Dependents:   QEI_test

Committer:
farbodjam
Date:
Sat Aug 27 12:47:06 2011 +0000
Revision:
0:fc0482177a6d

        

Who changed what in which revision?

UserRevisionLine numberNew contents of line
farbodjam 0:fc0482177a6d 1 /**
farbodjam 0:fc0482177a6d 2 * @author Aaron Berk
farbodjam 0:fc0482177a6d 3 *
farbodjam 0:fc0482177a6d 4 * @section LICENSE
farbodjam 0:fc0482177a6d 5 *
farbodjam 0:fc0482177a6d 6 * Copyright (c) 2010 ARM Limited
farbodjam 0:fc0482177a6d 7 *
farbodjam 0:fc0482177a6d 8 * Permission is hereby granted, free of charge, to any person obtaining a copy
farbodjam 0:fc0482177a6d 9 * of this software and associated documentation files (the "Software"), to deal
farbodjam 0:fc0482177a6d 10 * in the Software without restriction, including without limitation the rights
farbodjam 0:fc0482177a6d 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
farbodjam 0:fc0482177a6d 12 * copies of the Software, and to permit persons to whom the Software is
farbodjam 0:fc0482177a6d 13 * furnished to do so, subject to the following conditions:
farbodjam 0:fc0482177a6d 14 *
farbodjam 0:fc0482177a6d 15 * The above copyright notice and this permission notice shall be included in
farbodjam 0:fc0482177a6d 16 * all copies or substantial portions of the Software.
farbodjam 0:fc0482177a6d 17 *
farbodjam 0:fc0482177a6d 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
farbodjam 0:fc0482177a6d 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
farbodjam 0:fc0482177a6d 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
farbodjam 0:fc0482177a6d 21 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
farbodjam 0:fc0482177a6d 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
farbodjam 0:fc0482177a6d 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
farbodjam 0:fc0482177a6d 24 * THE SOFTWARE.
farbodjam 0:fc0482177a6d 25 *
farbodjam 0:fc0482177a6d 26 * @section DESCRIPTION
farbodjam 0:fc0482177a6d 27 *
farbodjam 0:fc0482177a6d 28 * Quadrature Encoder Interface.
farbodjam 0:fc0482177a6d 29 *
farbodjam 0:fc0482177a6d 30 * A quadrature encoder consists of two code tracks on a disc which are 90
farbodjam 0:fc0482177a6d 31 * degrees out of phase. It can be used to determine how far a wheel has
farbodjam 0:fc0482177a6d 32 * rotated, relative to a known starting position.
farbodjam 0:fc0482177a6d 33 *
farbodjam 0:fc0482177a6d 34 * Only one code track changes at a time leading to a more robust system than
farbodjam 0:fc0482177a6d 35 * a single track, because any jitter around any edge won't cause a state
farbodjam 0:fc0482177a6d 36 * change as the other track will remain constant.
farbodjam 0:fc0482177a6d 37 *
farbodjam 0:fc0482177a6d 38 * Encoders can be a homebrew affair, consisting of infrared emitters/receivers
farbodjam 0:fc0482177a6d 39 * and paper code tracks consisting of alternating black and white sections;
farbodjam 0:fc0482177a6d 40 * alternatively, complete disk and PCB emitter/receiver encoder systems can
farbodjam 0:fc0482177a6d 41 * be bought, but the interface, regardless of implementation is the same.
farbodjam 0:fc0482177a6d 42 *
farbodjam 0:fc0482177a6d 43 * +-----+ +-----+ +-----+
farbodjam 0:fc0482177a6d 44 * Channel A | ^ | | | | |
farbodjam 0:fc0482177a6d 45 * ---+ ^ +-----+ +-----+ +-----
farbodjam 0:fc0482177a6d 46 * ^ ^
farbodjam 0:fc0482177a6d 47 * ^ +-----+ +-----+ +-----+
farbodjam 0:fc0482177a6d 48 * Channel B ^ | | | | | |
farbodjam 0:fc0482177a6d 49 * ------+ +-----+ +-----+ +-----
farbodjam 0:fc0482177a6d 50 * ^ ^
farbodjam 0:fc0482177a6d 51 * ^ ^
farbodjam 0:fc0482177a6d 52 * 90deg
farbodjam 0:fc0482177a6d 53 *
farbodjam 0:fc0482177a6d 54 * The interface uses X2 encoding by default which calculates the pulse count
farbodjam 0:fc0482177a6d 55 * based on reading the current state after each rising and falling edge of
farbodjam 0:fc0482177a6d 56 * channel A.
