:5ff20db10a96 | 3681 | |
fep | 0:5ff20db10a96 | 3682 | if( xSchedulerRunning == pdFALSE ) |
fep | 0:5ff20db10a96 | 3683 | { |
fep | 0:5ff20db10a96 | 3684 | xReturn = taskSCHEDULER_NOT_STARTED; |
fep | 0:5ff20db10a96 | 3685 | } |
fep | 0:5ff20db10a96 | 3686 | else |
fep | 0:5ff20db10a96 | 3687 | { |
fep | 0:5ff20db10a96 | 3688 | if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) |
fep | 0:5ff20db10a96 | 3689 | { |
fep | 0:5ff20db10a96 | 3690 | xReturn = taskSCHEDULER_RUNNING; |
fep | 0:5ff20db10a96 | 3691 | } |
fep | 0:5ff20db10a96 | 3692 | else |
fep | 0:5ff20db10a96 | 3693 | { |
fep | 0:5ff20db10a96 | 3694 | xReturn = taskSCHEDULER_SUSPENDED; |
fep | 0:5ff20db10a96 | 3695 | } |
fep | 0:5ff20db10a96 | 3696 | } |
fep | 0:5ff20db10a96 | 3697 | |
fep | 0:5ff20db10a96 | 3698 | return xReturn; |
fep | 0:5ff20db10a96 | 3699 | } |
fep | 0:5ff20db10a96 | 3700 | |
fep | 0:5ff20db10a96 | 3701 | #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */ |
fep | 0:5ff20db10a96 | 3702 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3703 | |
fep | 0:5ff20db10a96 | 3704 | #if ( configUSE_MUTEXES == 1 ) |
fep | 0:5ff20db10a96 | 3705 | |
fep | 0:5ff20db10a96 | 3706 | void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) |
fep | 0:5ff20db10a96 | 3707 | { |
fep | 0:5ff20db10a96 | 3708 | TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder; |
fep | 0:5ff20db10a96 | 3709 | |
fep | 0:5ff20db10a96 | 3710 | /* If the mutex was given back by an interrupt while the queue was |
fep | 0:5ff20db10a96 | 3711 | locked then the mutex holder might now be NULL. */ |
fep | 0:5ff20db10a96 | 3712 | if( pxMutexHolder != NULL ) |
fep | 0:5ff20db10a96 | 3713 | { |
fep | 0:5ff20db10a96 | 3714 | /* If the holder of the mutex has a priority below the priority of |
fep | 0:5ff20db10a96 | 3715 | the task attempting to obtain the mutex then it will temporarily |
fep | 0:5ff20db10a96 | 3716 | inherit the priority of the task attempting to obtain the mutex. */ |
fep | 0:5ff20db10a96 | 3717 | if( pxTCB->uxPriority < pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 3718 | { |
fep | 0:5ff20db10a96 | 3719 | /* Adjust the mutex holder state to account for its new |
fep | 0:5ff20db10a96 | 3720 | priority. Only reset the event list item value if the value is |
fep | 0:5ff20db10a96 | 3721 | not being used for anything else. */ |
fep | 0:5ff20db10a96 | 3722 | if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) |
fep | 0:5ff20db10a96 | 3723 | { |
fep | 0:5ff20db10a96 | 3724 | listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
fep | 0:5ff20db10a96 | 3725 | } |
fep | 0:5ff20db10a96 | 3726 | else |
fep | 0:5ff20db10a96 | 3727 | { |
fep | 0:5ff20db10a96 | 3728 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3729 | } |
fep | 0:5ff20db10a96 | 3730 | |
fep | 0:5ff20db10a96 | 3731 | /* If the task being modified is in the ready state it will need |
fep | 0:5ff20db10a96 | 3732 | to be moved into a new list. */ |
fep | 0:5ff20db10a96 | 3733 | if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xStateListItem ) ) != pdFALSE ) |
fep | 0:5ff20db10a96 | 3734 | { |
fep | 0:5ff20db10a96 | 3735 | if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
fep | 0:5ff20db10a96 | 3736 | { |
fep | 0:5ff20db10a96 | 3737 | taskRESET_READY_PRIORITY( pxTCB->uxPriority ); |
fep | 0:5ff20db10a96 | 3738 | } |
fep | 0:5ff20db10a96 | 3739 | else |
fep | 0:5ff20db10a96 | 3740 | { |
fep | 0:5ff20db10a96 | 3741 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3742 | } |
fep | 0:5ff20db10a96 | 3743 | |
fep | 0:5ff20db10a96 | 3744 | /* Inherit the priority before being moved into the new list. */ |
fep | 0:5ff20db10a96 | 3745 | pxTCB->uxPriority = pxCurrentTCB->uxPriority; |
fep | 0:5ff20db10a96 | 3746 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 3747 | } |
fep | 0:5ff20db10a96 | 3748 | else |
fep | 0:5ff20db10a96 | 3749 | { |
fep | 0:5ff20db10a96 | 3750 | /* Just inherit the priority. */ |
fep | 0:5ff20db10a96 | 3751 | pxTCB->uxPriority = pxCurrentTCB->uxPriority; |
fep | 0:5ff20db10a96 | 3752 | } |
fep | 0:5ff20db10a96 | 3753 | |
fep | 0:5ff20db10a96 | 3754 | traceTASK_PRIORITY_INHERIT( pxTCB, pxCurrentTCB->uxPriority ); |
fep | 0:5ff20db10a96 | 3755 | } |
fep | 0:5ff20db10a96 | 3756 | else |
fep | 0:5ff20db10a96 | 3757 | { |
fep | 0:5ff20db10a96 | 3758 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3759 | } |
fep | 0:5ff20db10a96 | 3760 | } |
fep | 0:5ff20db10a96 | 3761 | else |
fep | 0:5ff20db10a96 | 3762 | { |
fep | 0:5ff20db10a96 | 3763 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3764 | } |
fep | 0:5ff20db10a96 | 3765 | } |
fep | 0:5ff20db10a96 | 3766 | |
fep | 0:5ff20db10a96 | 3767 | #endif /* configUSE_MUTEXES */ |
fep | 0:5ff20db10a96 | 3768 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3769 | |
fep | 0:5ff20db10a96 | 3770 | #if ( configUSE_MUTEXES == 1 ) |
fep | 0:5ff20db10a96 | 3771 | |
fep | 0:5ff20db10a96 | 3772 | BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) |
fep | 0:5ff20db10a96 | 3773 | { |
fep | 0:5ff20db10a96 | 3774 | TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder; |
fep | 0:5ff20db10a96 | 3775 | BaseType_t xReturn = pdFALSE; |
fep | 0:5ff20db10a96 | 3776 | |
fep | 0:5ff20db10a96 | 3777 | if( pxMutexHolder != NULL ) |
fep | 0:5ff20db10a96 | 3778 | { |
fep | 0:5ff20db10a96 | 3779 | /* A task can only have an inherited priority if it holds the mutex. |
fep | 0:5ff20db10a96 | 3780 | If the mutex is held by a task then it cannot be given from an |
fep | 0:5ff20db10a96 | 3781 | interrupt, and if a mutex is given by the holding task then it must |
fep | 0:5ff20db10a96 | 3782 | be the running state task. */ |
fep | 0:5ff20db10a96 | 3783 | configASSERT( pxTCB == pxCurrentTCB ); |
fep | 0:5ff20db10a96 | 3784 | |
fep | 0:5ff20db10a96 | 3785 | configASSERT( pxTCB->uxMutexesHeld ); |
fep | 0:5ff20db10a96 | 3786 | ( pxTCB->uxMutexesHeld )--; |
fep | 0:5ff20db10a96 | 3787 | |
fep | 0:5ff20db10a96 | 3788 | /* Has the holder of the mutex inherited the priority of another |
fep | 0:5ff20db10a96 | 3789 | task? */ |
fep | 0:5ff20db10a96 | 3790 | if( pxTCB->uxPriority != pxTCB->uxBasePriority ) |
fep | 0:5ff20db10a96 | 3791 | { |
fep | 0:5ff20db10a96 | 3792 | /* Only disinherit if no other mutexes are held. */ |
fep | 0:5ff20db10a96 | 3793 | if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 ) |
fep | 0:5ff20db10a96 | 3794 | { |
fep | 0:5ff20db10a96 | 3795 | /* A task can only have an inherited priority if it holds |
fep | 0:5ff20db10a96 | 3796 | the mutex. If the mutex is held by a task then it cannot be |
fep | 0:5ff20db10a96 | 3797 | given from an interrupt, and if a mutex is given by the |
fep | 0:5ff20db10a96 | 3798 | holding task then it must be the running state task. Remove |
fep | 0:5ff20db10a96 | 3799 | the holding task from the ready list. */ |
fep | 0:5ff20db10a96 | 3800 | if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
fep | 0:5ff20db10a96 | 3801 | { |
fep | 0:5ff20db10a96 | 3802 | taskRESET_READY_PRIORITY( pxTCB->uxPriority ); |
fep | 0:5ff20db10a96 | 3803 | } |
fep | 0:5ff20db10a96 | 3804 | else |
fep | 0:5ff20db10a96 | 3805 | { |
fep | 0:5ff20db10a96 | 3806 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3807 | } |
fep | 0:5ff20db10a96 | 3808 | |
fep | 0:5ff20db10a96 | 3809 | /* Disinherit the priority before adding the task into the |
fep | 0:5ff20db10a96 | 3810 | new ready list. */ |
fep | 0:5ff20db10a96 | 3811 | traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority ); |
fep | 0:5ff20db10a96 | 3812 | pxTCB->uxPriority = pxTCB->uxBasePriority; |
fep | 0:5ff20db10a96 | 3813 | |
fep | 0:5ff20db10a96 | 3814 | /* Reset the event list item value. It cannot be in use for |
fep | 0:5ff20db10a96 | 3815 | any other purpose if this task is running, and it must be |
fep | 0:5ff20db10a96 | 3816 | running to give back the mutex. */ |
fep | 0:5ff20db10a96 | 3817 | listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
fep | 0:5ff20db10a96 | 3818 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 3819 | |
