This library provides a way to easily handle arbitrary large integers.
This library provides the following operations :
- addition, substraction, multiplication, division and modulo
- bits operators (AND, OR, XOR, left and right shifts)
- boolean operators
- modular exponentiation (using montgomery algorithm)
- modular inverse
Example
In this example, we use a 1024 bits long RSA key to encrypt and decrypt a message. We first encrypt the value 0x41 (65 in decimal) and then decrypt it. At the end, m should be equal to 0x41. The encryption is fast (0, 4 second) while the decryption is really slow. This code will take between 30 seconds and 2 minutes to execute depending on the compiler and optimization flags.
main.cpp
#include "mbed.h" #include "BigInt.h" #include <stdlib.h> #include <stdio.h> uint8_t modbits[] = { 0xd9, 0x4d, 0x88, 0x9e, 0x88, 0x85, 0x3d, 0xd8, 0x97, 0x69, 0xa1, 0x80, 0x15, 0xa0, 0xa2, 0xe6, 0xbf, 0x82, 0xbf, 0x35, 0x6f, 0xe1, 0x4f, 0x25, 0x1f, 0xb4, 0xf5, 0xe2, 0xdf, 0x0d, 0x9f, 0x9a, 0x94, 0xa6, 0x8a, 0x30, 0xc4, 0x28, 0xb3, 0x9e, 0x33, 0x62, 0xfb, 0x37, 0x79, 0xa4, 0x97, 0xec, 0xea, 0xea, 0x37, 0x10, 0x0f, 0x26, 0x4d, 0x7f, 0xb9, 0xfb, 0x1a, 0x97, 0xfb, 0xf6, 0x21, 0x13, 0x3d, 0xe5, 0x5f, 0xdc, 0xb9, 0xb1, 0xad, 0x0d, 0x7a, 0x31, 0xb3, 0x79, 0x21, 0x6d, 0x79, 0x25, 0x2f, 0x5c, 0x52, 0x7b, 0x9b, 0xc6, 0x3d, 0x83, 0xd4, 0xec, 0xf4, 0xd1, 0xd4, 0x5c, 0xbf, 0x84, 0x3e, 0x84, 0x74, 0xba, 0xbc, 0x65, 0x5e, 0x9b, 0xb6, 0x79, 0x9c, 0xba, 0x77, 0xa4, 0x7e, 0xaf, 0xa8, 0x38, 0x29, 0x64, 0x74, 0xaf, 0xc2, 0x4b, 0xeb, 0x9c, 0x82, 0x5b, 0x73, 0xeb, 0xf5, 0x49 }; uint8_t dbits[] = { 0x04, 0x7b, 0x9c, 0xfd, 0xe8, 0x43, 0x17, 0x6b, 0x88, 0x74, 0x1d, 0x68, 0xcf, 0x09, 0x69, 0x52, 0xe9, 0x50, 0x81, 0x31, 0x51, 0x05, 0x8c, 0xe4, 0x6f, 0x2b, 0x04, 0x87, 0x91, 0xa2, 0x6e, 0x50, 0x7a, 0x10, 0x95, 0x79, 0x3c, 0x12, 0xba, 0xe1, 0xe0, 0x9d, 0x82, 0x21, 0x3a, 0xd9, 0x32, 0x69, 0x28, 0xcf, 0x7c, 0x23, 0x50, 0xac, 0xb1, 0x9c, 0x98, 0xf1, 0x9d, 0x32, 0xd5, 0x77, 0xd6, 0x66, 0xcd, 0x7b, 0xb8, 0xb2, 0xb5, 0xba, 0x62, 0x9d, 0x25, 0xcc, 0xf7, 0x2a, 0x5c, 0xeb, 0x8a, 0x8d, 0xa0, 0x38, 0x90, 0x6c, 0x84, 0xdc, 0xdb, 0x1f, 0xe6, 0x77, 0xdf, 0xfb, 0x2c, 0x02, 0x9f, 0xd8, 0x92, 0x63, 0x18, 0xee, 0xde, 0x1b, 0x58, 0x27, 0x2a, 0xf2, 0x2b, 0xda, 0x5c, 0x52, 0x32, 0xbe, 0x06, 0x68, 0x39, 0x39, 0x8e, 0x42, 0xf5, 0x35, 0x2d, 0xf5, 0x88, 0x48, 0xad, 0xad, 0x11, 0xa1 }; int main() { BigInt e = 65537, mod, d; mod.importData(modbits, sizeof(modbits)); d.importData(dbits, sizeof(dbits)); BigInt c = modPow(0x41,e,mod); c.print(); BigInt m = modPow(c,d,mod); m.print(); printf("done\n"); return 0; }
Revision 17:9811d859dc83, committed 2014-03-07
- Comitter:
- feb11
- Date:
- Fri Mar 07 12:48:12 2014 +0000
- Parent:
- 16:d70cf164440c
- Child:
- 18:4549ca354fdb
- Commit message:
- minor changes
Changed in this revision
BigInt.cpp | Show annotated file Show diff for this revision Revisions of this file |
--- a/BigInt.cpp Fri Mar 07 12:12:54 2014 +0000 +++ b/BigInt.cpp Fri Mar 07 12:48:12 2014 +0000 @@ -585,10 +585,11 @@ uint32_t r = 8*modulus.size; // convert a in montgomery world - BigInt montA = 1; - montA <<= r; - montA = (montA * a) % modulus; + BigInt montA = (a << r) % modulus; BigInt tmp; + if(expn.bits[0] & 0x01) + tmp = montA; + uint32_t n = expn.numBits(); uint32_t j = 1; while(j < n) @@ -604,9 +605,6 @@ } ++j; } - if(!tmp.isValid()) - tmp = montA; - // convert a to normal world return montgomeryStep(tmp, 1, modulus, r); }