farbodjam 0:fc0482177a6d 57 *
farbodjam 0:fc0482177a6d 58 * +-----+ +-----+ +-----+
farbodjam 0:fc0482177a6d 59 * Channel A | | | | | |
farbodjam 0:fc0482177a6d 60 * ---+ +-----+ +-----+ +-----
farbodjam 0:fc0482177a6d 61 * ^ ^ ^ ^ ^
farbodjam 0:fc0482177a6d 62 * ^ +-----+ ^ +-----+ ^ +-----+
farbodjam 0:fc0482177a6d 63 * Channel B ^ | ^ | ^ | ^ | ^ | |
farbodjam 0:fc0482177a6d 64 * ------+ ^ +-----+ ^ +-----+ +--
farbodjam 0:fc0482177a6d 65 * ^ ^ ^ ^ ^
farbodjam 0:fc0482177a6d 66 * ^ ^ ^ ^ ^
farbodjam 0:fc0482177a6d 67 * Pulse count 0 1 2 3 4 5 ...
farbodjam 0:fc0482177a6d 68 *
farbodjam 0:fc0482177a6d 69 * This interface can also use X4 encoding which calculates the pulse count
farbodjam 0:fc0482177a6d 70 * based on reading the current state after each rising and falling edge of
farbodjam 0:fc0482177a6d 71 * either channel.
farbodjam 0:fc0482177a6d 72 *
farbodjam 0:fc0482177a6d 73 * +-----+ +-----+ +-----+
farbodjam 0:fc0482177a6d 74 * Channel A | | | | | |
farbodjam 0:fc0482177a6d 75 * ---+ +-----+ +-----+ +-----
farbodjam 0:fc0482177a6d 76 * ^ ^ ^ ^ ^
farbodjam 0:fc0482177a6d 77 * ^ +-----+ ^ +-----+ ^ +-----+
farbodjam 0:fc0482177a6d 78 * Channel B ^ | ^ | ^ | ^ | ^ | |
farbodjam 0:fc0482177a6d 79 * ------+ ^ +-----+ ^ +-----+ +--
farbodjam 0:fc0482177a6d 80 * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
farbodjam 0:fc0482177a6d 81 * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
farbodjam 0:fc0482177a6d 82 * Pulse count 0 1 2 3 4 5 6 7 8 9 ...
farbodjam 0:fc0482177a6d 83 *
farbodjam 0:fc0482177a6d 84 * It defaults
farbodjam 0:fc0482177a6d 85 *
farbodjam 0:fc0482177a6d 86 * An optional index channel can be used which determines when a full
farbodjam 0:fc0482177a6d 87 * revolution has occured.
farbodjam 0:fc0482177a6d 88 *
farbodjam 0:fc0482177a6d 89 * If a 4 pules per revolution encoder was used, with X4 encoding,
farbodjam 0:fc0482177a6d 90 * the following would be observed.
farbodjam 0:fc0482177a6d 91 *
farbodjam 0:fc0482177a6d 92 * +-----+ +-----+ +-----+
farbodjam 0:fc0482177a6d 93 * Channel A | | | | | |
farbodjam 0:fc0482177a6d 94 * ---+ +-----+ +-----+ +-----
farbodjam 0:fc0482177a6d 95 * ^ ^ ^ ^ ^
farbodjam 0:fc0482177a6d 96 * ^ +-----+ ^ +-----+ ^ +-----+
farbodjam 0:fc0482177a6d 97 * Channel B ^ | ^ | ^ | ^ | ^ | |
farbodjam 0:fc0482177a6d 98 * ------+ ^ +-----+ ^ +-----+ +--
farbodjam 0:fc0482177a6d 99 * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
farbodjam 0:fc0482177a6d 100 * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
farbodjam 0:fc0482177a6d 101 * ^ ^ ^ +--+ ^ ^ +--+ ^
farbodjam 0:fc0482177a6d 102 * ^ ^ ^ | | ^ ^ | | ^
farbodjam 0:fc0482177a6d 103 * Index ------------+ +--------+ +-----------
farbodjam 0:fc0482177a6d 104 * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
farbodjam 0:fc0482177a6d 105 * Pulse count 0 1 2 3 4 5 6 7 8 9 ...
farbodjam 0:fc0482177a6d 106 * Rev. count 0 1 2
farbodjam 0:fc0482177a6d 107 *
farbodjam 0:fc0482177a6d 108 * Rotational position in degrees can be calculated by:
farbodjam 0:fc0482177a6d 109 *
farbodjam 0:fc0482177a6d 110 * (pulse count / X * N) * 360
farbodjam 0:fc0482177a6d 111 *
farbodjam 0:fc0482177a6d 112 * Where X is the encoding type [e.g. X4 encoding => X=4], and N is the number
farbodjam 0:fc0482177a6d 113 * of pulses per revolution.