fep | 0:5ff20db10a96 | 3820 | /* Return true to indicate that a context switch is required. |
fep | 0:5ff20db10a96 | 3821 | This is only actually required in the corner case whereby |
fep | 0:5ff20db10a96 | 3822 | multiple mutexes were held and the mutexes were given back |
fep | 0:5ff20db10a96 | 3823 | in an order different to that in which they were taken. |
fep | 0:5ff20db10a96 | 3824 | If a context switch did not occur when the first mutex was |
fep | 0:5ff20db10a96 | 3825 | returned, even if a task was waiting on it, then a context |
fep | 0:5ff20db10a96 | 3826 | switch should occur when the last mutex is returned whether |
fep | 0:5ff20db10a96 | 3827 | a task is waiting on it or not. */ |
fep | 0:5ff20db10a96 | 3828 | xReturn = pdTRUE; |
fep | 0:5ff20db10a96 | 3829 | } |
fep | 0:5ff20db10a96 | 3830 | else |
fep | 0:5ff20db10a96 | 3831 | { |
fep | 0:5ff20db10a96 | 3832 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3833 | } |
fep | 0:5ff20db10a96 | 3834 | } |
fep | 0:5ff20db10a96 | 3835 | else |
fep | 0:5ff20db10a96 | 3836 | { |
fep | 0:5ff20db10a96 | 3837 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3838 | } |
fep | 0:5ff20db10a96 | 3839 | } |
fep | 0:5ff20db10a96 | 3840 | else |
fep | 0:5ff20db10a96 | 3841 | { |
fep | 0:5ff20db10a96 | 3842 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3843 | } |
fep | 0:5ff20db10a96 | 3844 | |
fep | 0:5ff20db10a96 | 3845 | return xReturn; |
fep | 0:5ff20db10a96 | 3846 | } |
fep | 0:5ff20db10a96 | 3847 | |
fep | 0:5ff20db10a96 | 3848 | #endif /* configUSE_MUTEXES */ |
fep | 0:5ff20db10a96 | 3849 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3850 | |
fep | 0:5ff20db10a96 | 3851 | #if ( portCRITICAL_NESTING_IN_TCB == 1 ) |
fep | 0:5ff20db10a96 | 3852 | |
fep | 0:5ff20db10a96 | 3853 | void vTaskEnterCritical( void ) |
fep | 0:5ff20db10a96 | 3854 | { |
fep | 0:5ff20db10a96 | 3855 | portDISABLE_INTERRUPTS(); |
fep | 0:5ff20db10a96 | 3856 | |
fep | 0:5ff20db10a96 | 3857 | if( xSchedulerRunning != pdFALSE ) |
fep | 0:5ff20db10a96 | 3858 | { |
fep | 0:5ff20db10a96 | 3859 | ( pxCurrentTCB->uxCriticalNesting )++; |
fep | 0:5ff20db10a96 | 3860 | |
fep | 0:5ff20db10a96 | 3861 | /* This is not the interrupt safe version of the enter critical |
fep | 0:5ff20db10a96 | 3862 | function so assert() if it is being called from an interrupt |
fep | 0:5ff20db10a96 | 3863 | context. Only API functions that end in "FromISR" can be used in an |
fep | 0:5ff20db10a96 | 3864 | interrupt. Only assert if the critical nesting count is 1 to |
fep | 0:5ff20db10a96 | 3865 | protect against recursive calls if the assert function also uses a |
fep | 0:5ff20db10a96 | 3866 | critical section. */ |
fep | 0:5ff20db10a96 | 3867 | if( pxCurrentTCB->uxCriticalNesting == 1 ) |
fep | 0:5ff20db10a96 | 3868 | { |
fep | 0:5ff20db10a96 | 3869 | portASSERT_IF_IN_ISR(); |
fep | 0:5ff20db10a96 | 3870 | } |
fep | 0:5ff20db10a96 | 3871 | } |
fep | 0:5ff20db10a96 | 3872 | else |
fep | 0:5ff20db10a96 | 3873 | { |
fep | 0:5ff20db10a96 | 3874 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3875 | } |
fep | 0:5ff20db10a96 | 3876 | } |
fep | 0:5ff20db10a96 | 3877 | |
fep | 0:5ff20db10a96 | 3878 | #endif /* portCRITICAL_NESTING_IN_TCB */ |
fep | 0:5ff20db10a96 | 3879 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3880 | |
fep | 0:5ff20db10a96 | 3881 | #if ( portCRITICAL_NESTING_IN_TCB == 1 ) |
fep | 0:5ff20db10a96 | 3882 | |
fep | 0:5ff20db10a96 | 3883 | void vTaskExitCritical( void ) |
fep | 0:5ff20db10a96 | 3884 | { |
fep | 0:5ff20db10a96 | 3885 | if( xSchedulerRunning != pdFALSE ) |
fep | 0:5ff20db10a96 | 3886 | { |
fep | 0:5ff20db10a96 | 3887 | if( pxCurrentTCB->uxCriticalNesting > 0U ) |
fep | 0:5ff20db10a96 | 3888 | { |
fep | 0:5ff20db10a96 | 3889 | ( pxCurrentTCB->uxCriticalNesting )--; |
fep | 0:5ff20db10a96 | 3890 | |
fep | 0:5ff20db10a96 | 3891 | if( pxCurrentTCB->uxCriticalNesting == 0U ) |
fep | 0:5ff20db10a96 | 3892 | { |
fep | 0:5ff20db10a96 | 3893 | portENABLE_INTERRUPTS(); |
fep | 0:5ff20db10a96 | 3894 | } |
fep | 0:5ff20db10a96 | 3895 | else |
fep | 0:5ff20db10a96 | 3896 | { |
fep | 0:5ff20db10a96 | 3897 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3898 | } |
fep | 0:5ff20db10a96 | 3899 | } |
fep | 0:5ff20db10a96 | 3900 | else |
fep | 0:5ff20db10a96 | 3901 | { |
fep | 0:5ff20db10a96 | 3902 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3903 | } |
fep | 0:5ff20db10a96 | 3904 | } |
fep | 0:5ff20db10a96 | 3905 | else |
fep | 0:5ff20db10a96 | 3906 | { |
fep | 0:5ff20db10a96 | 3907 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 3908 | } |
fep | 0:5ff20db10a96 | 3909 | } |
fep | 0:5ff20db10a96 | 3910 | |
fep | 0:5ff20db10a96 | 3911 | #endif /* portCRITICAL_NESTING_IN_TCB */ |
fep | 0:5ff20db10a96 | 3912 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3913 | |
fep | 0:5ff20db10a96 | 3914 | #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) |
fep | 0:5ff20db10a96 | 3915 | |
fep | 0:5ff20db10a96 | 3916 | static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName ) |
fep | 0:5ff20db10a96 | 3917 | { |
fep | 0:5ff20db10a96 | 3918 | size_t x; |
fep | 0:5ff20db10a96 | 3919 | |
fep | 0:5ff20db10a96 | 3920 | /* Start by copying the entire string. */ |
fep | 0:5ff20db10a96 | 3921 | strcpy( pcBuffer, pcTaskName ); |
fep | 0:5ff20db10a96 | 3922 | |
fep | 0:5ff20db10a96 | 3923 | /* Pad the end of the string with spaces to ensure columns line up when |
fep | 0:5ff20db10a96 | 3924 | printed out. */ |
fep | 0:5ff20db10a96 | 3925 | for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ ) |
fep | 0:5ff20db10a96 | 3926 | { |
fep | 0:5ff20db10a96 | 3927 | pcBuffer[ x ] = ' '; |
fep | 0:5ff20db10a96 | 3928 | } |
fep | 0:5ff20db10a96 | 3929 | |
fep | 0:5ff20db10a96 | 3930 | /* Terminate. */ |
fep | 0:5ff20db10a96 | 3931 | pcBuffer[ x ] = 0x00; |
fep | 0:5ff20db10a96 | 3932 | |
fep | 0:5ff20db10a96 | 3933 | /* Return the new end of string. */ |
fep | 0:5ff20db10a96 | 3934 | return &( pcBuffer[ x ] ); |
fep | 0:5ff20db10a96 | 3935 | } |
fep | 0:5ff20db10a96 | 3936 | |
fep | 0:5ff20db10a96 | 3937 | #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */ |
fep | 0:5ff20db10a96 | 3938 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 3939 | |
fep | 0:5ff20db10a96 | 3940 | #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) |
fep | 0:5ff20db10a96 | 3941 | |
fep | 0:5ff20db10a96 | 3942 | void vTaskList( char * pcWriteBuffer ) |
fep | 0:5ff20db10a96 | 3943 | { |
fep | 0:5ff20db10a96 | 3944 | TaskStatus_t *pxTaskStatusArray; |
fep | 0:5ff20db10a96 | 3945 | volatile UBaseType_t uxArraySize, x; |
fep | 0:5ff20db10a96 | 3946 | char cStatus; |
fep | 0:5ff20db10a96 | 3947 | |
fep | 0:5ff20db10a96 | 3948 | /* |
fep | 0:5ff20db10a96 | 3949 | * PLEASE NOTE: |
fep | 0:5ff20db10a96 | 3950 | * |
fep | 0:5ff20db10a96 | 3951 | * This function is provided for convenience only, and is used by many |
fep | 0:5ff20db10a96 | 3952 | * of the demo applications. Do not consider it to be part of the |
fep | 0:5ff20db10a96 | 3953 | * scheduler. |
fep | 0:5ff20db10a96 | 3954 | * |
fep | 0:5ff20db10a96 | 3955 | * vTaskList() calls uxTaskGetSystemState(), then formats part of the |
fep | 0:5ff20db10a96 | 3956 | * uxTaskGetSystemState() output into a human readable table that |
fep | 0:5ff20db10a96 | 3957 | * displays task names, states and stack usage. |
fep | 0:5ff20db10a96 | 3958 | * |
fep | 0:5ff20db10a96 | 3959 | * vTaskList() has a dependency on the sprintf() C library function that |
fep | 0:5ff20db10a96 | 3960 | * might bloat the code size, use a lot of stack, and provide different |
fep | 0:5ff20db10a96 | 3961 | * results on different platforms. An alternative, tiny, third party, |
fep | 0:5ff20db10a96 | 3962 | * and limited functionality implementation of sprintf() is provided in |
fep | 0:5ff20db10a96 | 3963 | * many of the FreeRTOS/Demo sub-directories in a file called |
fep | 0:5ff20db10a96 | 3964 | * printf-stdarg.c (note printf-stdarg.c does not provide a full |
fep | 0:5ff20db10a96 | 3965 | * snprintf() implementation!). |
fep | 0:5ff20db10a96 | 3966 | * |
fep | 0:5ff20db10a96 | 3967 | * It is recommended that production systems call uxTaskGetSystemState() |
fep | 0:5ff20db10a96 | 3968 | * directly to get access to raw stats data, rather than indirectly |
fep | 0:5ff20db10a96 | 3969 | * through a call to vTaskList(). |
fep | 0:5ff20db10a96 | 3970 | */ |
fep | 0:5ff20db10a96 | 3971 | |
fep | 0:5ff20db10a96 | 3972 | |
fep | 0:5ff20db10a96 | 3973 | /* Make sure the write buffer does not contain a string. */ |
fep | 0:5ff20db10a96 | 3974 | *pcWriteBuffer = 0x00; |
fep | 0:5ff20db10a96 | 3975 | |
fep | 0:5ff20db10a96 | 3976 | /* Take a snapshot of the number of tasks in case it changes while this |
fep | 0:5ff20db10a96 | 3977 | function is executing. */ |
fep | 0:5ff20db10a96 | 3978 | uxArraySize = uxCurrentNumberOfTasks; |
fep | 0:5ff20db10a96 | 3979 | |
fep | 0:5ff20db10a96 | 3980 | /* Allocate an array index for each task. NOTE! if |
fep | 0:5ff20db10a96 | 3981 | configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will |
fep | 0:5ff20db10a96 | 3982 | equate to NULL. */ |
fep | 0:5ff20db10a96 | 3983 | pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); |
fep | 0:5ff20db10a96 | 3984 | |
fep | 0:5ff20db10a96 | 3985 | if( pxTaskStatusArray != NULL ) |
fep | 0:5ff20db10a96 | 3986 | { |
fep | 0:5ff20db10a96 | 3987 | /* Generate the (binary) data. */ |
fep | 0:5ff20db10a96 | 3988 | uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL ); |
fep | 0:5ff20db10a96 | 3989 | |
fep | 0:5ff20db10a96 | 3990 | /* Create a human readable table from the binary data. */ |
fep | 0:5ff20db10a96 | 3991 | for( x = 0; x < uxArraySize; x++ ) |
fep | 0:5ff20db10a96 | 3992 | { |
fep | 0:5ff20db10a96 | 3993 | switch( pxTaskStatusArray[ x ].eCurrentState ) |
fep | 0:5ff20db10a96 | 3994 | { |
fep | 0:5ff20db10a96 | 3995 | case eReady: cStatus = tskREADY_CHAR; |
fep | 0:5ff20db10a96 | 3996 | break; |
fep | 0:5ff20db10a96 | 3997 | |
fep | 0:5ff20db10a96 | 3998 | case eBlocked: cStatus = tskBLOCKED_CHAR; |
fep | 0:5ff20db10a96 | 3999 | break; |
fep | 0:5ff20db10a96 | 4000 | |
fep | 0:5ff20db10a96 | 4001 | case eSuspended: cStatus = tskSUSPENDED_CHAR; |
fep | 0:5ff20db10a96 | 4002 | break; |
fep | 0:5ff20db10a96 | 4003 | |
fep | 0:5ff20db10a96 | 4004 | case eDeleted: cStatus = tskDELETED_CHAR; |
fep | 0:5ff20db10a96 | 4005 | break; |
fep | 0:5ff20db10a96 | 4006 | |
fep | 0:5ff20db10a96 | 4007 | default: /* Should not get here, but it is included |
fep | 0:5ff20db10a96 | 4008 | to prevent static checking errors. */ |
fep | 0:5ff20db10a96 | 4009 | cStatus = 0x00; |
fep | 0:5ff20db10a96 | 4010 | break; |
fep | 0:5ff20db10a96 | 4011 | } |
fep | 0:5ff20db10a96 | 4012 | |
fep | 0:5ff20db10a96 | 4013 | /* Write the task name to the string, padding with spaces so it |
fep | 0:5ff20db10a96 | 4014 | can be printed in tabular form more easily. */ |
fep | 0:5ff20db10a96 | 4015 | pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName ); |
fep | 0:5ff20db10a96 | 4016 | |
fep | 0:5ff20db10a96 | 4017 | /* Write the rest of the string. */ |
fep | 0:5ff20db10a96 | 4018 | sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); |
fep | 0:5ff20db10a96 | 4019 | pcWriteBuffer += strlen( pcWriteBuffer ); |
fep | 0:5ff20db10a96 | 4020 | } |
fep | 0:5ff20db10a96 | 4021 | |
fep | 0:5ff20db10a96 | 4022 | /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION |
fep | 0:5ff20db10a96 | 4023 | is 0 then vPortFree() will be #defined to nothing. */ |
fep | 0:5ff20db10a96 | 4024 | vPortFree( pxTaskStatusArray ); |
fep | 0:5ff20db10a96 | 4025 | } |
fep | 0:5ff20db10a96 | 4026 | else |
fep | 0:5ff20db10a96 | 4027 | { |
fep | 0:5ff20db10a96 | 4028 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4029 | } |
fep | 0:5ff20db10a96 | 4030 | } |
fep | 0:5ff20db10a96 | 4031 | |
fep | 0:5ff20db10a96 | 4032 | #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */ |
fep | 0:5ff20db10a96 | 4033 | /*----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 4034 | |
fep | 0:5ff20db10a96 | 4035 | #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) |
fep | 0:5ff20db10a96 | 4036 | |
fep | 0:5ff20db10a96 | 4037 | void vTaskGetRunTimeStats( char *pcWriteBuffer ) |
fep | 0:5ff20db10a96 | 4038 | { |
fep | 0:5ff20db10a96 | 4039 | TaskStatus_t *pxTaskStatusArray; |
fep | 0:5ff20db10a96 | 4040 | volatile UBaseType_t uxArraySize, x; |
fep | 0:5ff20db10a96 | 4041 | uint32_t ulTotalTime, ulStatsAsPercentage; |
fep | 0:5ff20db10a96 | 4042 | |
fep | 0:5ff20db10a96 | 4043 | #if( configUSE_TRACE_FACILITY != 1 ) |
fep | 0:5ff20db10a96 | 4044 | { |
fep | 0:5ff20db10a96 | 4045 | #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats(). |
fep | 0:5ff20db10a96 | 4046 | } |
fep | 0:5ff20db10a96 | 4047 | #endif |
fep | 0:5ff20db10a96 | 4048 | |
fep | 0:5ff20db10a96 | 4049 | /* |
fep | 0:5ff20db10a96 | 4050 | * PLEASE NOTE: |
fep | 0:5ff20db10a96 | 4051 | * |
fep | 0:5ff20db10a96 | 4052 | * This function is provided for convenience only, and is used by many |
fep | 0:5ff20db10a96 | 4053 | * of the demo applications. Do not consider it to be part of the |
fep | 0:5ff20db10a96 | 4054 | * scheduler. |
fep | 0:5ff20db10a96 | 4055 | * |
fep | 0:5ff20db10a96 | 4056 | * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part |
fep | 0:5ff20db10a96 | 4057 | * of the uxTaskGetSystemState() output into a human readable table that |
fep | 0:5ff20db10a96 | 4058 | * displays the amount of time each task has spent in the Running state |
fep | 0:5ff20db10a96 | 4059 | * in both absolute and percentage terms. |
fep | 0:5ff20db10a96 | 4060 | * |
fep | 0:5ff20db10a96 | 4061 | * vTaskGetRunTimeStats() has a dependency on the sprintf() C library |
fep | 0:5ff20db10a96 | 4062 | * function that might bloat the code size, use a lot of stack, and |
fep | 0:5ff20db10a96 | 4063 | * provide different results on different platforms. An alternative, |
fep | 0:5ff20db10a96 | 4064 | * tiny, third party, and limited functionality implementation of |
fep | 0:5ff20db10a96 | 4065 | * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in |
fep | 0:5ff20db10a96 | 4066 | * a file called printf-stdarg.c (note printf-stdarg.c does not provide |
fep | 0:5ff20db10a96 | 4067 | * a full snprintf() implementation!). |
fep | 0:5ff20db10a96 | 4068 | * |
fep | 0:5ff20db10a96 | 4069 | * It is recommended that production systems call uxTaskGetSystemState() |
fep | 0:5ff20db10a96 | 4070 | * directly to get access to raw stats data, rather than indirectly |
fep | 0:5ff20db10a96 | 4071 | * through a call to vTaskGetRunTimeStats(). |
fep | 0:5ff20db10a96 | 4072 | */ |
fep | 0:5ff20db10a96 | 4073 | |
fep | 0:5ff20db10a96 | 4074 | /* Make sure the write buffer does not contain a string. */ |
fep | 0:5ff20db10a96 | 4075 | *pcWriteBuffer = 0x00; |
fep | 0:5ff20db10a96 | 4076 | |
fep | 0:5ff20db10a96 | 4077 | /* Take a snapshot of the number of tasks in case it changes while this |
fep | 0:5ff20db10a96 | 4078 | function is executing. */ |
fep | 0:5ff20db10a96 | 4079 | uxArraySize = uxCurrentNumberOfTasks; |
fep | 0:5ff20db10a96 | 4080 | |
fep | 0:5ff20db10a96 | 4081 | /* Allocate an array index for each task. NOTE! If |
fep | 0:5ff20db10a96 | 4082 | configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will |
fep | 0:5ff20db10a96 | 4083 | equate to NULL. */ |
fep | 0:5ff20db10a96 | 4084 | pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); |
fep | 0:5ff20db10a96 | 4085 | |
fep | 0:5ff20db10a96 | 4086 | if( pxTaskStatusArray != NULL ) |
fep | 0:5ff20db10a96 | 4087 | { |
fep | 0:5ff20db10a96 | 4088 | /* Generate the (binary) data. */ |
fep | 0:5ff20db10a96 | 4089 | uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime ); |
fep | 0:5ff20db10a96 | 4090 | |
fep | 0:5ff20db10a96 | 4091 | /* For percentage calculations. */ |
fep | 0:5ff20db10a96 | 4092 | ulTotalTime /= 100UL; |
fep | 0:5ff20db10a96 | 4093 | |
fep | 0:5ff20db10a96 | 4094 | /* Avoid divide by zero errors. */ |
fep | 0:5ff20db10a96 | 4095 | if( ulTotalTime > 0 ) |
fep | 0:5ff20db10a96 | 4096 | { |
fep | 0:5ff20db10a96 | 4097 | /* Create a human readable table from the binary data. */ |
fep | 0:5ff20db10a96 | 4098 | for( x = 0; x < uxArraySize; x++ ) |
fep | 0:5ff20db10a96 | 4099 | { |
fep | 0:5ff20db10a96 | 4100 | /* What percentage of the total run time has the task used? |
fep | 0:5ff20db10a96 | 4101 | This will always be rounded down to the nearest integer. |
fep | 0:5ff20db10a96 | 4102 | ulTotalRunTimeDiv100 has already been divided by 100. */ |
fep | 0:5ff20db10a96 | 4103 | ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime; |
fep | 0:5ff20db10a96 | 4104 | |
fep | 0:5ff20db10a96 | 4105 | /* Write the task name to the string, padding with |
fep | 0:5ff20db10a96 | 4106 | spaces so it can be printed in tabular form more |
fep | 0:5ff20db10a96 | 4107 | easily. */ |
fep | 0:5ff20db10a96 | 4108 | pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName ); |
fep | 0:5ff20db10a96 | 4109 | |
fep | 0:5ff20db10a96 | 4110 | if( ulStatsAsPercentage > 0UL ) |
fep | 0:5ff20db10a96 | 4111 | { |
fep | 0:5ff20db10a96 | 4112 | #ifdef portLU_PRINTF_SPECIFIER_REQUIRED |
fep | 0:5ff20db10a96 | 4113 | { |
fep | 0:5ff20db10a96 | 4114 | sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage ); |
fep | 0:5ff20db10a96 | 4115 | } |
fep | 0:5ff20db10a96 | 4116 | #else |
fep | 0:5ff20db10a96 | 4117 | { |
fep | 0:5ff20db10a96 | 4118 | /* sizeof( int ) == sizeof( long ) so a smaller |
fep | 0:5ff20db10a96 | 4119 | printf() library can be used. */ |
fep | 0:5ff20db10a96 | 4120 | sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); |
fep | 0:5ff20db10a96 | 4121 | } |
fep | 0:5ff20db10a96 | 4122 | #endif |
fep | 0:5ff20db10a96 | 4123 | } |
fep | 0:5ff20db10a96 | 4124 | else |
fep | 0:5ff20db10a96 | 4125 | { |
fep | 0:5ff20db10a96 | 4126 | /* If the percentage is zero here then the task has |
fep | 0:5ff20db10a96 | 4127 | consumed less than 1% of the total run time. */ |
fep | 0:5ff20db10a96 | 4128 | #ifdef portLU_PRINTF_SPECIFIER_REQUIRED |
fep | 0:5ff20db10a96 | 4129 | { |
fep | 0:5ff20db10a96 | 4130 | sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter ); |
fep | 0:5ff20db10a96 | 4131 | } |
fep | 0:5ff20db10a96 | 4132 | #else |
fep | 0:5ff20db10a96 | 4133 | { |
fep | 0:5ff20db10a96 | 4134 | /* sizeof( int ) == sizeof( long ) so a smaller |
fep | 0:5ff20db10a96 | 4135 | printf() library can be used. */ |
fep | 0:5ff20db10a96 | 4136 | sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); |
fep | 0:5ff20db10a96 | 4137 | } |
fep | 0:5ff20db10a96 | 4138 | #endif |
fep | 0:5ff20db10a96 | 4139 | } |
fep | 0:5ff20db10a96 | 4140 | |
fep | 0:5ff20db10a96 | 4141 | pcWriteBuffer += strlen( pcWriteBuffer ); |
fep | 0:5ff20db10a96 | 4142 | } |
fep | 0:5ff20db10a96 | 4143 | } |
fep | 0:5ff20db10a96 | 4144 | else |
fep | 0:5ff20db10a96 | 4145 | { |
fep | 0:5ff20db10a96 | 4146 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4147 | } |
fep | 0:5ff20db10a96 | 4148 | |
fep | 0:5ff20db10a96 | 4149 | /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION |
fep | 0:5ff20db10a96 | 4150 | is 0 then vPortFree() will be #defined to nothing. */ |
fep | 0:5ff20db10a96 | 4151 | vPortFree( pxTaskStatusArray ); |
fep | 0:5ff20db10a96 | 4152 | } |
fep | 0:5ff20db10a96 | 4153 | else |
fep | 0:5ff20db10a96 | 4154 | { |
fep | 0:5ff20db10a96 | 4155 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4156 | } |
fep | 0:5ff20db10a96 | 4157 | } |
fep | 0:5ff20db10a96 | 4158 | |
fep | 0:5ff20db10a96 | 4159 | #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */ |
fep | 0:5ff20db10a96 | 4160 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 4161 | |
fep | 0:5ff20db10a96 | 4162 | TickType_t uxTaskResetEventItemValue( void ) |
fep | 0:5ff20db10a96 | 4163 | { |
fep | 0:5ff20db10a96 | 4164 | TickType_t uxReturn; |
fep | 0:5ff20db10a96 | 4165 | |
fep | 0:5ff20db10a96 | 4166 | uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 4167 | |
fep | 0:5ff20db10a96 | 4168 | /* Reset the event list item to its normal value - so it can be used with |
fep | 0:5ff20db10a96 | 4169 | queues and semaphores. */ |
fep | 0:5ff20db10a96 | 4170 | listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
fep | 0:5ff20db10a96 | 4171 | |
fep | 0:5ff20db10a96 | 4172 | return uxReturn; |
fep | 0:5ff20db10a96 | 4173 | } |
fep | 0:5ff20db10a96 | 4174 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 4175 | |
fep | 0:5ff20db10a96 | 4176 | #if ( configUSE_MUTEXES == 1 ) |
fep | 0:5ff20db10a96 | 4177 | |
fep | 0:5ff20db10a96 | 4178 | void *pvTaskIncrementMutexHeldCount( void ) |
fep | 0:5ff20db10a96 | 4179 | { |
fep | 0:5ff20db10a96 | 4180 | /* If xSemaphoreCreateMutex() is called before any tasks have been created |
fep | 0:5ff20db10a96 | 4181 | then pxCurrentTCB will be NULL. */ |
fep | 0:5ff20db10a96 | 4182 | if( pxCurrentTCB != NULL ) |
fep | 0:5ff20db10a96 | 4183 | { |
fep | 0:5ff20db10a96 | 4184 | ( pxCurrentTCB->uxMutexesHeld )++; |
fep | 0:5ff20db10a96 | 4185 | } |
fep | 0:5ff20db10a96 | 4186 | |
fep | 0:5ff20db10a96 | 4187 | return pxCurrentTCB; |
fep | 0:5ff20db10a96 | 4188 | } |
fep | 0:5ff20db10a96 | 4189 | |
fep | 0:5ff20db10a96 | 4190 | #endif /* configUSE_MUTEXES */ |
fep | 0:5ff20db10a96 | 4191 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 4192 | |
fep | 0:5ff20db10a96 | 4193 | #if( configUSE_TASK_NOTIFICATIONS == 1 ) |
fep | 0:5ff20db10a96 | 4194 | |
fep | 0:5ff20db10a96 | 4195 | uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait ) |
fep | 0:5ff20db10a96 | 4196 | { |
fep | 0:5ff20db10a96 | 4197 | uint32_t ulReturn; |
fep | 0:5ff20db10a96 | 4198 | |
fep | 0:5ff20db10a96 | 4199 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 4200 | { |
fep | 0:5ff20db10a96 | 4201 | /* Only block if the notification count is not already non-zero. */ |
fep | 0:5ff20db10a96 | 4202 | if( pxCurrentTCB->ulNotifiedValue == 0UL ) |
fep | 0:5ff20db10a96 | 4203 | { |
fep | 0:5ff20db10a96 | 4204 | /* Mark this task as waiting for a notification. */ |
fep | 0:5ff20db10a96 | 4205 | pxCurrentTCB->ucNotifyState = taskWAITING_NOTIFICATION; |
fep | 0:5ff20db10a96 | 4206 | |
fep | 0:5ff20db10a96 | 4207 | if( xTicksToWait > ( TickType_t ) 0 ) |
fep | 0:5ff20db10a96 | 4208 | { |
fep | 0:5ff20db10a96 | 4209 | prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); |
fep | 0:5ff20db10a96 | 4210 | traceTASK_NOTIFY_TAKE_BLOCK(); |
fep | 0:5ff20db10a96 | 4211 | |
fep | 0:5ff20db10a96 | 4212 | /* All ports are written to allow a yield in a critical |
fep | 0:5ff20db10a96 | 4213 | section (some will yield immediately, others wait until the |
fep | 0:5ff20db10a96 | 4214 | critical section exits) - but it is not something that |
fep | 0:5ff20db10a96 | 4215 | application code should ever do. */ |
fep | 0:5ff20db10a96 | 4216 | portYIELD_WITHIN_API(); |
fep | 0:5ff20db10a96 | 4217 | } |
fep | 0:5ff20db10a96 | 4218 | else |
fep | 0:5ff20db10a96 | 4219 | { |
fep | 0:5ff20db10a96 | 4220 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4221 | } |
fep | 0:5ff20db10a96 | 4222 | } |
fep | 0:5ff20db10a96 | 4223 | else |
fep | 0:5ff20db10a96 | 4224 | { |
fep | 0:5ff20db10a96 | 4225 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4226 | } |
fep | 0:5ff20db10a96 | 4227 | } |
fep | 0:5ff20db10a96 | 4228 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 4229 | |
fep | 0:5ff20db10a96 | 4230 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 4231 | { |
fep | 0:5ff20db10a96 | 4232 | traceTASK_NOTIFY_TAKE(); |
fep | 0:5ff20db10a96 | 4233 | ulReturn = pxCurrentTCB->ulNotifiedValue; |
fep | 0:5ff20db10a96 | 4234 | |
fep | 0:5ff20db10a96 | 4235 | if( ulReturn != 0UL ) |
fep | 0:5ff20db10a96 | 4236 | { |
fep | 0:5ff20db10a96 | 4237 | if( xClearCountOnExit != pdFALSE ) |
fep | 0:5ff20db10a96 | 4238 | { |
fep | 0:5ff20db10a96 | 4239 | pxCurrentTCB->ulNotifiedValue = 0UL; |
fep | 0:5ff20db10a96 | 4240 | } |
fep | 0:5ff20db10a96 | 4241 | else |
fep | 0:5ff20db10a96 | 4242 | { |
fep | 0:5ff20db10a96 | 4243 | pxCurrentTCB->ulNotifiedValue = ulReturn - 1; |
fep | 0:5ff20db10a96 | 4244 | } |
fep | 0:5ff20db10a96 | 4245 | } |
fep | 0:5ff20db10a96 | 4246 | else |
fep | 0:5ff20db10a96 | 4247 | { |
fep | 0:5ff20db10a96 | 4248 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4249 | } |
fep | 0:5ff20db10a96 | 4250 | |
fep | 0:5ff20db10a96 | 4251 | pxCurrentTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION; |
fep | 0:5ff20db10a96 | 4252 | } |
fep | 0:5ff20db10a96 | 4253 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 4254 | |
fep | 0:5ff20db10a96 | 4255 | return ulReturn; |
fep | 0:5ff20db10a96 | 4256 | } |
fep | 0:5ff20db10a96 | 4257 | |
fep | 0:5ff20db10a96 | 4258 | #endif /* configUSE_TASK_NOTIFICATIONS */ |
fep | 0:5ff20db10a96 | 4259 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 4260 | |
fep | 0:5ff20db10a96 | 4261 | #if( configUSE_TASK_NOTIFICATIONS == 1 ) |
fep | 0:5ff20db10a96 | 4262 | |
fep | 0:5ff20db10a96 | 4263 | BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait ) |
fep | 0:5ff20db10a96 | 4264 | { |
fep | 0:5ff20db10a96 | 4265 | BaseType_t xReturn; |
fep | 0:5ff20db10a96 | 4266 | |
fep | 0:5ff20db10a96 | 4267 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 4268 | { |
fep | 0:5ff20db10a96 | 4269 | /* Only block if a notification is not already pending. */ |
fep | 0:5ff20db10a96 | 4270 | if( pxCurrentTCB->ucNotifyState != taskNOTIFICATION_RECEIVED ) |
fep | 0:5ff20db10a96 | 4271 | { |
fep | 0:5ff20db10a96 | 4272 | /* Clear bits in the task's notification value as bits may get |
fep | 0:5ff20db10a96 | 4273 | set by the notifying task or interrupt. This can be used to |
fep | 0:5ff20db10a96 | 4274 | clear the value to zero. */ |
fep | 0:5ff20db10a96 | 4275 | pxCurrentTCB->ulNotifiedValue &= ~ulBitsToClearOnEntry; |
fep | 0:5ff20db10a96 | 4276 | |
fep | 0:5ff20db10a96 | 4277 | /* Mark this task as waiting for a notification. */ |
fep | 0:5ff20db10a96 | 4278 | pxCurrentTCB->ucNotifyState = taskWAITING_NOTIFICATION; |
fep | 0:5ff20db10a96 | 4279 | |
fep | 0:5ff20db10a96 | 4280 | if( xTicksToWait > ( TickType_t ) 0 ) |
fep | 0:5ff20db10a96 | 4281 | { |
fep | 0:5ff20db10a96 | 4282 | prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); |
fep | 0:5ff20db10a96 | 4283 | traceTASK_NOTIFY_WAIT_BLOCK(); |
fep | 0:5ff20db10a96 | 4284 | |
fep | 0:5ff20db10a96 | 4285 | /* All ports are written to allow a yield in a critical |
fep | 0:5ff20db10a96 | 4286 | section (some will yield immediately, others wait until the |
fep | 0:5ff20db10a96 | 4287 | critical section exits) - but it is not something that |
fep | 0:5ff20db10a96 | 4288 | application code should ever do. */ |
fep | 0:5ff20db10a96 | 4289 | portYIELD_WITHIN_API(); |
fep | 0:5ff20db10a96 | 4290 | } |
fep | 0:5ff20db10a96 | 4291 | else |
fep | 0:5ff20db10a96 | 4292 | { |
fep | 0:5ff20db10a96 | 4293 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4294 | } |
fep | 0:5ff20db10a96 | 4295 | } |
fep | 0:5ff20db10a96 | 4296 | else |
fep | 0:5ff20db10a96 | 4297 | { |
fep | 0:5ff20db10a96 | 4298 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4299 | } |
fep | 0:5ff20db10a96 | 4300 | } |
fep | 0:5ff20db10a96 | 4301 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 4302 | |
fep | 0:5ff20db10a96 | 4303 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 4304 | { |
fep | 0:5ff20db10a96 | 4305 | traceTASK_NOTIFY_WAIT(); |
fep | 0:5ff20db10a96 | 4306 | |
fep | 0:5ff20db10a96 | 4307 | if( pulNotificationValue != NULL ) |
fep | 0:5ff20db10a96 | 4308 | { |
fep | 0:5ff20db10a96 | 4309 | /* Output the current notification value, which may or may not |
fep | 0:5ff20db10a96 | 4310 | have changed. */ |
fep | 0:5ff20db10a96 | 4311 | *pulNotificationValue = pxCurrentTCB->ulNotifiedValue; |
fep | 0:5ff20db10a96 | 4312 | } |
fep | 0:5ff20db10a96 | 4313 | |
fep | 0:5ff20db10a96 | 4314 | /* If ucNotifyValue is set then either the task never entered the |
fep | 0:5ff20db10a96 | 4315 | blocked state (because a notification was already pending) or the |
fep | 0:5ff20db10a96 | 4316 | task unblocked because of a notification. Otherwise the task |
fep | 0:5ff20db10a96 | 4317 | unblocked because of a timeout. */ |
fep | 0:5ff20db10a96 | 4318 | if( pxCurrentTCB->ucNotifyState == taskWAITING_NOTIFICATION ) |
fep | 0:5ff20db10a96 | 4319 | { |
fep | 0:5ff20db10a96 | 4320 | /* A notification was not received. */ |
fep | 0:5ff20db10a96 | 4321 | xReturn = pdFALSE; |
fep | 0:5ff20db10a96 | 4322 | } |
fep | 0:5ff20db10a96 | 4323 | else |
fep | 0:5ff20db10a96 | 4324 | { |
fep | 0:5ff20db10a96 | 4325 | /* A notification was already pending or a notification was |
fep | 0:5ff20db10a96 | 4326 | received while the task was waiting. */ |
fep | 0:5ff20db10a96 | 4327 | pxCurrentTCB->ulNotifiedValue &= ~ulBitsToClearOnExit; |
fep | 0:5ff20db10a96 | 4328 | xReturn = pdTRUE; |
fep | 0:5ff20db10a96 | 4329 | } |
fep | 0:5ff20db10a96 | 4330 | |
fep | 0:5ff20db10a96 | 4331 | pxCurrentTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION; |
fep | 0:5ff20db10a96 | 4332 | } |
fep | 0:5ff20db10a96 | 4333 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 4334 | |
fep | 0:5ff20db10a96 | 4335 | return xReturn; |
fep | 0:5ff20db10a96 | 4336 | } |
fep | 0:5ff20db10a96 | 4337 | |
fep | 0:5ff20db10a96 | 4338 | #endif /* configUSE_TASK_NOTIFICATIONS */ |
fep | 0:5ff20db10a96 | 4339 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 4340 | |
fep | 0:5ff20db10a96 | 4341 | #if( configUSE_TASK_NOTIFICATIONS == 1 ) |
fep | 0:5ff20db10a96 | 4342 | |
fep | 0:5ff20db10a96 | 4343 | BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue ) |
fep | 0:5ff20db10a96 | 4344 | { |
fep | 0:5ff20db10a96 | 4345 | TCB_t * pxTCB; |
fep | 0:5ff20db10a96 | 4346 | BaseType_t xReturn = pdPASS; |
fep | 0:5ff20db10a96 | 4347 | uint8_t ucOriginalNotifyState; |
fep | 0:5ff20db10a96 | 4348 | |
fep | 0:5ff20db10a96 | 4349 | configASSERT( xTaskToNotify ); |
fep | 0:5ff20db10a96 | 4350 | pxTCB = ( TCB_t * ) xTaskToNotify; |
fep | 0:5ff20db10a96 | 4351 | |
fep | 0:5ff20db10a96 | 4352 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 4353 | { |
fep | 0:5ff20db10a96 | 4354 | if( pulPreviousNotificationValue != NULL ) |
fep | 0:5ff20db10a96 | 4355 | { |
fep | 0:5ff20db10a96 | 4356 | *pulPreviousNotificationValue = pxTCB->ulNotifiedValue; |
fep | 0:5ff20db10a96 | 4357 | } |
fep | 0:5ff20db10a96 | 4358 | |
fep | 0:5ff20db10a96 | 4359 | ucOriginalNotifyState = pxTCB->ucNotifyState; |
fep | 0:5ff20db10a96 | 4360 | |
fep | 0:5ff20db10a96 | 4361 | pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED; |
fep | 0:5ff20db10a96 | 4362 | |
fep | 0:5ff20db10a96 | 4363 | switch( eAction ) |
fep | 0:5ff20db10a96 | 4364 | { |
fep | 0:5ff20db10a96 | 4365 | case eSetBits : |
fep | 0:5ff20db10a96 | 4366 | pxTCB->ulNotifiedValue |= ulValue; |
fep | 0:5ff20db10a96 | 4367 | break; |
fep | 0:5ff20db10a96 | 4368 | |
fep | 0:5ff20db10a96 | 4369 | case eIncrement : |
fep | 0:5ff20db10a96 | 4370 | ( pxTCB->ulNotifiedValue )++; |
fep | 0:5ff20db10a96 | 4371 | break; |
fep | 0:5ff20db10a96 | 4372 | |
fep | 0:5ff20db10a96 | 4373 | case eSetValueWithOverwrite : |
fep | 0:5ff20db10a96 | 4374 | pxTCB->ulNotifiedValue = ulValue; |
fep | 0:5ff20db10a96 | 4375 | break; |
fep | 0:5ff20db10a96 | 4376 | |
fep | 0:5ff20db10a96 | 4377 | case eSetValueWithoutOverwrite : |
fep | 0:5ff20db10a96 | 4378 | if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED ) |
fep | 0:5ff20db10a96 | 4379 | { |
fep | 0:5ff20db10a96 | 4380 | pxTCB->ulNotifiedValue = ulValue; |
fep | 0:5ff20db10a96 | 4381 | } |
fep | 0:5ff20db10a96 | 4382 | else |
fep | 0:5ff20db10a96 | 4383 | { |
fep | 0:5ff20db10a96 | 4384 | /* The value could not be written to the task. */ |
fep | 0:5ff20db10a96 | 4385 | xReturn = pdFAIL; |
fep | 0:5ff20db10a96 | 4386 | } |
fep | 0:5ff20db10a96 | 4387 | break; |
fep | 0:5ff20db10a96 | 4388 | |
fep | 0:5ff20db10a96 | 4389 | case eNoAction: |
fep | 0:5ff20db10a96 | 4390 | /* The task is being notified without its notify value being |
fep | 0:5ff20db10a96 | 4391 | updated. */ |
fep | 0:5ff20db10a96 | 4392 | break; |
fep | 0:5ff20db10a96 | 4393 | } |
fep | 0:5ff20db10a96 | 4394 | |
fep | 0:5ff20db10a96 | 4395 | traceTASK_NOTIFY(); |
fep | 0:5ff20db10a96 | 4396 | |
fep | 0:5ff20db10a96 | 4397 | /* If the task is in the blocked state specifically to wait for a |
fep | 0:5ff20db10a96 | 4398 | notification then unblock it now. */ |
fep | 0:5ff20db10a96 | 4399 | if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) |
fep | 0:5ff20db10a96 | 4400 | { |
fep | 0:5ff20db10a96 | 4401 | ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 4402 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 4403 | |
fep | 0:5ff20db10a96 | 4404 | /* The task should not have been on an event list. */ |
fep | 0:5ff20db10a96 | 4405 | configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); |
fep | 0:5ff20db10a96 | 4406 | |
fep | 0:5ff20db10a96 | 4407 | #if( configUSE_TICKLESS_IDLE != 0 ) |
fep | 0:5ff20db10a96 | 4408 | { |
fep | 0:5ff20db10a96 | 4409 | /* If a task is blocked waiting for a notification then |
fep | 0:5ff20db10a96 | 4410 | xNextTaskUnblockTime might be set to the blocked task's time |
fep | 0:5ff20db10a96 | 4411 | out time. If the task is unblocked for a reason other than |
fep | 0:5ff20db10a96 | 4412 | a timeout xNextTaskUnblockTime is normally left unchanged, |
fep | 0:5ff20db10a96 | 4413 | because it will automatically get reset to a new value when |
fep | 0:5ff20db10a96 | 4414 | the tick count equals xNextTaskUnblockTime. However if |
fep | 0:5ff20db10a96 | 4415 | tickless idling is used it might be more important to enter |
fep | 0:5ff20db10a96 | 4416 | sleep mode at the earliest possible time - so reset |
fep | 0:5ff20db10a96 | 4417 | xNextTaskUnblockTime here to ensure it is updated at the |
fep | 0:5ff20db10a96 | 4418 | earliest possible time. */ |
fep | 0:5ff20db10a96 | 4419 | prvResetNextTaskUnblockTime(); |
fep | 0:5ff20db10a96 | 4420 | } |
fep | 0:5ff20db10a96 | 4421 | #endif |
fep | 0:5ff20db10a96 | 4422 | |
fep | 0:5ff20db10a96 | 4423 | if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 4424 | { |
fep | 0:5ff20db10a96 | 4425 | /* The notified task has a priority above the currently |
fep | 0:5ff20db10a96 | 4426 | executing task so a yield is required. */ |
fep | 0:5ff20db10a96 | 4427 | taskYIELD_IF_USING_PREEMPTION(); |
fep | 0:5ff20db10a96 | 4428 | } |
fep | 0:5ff20db10a96 | 4429 | else |
fep | 0:5ff20db10a96 | 4430 | { |
fep | 0:5ff20db10a96 | 4431 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4432 | } |
fep | 0:5ff20db10a96 | 4433 | } |
fep | 0:5ff20db10a96 | 4434 | else |
fep | 0:5ff20db10a96 | 4435 | { |
fep | 0:5ff20db10a96 | 4436 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4437 | } |
fep | 0:5ff20db10a96 | 4438 | } |
fep | 0:5ff20db10a96 | 4439 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 4440 | |
fep | 0:5ff20db10a96 | 4441 | return xReturn; |
fep | 0:5ff20db10a96 | 4442 | } |
fep | 0:5ff20db10a96 | 4443 | |
fep | 0:5ff20db10a96 | 4444 | #endif /* configUSE_TASK_NOTIFICATIONS */ |
fep | 0:5ff20db10a96 | 4445 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 4446 | |
fep | 0:5ff20db10a96 | 4447 | #if( configUSE_TASK_NOTIFICATIONS == 1 ) |
fep | 0:5ff20db10a96 | 4448 | |
fep | 0:5ff20db10a96 | 4449 | BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken ) |
fep | 0:5ff20db10a96 | 4450 | { |
fep | 0:5ff20db10a96 | 4451 | TCB_t * pxTCB; |
fep | 0:5ff20db10a96 | 4452 | uint8_t ucOriginalNotifyState; |
fep | 0:5ff20db10a96 | 4453 | BaseType_t xReturn = pdPASS; |
fep | 0:5ff20db10a96 | 4454 | UBaseType_t uxSavedInterruptStatus; |
fep | 0:5ff20db10a96 | 4455 | |
fep | 0:5ff20db10a96 | 4456 | configASSERT( xTaskToNotify ); |
fep | 0:5ff20db10a96 | 4457 | |
fep | 0:5ff20db10a96 | 4458 | /* RTOS ports that support interrupt nesting have the concept of a |
fep | 0:5ff20db10a96 | 4459 | maximum system call (or maximum API call) interrupt priority. |
fep | 0:5ff20db10a96 | 4460 | Interrupts that are above the maximum system call priority are keep |
fep | 0:5ff20db10a96 | 4461 | permanently enabled, even when the RTOS kernel is in a critical section, |
fep | 0:5ff20db10a96 | 4462 | but cannot make any calls to FreeRTOS API functions. If configASSERT() |
fep | 0:5ff20db10a96 | 4463 | is defined in FreeRTOSConfig.h then |
fep | 0:5ff20db10a96 | 4464 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
fep | 0:5ff20db10a96 | 4465 | failure if a FreeRTOS API function is called from an interrupt that has |
fep | 0:5ff20db10a96 | 4466 | been assigned a priority above the configured maximum system call |
fep | 0:5ff20db10a96 | 4467 | priority. Only FreeRTOS functions that end in FromISR can be called |
fep | 0:5ff20db10a96 | 4468 | from interrupts that have been assigned a priority at or (logically) |
fep | 0:5ff20db10a96 | 4469 | below the maximum system call interrupt priority. FreeRTOS maintains a |
fep | 0:5ff20db10a96 | 4470 | separate interrupt safe API to ensure interrupt entry is as fast and as |
fep | 0:5ff20db10a96 | 4471 | simple as possible. More information (albeit Cortex-M specific) is |
fep | 0:5ff20db10a96 | 4472 | provided on the following link: |
fep | 0:5ff20db10a96 | 4473 | http://www.freertos.org/RTOS-Cortex-M3-M4.html */ |
fep | 0:5ff20db10a96 | 4474 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
fep | 0:5ff20db10a96 | 4475 | |
fep | 0:5ff20db10a96 | 4476 | pxTCB = ( TCB_t * ) xTaskToNotify; |
fep | 0:5ff20db10a96 | 4477 | |
fep | 0:5ff20db10a96 | 4478 | uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); |
fep | 0:5ff20db10a96 | 4479 | { |
fep | 0:5ff20db10a96 | 4480 | if( pulPreviousNotificationValue != NULL ) |
fep | 0:5ff20db10a96 | 4481 | { |
fep | 0:5ff20db10a96 | 4482 | *pulPreviousNotificationValue = pxTCB->ulNotifiedValue; |
fep | 0:5ff20db10a96 | 4483 | } |
fep | 0:5ff20db10a96 | 4484 | |
fep | 0:5ff20db10a96 | 4485 | ucOriginalNotifyState = pxTCB->ucNotifyState; |
fep | 0:5ff20db10a96 | 4486 | pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED; |
fep | 0:5ff20db10a96 | 4487 | |
fep | 0:5ff20db10a96 | 4488 | switch( eAction ) |
fep | 0:5ff20db10a96 | 4489 | { |
fep | 0:5ff20db10a96 | 4490 | case eSetBits : |
fep | 0:5ff20db10a96 | 4491 | pxTCB->ulNotifiedValue |= ulValue; |
fep | 0:5ff20db10a96 | 4492 | break; |
fep | 0:5ff20db10a96 | 4493 | |
fep | 0:5ff20db10a96 | 4494 | case eIncrement : |
fep | 0:5ff20db10a96 | 4495 | ( pxTCB->ulNotifiedValue )++; |
fep | 0:5ff20db10a96 | 4496 | break; |
fep | 0:5ff20db10a96 | 4497 | |
fep | 0:5ff20db10a96 | 4498 | case eSetValueWithOverwrite : |
fep | 0:5ff20db10a96 | 4499 | pxTCB->ulNotifiedValue = ulValue; |
fep | 0:5ff20db10a96 | 4500 | break; |
fep | 0:5ff20db10a96 | 4501 | |
fep | 0:5ff20db10a96 | 4502 | case eSetValueWithoutOverwrite : |
fep | 0:5ff20db10a96 | 4503 | if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED ) |
fep | 0:5ff20db10a96 | 4504 | { |
fep | 0:5ff20db10a96 | 4505 | pxTCB->ulNotifiedValue = ulValue; |
fep | 0:5ff20db10a96 | 4506 | } |
fep | 0:5ff20db10a96 | 4507 | else |
fep | 0:5ff20db10a96 | 4508 | { |
fep | 0:5ff20db10a96 | 4509 | /* The value could not be written to the task. */ |
fep | 0:5ff20db10a96 | 4510 | xReturn = pdFAIL; |
fep | 0:5ff20db10a96 | 4511 | } |
fep | 0:5ff20db10a96 | 4512 | break; |
fep | 0:5ff20db10a96 | 4513 | |
fep | 0:5ff20db10a96 | 4514 | case eNoAction : |
fep | 0:5ff20db10a96 | 4515 | /* The task is being notified without its notify value being |
fep | 0:5ff20db10a96 | 4516 | updated. */ |
fep | 0:5ff20db10a96 | 4517 | break; |
fep | 0:5ff20db10a96 | 4518 | } |
fep | 0:5ff20db10a96 | 4519 | |
fep | 0:5ff20db10a96 | 4520 | traceTASK_NOTIFY_FROM_ISR(); |
fep | 0:5ff20db10a96 | 4521 | |
fep | 0:5ff20db10a96 | 4522 | /* If the task is in the blocked state specifically to wait for a |
fep | 0:5ff20db10a96 | 4523 | notification then unblock it now. */ |
fep | 0:5ff20db10a96 | 4524 | if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) |
fep | 0:5ff20db10a96 | 4525 | { |
fep | 0:5ff20db10a96 | 4526 | /* The task should not have been on an event list. */ |
fep | 0:5ff20db10a96 | 4527 | configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); |
fep | 0:5ff20db10a96 | 4528 | |
fep | 0:5ff20db10a96 | 4529 | if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) |
fep | 0:5ff20db10a96 | 4530 | { |
fep | 0:5ff20db10a96 | 4531 | ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 4532 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 4533 | } |
fep | 0:5ff20db10a96 | 4534 | else |
fep | 0:5ff20db10a96 | 4535 | { |
fep | 0:5ff20db10a96 | 4536 | /* The delayed and ready lists cannot be accessed, so hold |
fep | 0:5ff20db10a96 | 4537 | this task pending until the scheduler is resumed. */ |
fep | 0:5ff20db10a96 | 4538 | vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 4539 | } |
fep | 0:5ff20db10a96 | 4540 | |
fep | 0:5ff20db10a96 | 4541 | if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 4542 | { |
fep | 0:5ff20db10a96 | 4543 | /* The notified task has a priority above the currently |
fep | 0:5ff20db10a96 | 4544 | executing task so a yield is required. */ |
fep | 0:5ff20db10a96 | 4545 | if( pxHigherPriorityTaskWoken != NULL ) |
fep | 0:5ff20db10a96 | 4546 | { |
fep | 0:5ff20db10a96 | 4547 | *pxHigherPriorityTaskWoken = pdTRUE; |
fep | 0:5ff20db10a96 | 4548 | } |
fep | 0:5ff20db10a96 | 4549 | else |
fep | 0:5ff20db10a96 | 4550 | { |
fep | 0:5ff20db10a96 | 4551 | /* Mark that a yield is pending in case the user is not |
fep | 0:5ff20db10a96 | 4552 | using the "xHigherPriorityTaskWoken" parameter to an ISR |
fep | 0:5ff20db10a96 | 4553 | safe FreeRTOS function. */ |
fep | 0:5ff20db10a96 | 4554 | xYieldPending = pdTRUE; |
fep | 0:5ff20db10a96 | 4555 | } |
fep | 0:5ff20db10a96 | 4556 | } |
fep | 0:5ff20db10a96 | 4557 | else |
fep | 0:5ff20db10a96 | 4558 | { |
fep | 0:5ff20db10a96 | 4559 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4560 | } |
fep | 0:5ff20db10a96 | 4561 | } |
fep | 0:5ff20db10a96 | 4562 | } |
fep | 0:5ff20db10a96 | 4563 | portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); |
fep | 0:5ff20db10a96 | 4564 | |
fep | 0:5ff20db10a96 | 4565 | return xReturn; |
fep | 0:5ff20db10a96 | 4566 | } |
fep | 0:5ff20db10a96 | 4567 | |
fep | 0:5ff20db10a96 | 4568 | #endif /* configUSE_TASK_NOTIFICATIONS */ |
fep | 0:5ff20db10a96 | 4569 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 4570 | |
fep | 0:5ff20db10a96 | 4571 | #if( configUSE_TASK_NOTIFICATIONS == 1 ) |
fep | 0:5ff20db10a96 | 4572 | |
fep | 0:5ff20db10a96 | 4573 | void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken ) |
fep | 0:5ff20db10a96 | 4574 | { |
fep | 0:5ff20db10a96 | 4575 | TCB_t * pxTCB; |
fep | 0:5ff20db10a96 | 4576 | uint8_t ucOriginalNotifyState; |
fep | 0:5ff20db10a96 | 4577 | UBaseType_t uxSavedInterruptStatus; |
fep | 0:5ff20db10a96 | 4578 | |
fep | 0:5ff20db10a96 | 4579 | configASSERT( xTaskToNotify ); |
fep | 0:5ff20db10a96 | 4580 | |
fep | 0:5ff20db10a96 | 4581 | /* RTOS ports that support interrupt nesting have the concept of a |
fep | 0:5ff20db10a96 | 4582 | maximum system call (or maximum API call) interrupt priority. |
fep | 0:5ff20db10a96 | 4583 | Interrupts that are above the maximum system call priority are keep |
fep | 0:5ff20db10a96 | 4584 | permanently enabled, even when the RTOS kernel is in a critical section, |
fep | 0:5ff20db10a96 | 4585 | but cannot make any calls to FreeRTOS API functions. If configASSERT() |
fep | 0:5ff20db10a96 | 4586 | is defined in FreeRTOSConfig.h then |
fep | 0:5ff20db10a96 | 4587 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
fep | 0:5ff20db10a96 | 4588 | failure if a FreeRTOS API function is called from an interrupt that has |
fep | 0:5ff20db10a96 | 4589 | been assigned a priority above the configured maximum system call |
fep | 0:5ff20db10a96 | 4590 | priority. Only FreeRTOS functions that end in FromISR can be called |
fep | 0:5ff20db10a96 | 4591 | from interrupts that have been assigned a priority at or (logically) |
fep | 0:5ff20db10a96 | 4592 | below the maximum system call interrupt priority. FreeRTOS maintains a |
fep | 0:5ff20db10a96 | 4593 | separate interrupt safe API to ensure interrupt entry is as fast and as |
fep | 0:5ff20db10a96 | 4594 | simple as possible. More information (albeit Cortex-M specific) is |
fep | 0:5ff20db10a96 | 4595 | provided on the following link: |
fep | 0:5ff20db10a96 | 4596 | http://www.freertos.org/RTOS-Cortex-M3-M4.html */ |
fep | 0:5ff20db10a96 | 4597 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
fep | 0:5ff20db10a96 | 4598 | |
fep | 0:5ff20db10a96 | 4599 | pxTCB = ( TCB_t * ) xTaskToNotify; |
fep | 0:5ff20db10a96 | 4600 | |
fep | 0:5ff20db10a96 | 4601 | uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); |
fep | 0:5ff20db10a96 | 4602 | { |
fep | 0:5ff20db10a96 | 4603 | ucOriginalNotifyState = pxTCB->ucNotifyState; |
fep | 0:5ff20db10a96 | 4604 | pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED; |
fep | 0:5ff20db10a96 | 4605 | |
fep | 0:5ff20db10a96 | 4606 | /* 'Giving' is equivalent to incrementing a count in a counting |
fep | 0:5ff20db10a96 | 4607 | semaphore. */ |
fep | 0:5ff20db10a96 | 4608 | ( pxTCB->ulNotifiedValue )++; |
fep | 0:5ff20db10a96 | 4609 | |
fep | 0:5ff20db10a96 | 4610 | traceTASK_NOTIFY_GIVE_FROM_ISR(); |
fep | 0:5ff20db10a96 | 4611 | |
fep | 0:5ff20db10a96 | 4612 | /* If the task is in the blocked state specifically to wait for a |
fep | 0:5ff20db10a96 | 4613 | notification then unblock it now. */ |
fep | 0:5ff20db10a96 | 4614 | if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) |
fep | 0:5ff20db10a96 | 4615 | { |
fep | 0:5ff20db10a96 | 4616 | /* The task should not have been on an event list. */ |
fep | 0:5ff20db10a96 | 4617 | configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); |
fep | 0:5ff20db10a96 | 4618 | |
fep | 0:5ff20db10a96 | 4619 | if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) |
fep | 0:5ff20db10a96 | 4620 | { |
fep | 0:5ff20db10a96 | 4621 | ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 4622 | prvAddTaskToReadyList( pxTCB ); |
fep | 0:5ff20db10a96 | 4623 | } |
fep | 0:5ff20db10a96 | 4624 | else |
fep | 0:5ff20db10a96 | 4625 | { |
fep | 0:5ff20db10a96 | 4626 | /* The delayed and ready lists cannot be accessed, so hold |
fep | 0:5ff20db10a96 | 4627 | this task pending until the scheduler is resumed. */ |
fep | 0:5ff20db10a96 | 4628 | vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); |
fep | 0:5ff20db10a96 | 4629 | } |
fep | 0:5ff20db10a96 | 4630 | |
fep | 0:5ff20db10a96 | 4631 | if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) |
fep | 0:5ff20db10a96 | 4632 | { |
fep | 0:5ff20db10a96 | 4633 | /* The notified task has a priority above the currently |
fep | 0:5ff20db10a96 | 4634 | executing task so a yield is required. */ |
fep | 0:5ff20db10a96 | 4635 | if( pxHigherPriorityTaskWoken != NULL ) |
fep | 0:5ff20db10a96 | 4636 | { |
fep | 0:5ff20db10a96 | 4637 | *pxHigherPriorityTaskWoken = pdTRUE; |
fep | 0:5ff20db10a96 | 4638 | } |
fep | 0:5ff20db10a96 | 4639 | else |
fep | 0:5ff20db10a96 | 4640 | { |
fep | 0:5ff20db10a96 | 4641 | /* Mark that a yield is pending in case the user is not |
fep | 0:5ff20db10a96 | 4642 | using the "xHigherPriorityTaskWoken" parameter in an ISR |
fep | 0:5ff20db10a96 | 4643 | safe FreeRTOS function. */ |
fep | 0:5ff20db10a96 | 4644 | xYieldPending = pdTRUE; |
fep | 0:5ff20db10a96 | 4645 | } |
fep | 0:5ff20db10a96 | 4646 | } |
fep | 0:5ff20db10a96 | 4647 | else |
fep | 0:5ff20db10a96 | 4648 | { |
fep | 0:5ff20db10a96 | 4649 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4650 | } |
fep | 0:5ff20db10a96 | 4651 | } |
fep | 0:5ff20db10a96 | 4652 | } |
fep | 0:5ff20db10a96 | 4653 | portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); |
fep | 0:5ff20db10a96 | 4654 | } |
fep | 0:5ff20db10a96 | 4655 | |
fep | 0:5ff20db10a96 | 4656 | #endif /* configUSE_TASK_NOTIFICATIONS */ |
fep | 0:5ff20db10a96 | 4657 | |
fep | 0:5ff20db10a96 | 4658 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 4659 | |
fep | 0:5ff20db10a96 | 4660 | #if( configUSE_TASK_NOTIFICATIONS == 1 ) |
fep | 0:5ff20db10a96 | 4661 | |
fep | 0:5ff20db10a96 | 4662 | BaseType_t xTaskNotifyStateClear( TaskHandle_t xTask ) |
fep | 0:5ff20db10a96 | 4663 | { |
fep | 0:5ff20db10a96 | 4664 | TCB_t *pxTCB; |
fep | 0:5ff20db10a96 | 4665 | BaseType_t xReturn; |
fep | 0:5ff20db10a96 | 4666 | |
fep | 0:5ff20db10a96 | 4667 | /* If null is passed in here then it is the calling task that is having |
fep | 0:5ff20db10a96 | 4668 | its notification state cleared. */ |
fep | 0:5ff20db10a96 | 4669 | pxTCB = prvGetTCBFromHandle( xTask ); |
fep | 0:5ff20db10a96 | 4670 | |
fep | 0:5ff20db10a96 | 4671 | taskENTER_CRITICAL(); |
fep | 0:5ff20db10a96 | 4672 | { |
fep | 0:5ff20db10a96 | 4673 | if( pxTCB->ucNotifyState == taskNOTIFICATION_RECEIVED ) |
fep | 0:5ff20db10a96 | 4674 | { |
fep | 0:5ff20db10a96 | 4675 | pxTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION; |
fep | 0:5ff20db10a96 | 4676 | xReturn = pdPASS; |
fep | 0:5ff20db10a96 | 4677 | } |
fep | 0:5ff20db10a96 | 4678 | else |
fep | 0:5ff20db10a96 | 4679 | { |
fep | 0:5ff20db10a96 | 4680 | xReturn = pdFAIL; |
fep | 0:5ff20db10a96 | 4681 | } |
fep | 0:5ff20db10a96 | 4682 | } |
fep | 0:5ff20db10a96 | 4683 | taskEXIT_CRITICAL(); |
fep | 0:5ff20db10a96 | 4684 | |
fep | 0:5ff20db10a96 | 4685 | return xReturn; |
fep | 0:5ff20db10a96 | 4686 | } |
fep | 0:5ff20db10a96 | 4687 | |
fep | 0:5ff20db10a96 | 4688 | #endif /* configUSE_TASK_NOTIFICATIONS */ |
fep | 0:5ff20db10a96 | 4689 | /*-----------------------------------------------------------*/ |
fep | 0:5ff20db10a96 | 4690 | |
fep | 0:5ff20db10a96 | 4691 | |
fep | 0:5ff20db10a96 | 4692 | static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely ) |
fep | 0:5ff20db10a96 | 4693 | { |
fep | 0:5ff20db10a96 | 4694 | TickType_t xTimeToWake; |
fep | 0:5ff20db10a96 | 4695 | const TickType_t xConstTickCount = xTickCount; |
fep | 0:5ff20db10a96 | 4696 | |
fep | 0:5ff20db10a96 | 4697 | #if( INCLUDE_xTaskAbortDelay == 1 ) |
fep | 0:5ff20db10a96 | 4698 | { |
fep | 0:5ff20db10a96 | 4699 | /* About to enter a delayed list, so ensure the ucDelayAborted flag is |
fep | 0:5ff20db10a96 | 4700 | reset to pdFALSE so it can be detected as having been set to pdTRUE |
fep | 0:5ff20db10a96 | 4701 | when the task leaves the Blocked state. */ |
fep | 0:5ff20db10a96 | 4702 | pxCurrentTCB->ucDelayAborted = pdFALSE; |
fep | 0:5ff20db10a96 | 4703 | } |
fep | 0:5ff20db10a96 | 4704 | #endif |
fep | 0:5ff20db10a96 | 4705 | |
fep | 0:5ff20db10a96 | 4706 | /* Remove the task from the ready list before adding it to the blocked list |
fep | 0:5ff20db10a96 | 4707 | as the same list item is used for both lists. */ |
fep | 0:5ff20db10a96 | 4708 | if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) |
fep | 0:5ff20db10a96 | 4709 | { |
fep | 0:5ff20db10a96 | 4710 | /* The current task must be in a ready list, so there is no need to |
fep | 0:5ff20db10a96 | 4711 | check, and the port reset macro can be called directly. */ |
fep | 0:5ff20db10a96 | 4712 | portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); |
fep | 0:5ff20db10a96 | 4713 | } |
fep | 0:5ff20db10a96 | 4714 | else |
fep | 0:5ff20db10a96 | 4715 | { |
fep | 0:5ff20db10a96 | 4716 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4717 | } |
fep | 0:5ff20db10a96 | 4718 | |
fep | 0:5ff20db10a96 | 4719 | #if ( INCLUDE_vTaskSuspend == 1 ) |
fep | 0:5ff20db10a96 | 4720 | { |
fep | 0:5ff20db10a96 | 4721 | if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) ) |
fep | 0:5ff20db10a96 | 4722 | { |
fep | 0:5ff20db10a96 | 4723 | /* Add the task to the suspended task list instead of a delayed task |
fep | 0:5ff20db10a96 | 4724 | list to ensure it is not woken by a timing event. It will block |
fep | 0:5ff20db10a96 | 4725 | indefinitely. */ |
fep | 0:5ff20db10a96 | 4726 | vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 4727 | } |
fep | 0:5ff20db10a96 | 4728 | else |
fep | 0:5ff20db10a96 | 4729 | { |
fep | 0:5ff20db10a96 | 4730 | /* Calculate the time at which the task should be woken if the event |
fep | 0:5ff20db10a96 | 4731 | does not occur. This may overflow but this doesn't matter, the |
fep | 0:5ff20db10a96 | 4732 | kernel will manage it correctly. */ |
fep | 0:5ff20db10a96 | 4733 | xTimeToWake = xConstTickCount + xTicksToWait; |
fep | 0:5ff20db10a96 | 4734 | |
fep | 0:5ff20db10a96 | 4735 | /* The list item will be inserted in wake time order. */ |
fep | 0:5ff20db10a96 | 4736 | listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake ); |
fep | 0:5ff20db10a96 | 4737 | |
fep | 0:5ff20db10a96 | 4738 | if( xTimeToWake < xConstTickCount ) |
fep | 0:5ff20db10a96 | 4739 | { |
fep | 0:5ff20db10a96 | 4740 | /* Wake time has overflowed. Place this item in the overflow |
fep | 0:5ff20db10a96 | 4741 | list. */ |
fep | 0:5ff20db10a96 | 4742 | vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 4743 | } |
fep | 0:5ff20db10a96 | 4744 | else |
fep | 0:5ff20db10a96 | 4745 | { |
fep | 0:5ff20db10a96 | 4746 | /* The wake time has not overflowed, so the current block list |
fep | 0:5ff20db10a96 | 4747 | is used. */ |
fep | 0:5ff20db10a96 | 4748 | vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 4749 | |
fep | 0:5ff20db10a96 | 4750 | /* If the task entering the blocked state was placed at the |
fep | 0:5ff20db10a96 | 4751 | head of the list of blocked tasks then xNextTaskUnblockTime |
fep | 0:5ff20db10a96 | 4752 | needs to be updated too. */ |
fep | 0:5ff20db10a96 | 4753 | if( xTimeToWake < xNextTaskUnblockTime ) |
fep | 0:5ff20db10a96 | 4754 | { |
fep | 0:5ff20db10a96 | 4755 | xNextTaskUnblockTime = xTimeToWake; |
fep | 0:5ff20db10a96 | 4756 | } |
fep | 0:5ff20db10a96 | 4757 | else |
fep | 0:5ff20db10a96 | 4758 | { |
fep | 0:5ff20db10a96 | 4759 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4760 | } |
fep | 0:5ff20db10a96 | 4761 | } |
fep | 0:5ff20db10a96 | 4762 | } |
fep | 0:5ff20db10a96 | 4763 | } |
fep | 0:5ff20db10a96 | 4764 | #else /* INCLUDE_vTaskSuspend */ |
fep | 0:5ff20db10a96 | 4765 | { |
fep | 0:5ff20db10a96 | 4766 | /* Calculate the time at which the task should be woken if the event |
fep | 0:5ff20db10a96 | 4767 | does not occur. This may overflow but this doesn't matter, the kernel |
fep | 0:5ff20db10a96 | 4768 | will manage it correctly. */ |
fep | 0:5ff20db10a96 | 4769 | xTimeToWake = xConstTickCount + xTicksToWait; |
fep | 0:5ff20db10a96 | 4770 | |
fep | 0:5ff20db10a96 | 4771 | /* The list item will be inserted in wake time order. */ |
fep | 0:5ff20db10a96 | 4772 | listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake ); |
fep | 0:5ff20db10a96 | 4773 | |
fep | 0:5ff20db10a96 | 4774 | if( xTimeToWake < xConstTickCount ) |
fep | 0:5ff20db10a96 | 4775 | { |
fep | 0:5ff20db10a96 | 4776 | /* Wake time has overflowed. Place this item in the overflow list. */ |
fep | 0:5ff20db10a96 | 4777 | vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 4778 | } |
fep | 0:5ff20db10a96 | 4779 | else |
fep | 0:5ff20db10a96 | 4780 | { |
fep | 0:5ff20db10a96 | 4781 | /* The wake time has not overflowed, so the current block list is used. */ |
fep | 0:5ff20db10a96 | 4782 | vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) ); |
fep | 0:5ff20db10a96 | 4783 | |
fep | 0:5ff20db10a96 | 4784 | /* If the task entering the blocked state was placed at the head of the |
fep | 0:5ff20db10a96 | 4785 | list of blocked tasks then xNextTaskUnblockTime needs to be updated |
fep | 0:5ff20db10a96 | 4786 | too. */ |
fep | 0:5ff20db10a96 | 4787 | if( xTimeToWake < xNextTaskUnblockTime ) |
fep | 0:5ff20db10a96 | 4788 | { |
fep | 0:5ff20db10a96 | 4789 | xNextTaskUnblockTime = xTimeToWake; |
fep | 0:5ff20db10a96 | 4790 | } |
fep | 0:5ff20db10a96 | 4791 | else |
fep | 0:5ff20db10a96 | 4792 | { |
fep | 0:5ff20db10a96 | 4793 | mtCOVERAGE_TEST_MARKER(); |
fep | 0:5ff20db10a96 | 4794 | } |
fep | 0:5ff20db10a96 | 4795 | } |
fep | 0:5ff20db10a96 | 4796 | |
fep | 0:5ff20db10a96 | 4797 | /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */ |
fep | 0:5ff20db10a96 | 4798 | ( void ) xCanBlockIndefinitely; |
fep | 0:5ff20db10a96 | 4799 | } |
fep | 0:5ff20db10a96 | 4800 | #endif /* INCLUDE_vTaskSuspend */ |
fep | 0:5ff20db10a96 | 4801 | } |
fep | 0:5ff20db10a96 | 4802 | |
fep | 0:5ff20db10a96 | 4803 | |
fep | 0:5ff20db10a96 | 4804 | #ifdef FREERTOS_MODULE_TEST |
fep | 0:5ff20db10a96 | 4805 | #include "tasks_test_access_functions.h" |
fep | 0:5ff20db10a96 | 4806 | #endif |
fep | 0:5ff20db10a96 | 4807 | |
fep | 0:5ff20db10a96 | 4808 |