farbodjam 0:fc0482177a6d 114 *
farbodjam 0:fc0482177a6d 115 * Linear position can be calculated by:
farbodjam 0:fc0482177a6d 116 *
farbodjam 0:fc0482177a6d 117 * (pulse count / X * N) * (1 / PPI)
farbodjam 0:fc0482177a6d 118 *
farbodjam 0:fc0482177a6d 119 * Where X is encoding type [e.g. X4 encoding => X=44], N is the number of
farbodjam 0:fc0482177a6d 120 * pulses per revolution, and PPI is pulses per inch, or the equivalent for
farbodjam 0:fc0482177a6d 121 * any other unit of displacement. PPI can be calculated by taking the
farbodjam 0:fc0482177a6d 122 * circumference of the wheel or encoder disk and dividing it by the number
farbodjam 0:fc0482177a6d 123 * of pulses per revolution.
farbodjam 0:fc0482177a6d 124 */
farbodjam 0:fc0482177a6d 125
farbodjam 0:fc0482177a6d 126 /**
farbodjam 0:fc0482177a6d 127 * Includes
farbodjam 0:fc0482177a6d 128 */
farbodjam 0:fc0482177a6d 129 #include "QEI.h"
farbodjam 0:fc0482177a6d 130
farbodjam 0:fc0482177a6d 131 QEI::QEI(PinName channelA,
farbodjam 0:fc0482177a6d 132 PinName channelB,
farbodjam 0:fc0482177a6d 133 PinName index,
farbodjam 0:fc0482177a6d 134 int pulsesPerRev,
farbodjam 0:fc0482177a6d 135 Encoding encoding) : channelA_(channelA), channelB_(channelB),
farbodjam 0:fc0482177a6d 136 index_(index) {
farbodjam 0:fc0482177a6d 137
farbodjam 0:fc0482177a6d 138 pulses_ = 0;
farbodjam 0:fc0482177a6d 139 revolutions_ = 0;
farbodjam 0:fc0482177a6d 140 pulsesPerRev_ = pulsesPerRev;
farbodjam 0:fc0482177a6d 141 encoding_ = encoding;
farbodjam 0:fc0482177a6d 142
farbodjam 0:fc0482177a6d 143 //Workout what the current state is.
farbodjam 0:fc0482177a6d 144 int chanA = channelA_.read();
farbodjam 0:fc0482177a6d 145 int chanB = channelB_.read();
farbodjam 0:fc0482177a6d 146
farbodjam 0:fc0482177a6d 147 //2-bit state.
farbodjam 0:fc0482177a6d 148 currState_ = (chanA << 1) | (chanB);
farbodjam 0:fc0482177a6d 149 prevState_ = currState_;
farbodjam 0:fc0482177a6d 150
farbodjam 0:fc0482177a6d 151 //X2 encoding uses interrupts on only channel A.
farbodjam 0:fc0482177a6d 152 //X4 encoding uses interrupts on channel A,
farbodjam 0:fc0482177a6d 153 //and on channel B.
farbodjam 0:fc0482177a6d 154 channelA_.rise(this, &QEI::encode);
farbodjam 0:fc0482177a6d 155 channelA_.fall(this, &QEI::encode);
farbodjam 0:fc0482177a6d 156
farbodjam 0:fc0482177a6d 157 //If we're using X4 encoding, then attach interrupts to channel B too.
farbodjam 0:fc0482177a6d 158 if (encoding == X4_ENCODING) {
farbodjam 0:fc0482177a6d 159 channelB_.rise(this, &QEI::encode);
farbodjam 0:fc0482177a6d 160 channelB_.fall(this, &QEI::encode);
farbodjam 0:fc0482177a6d 161 }
farbodjam 0:fc0482177a6d 162 //Index is optional.
farbodjam 0:fc0482177a6d 163 if (index != NC) {
farbodjam 0:fc0482177a6d 164 index_.rise(this, &QEI::index);
farbodjam 0:fc0482177a6d 165 }
farbodjam 0:fc0482177a6d 166
farbodjam 0:fc0482177a6d 167 }
farbodjam 0:fc0482177a6d 168
farbodjam 0:fc0482177a6d 169 void QEI::reset(void) {
farbodjam 0:fc0482177a6d 170
farbodjam 0:fc0482177a6d 171 pulses_ = 0;
farbodjam 0:fc0482177a6d 172 revolutions_ = 0;
farbodjam 0:fc0482177a6d 173
farbodjam 0:fc0482177a6d 174 }
farbodjam 0:fc0482177a6d 175
farbodjam 0:fc0482177a6d 176 int QEI::getCurrentState(void) {
farbodjam 0:fc0482177a6d 177
farbodjam 0:fc0482177a6d 178 return currState_;
farbodjam 0:fc0482177a6d 179
farbodjam 0:fc0482177a6d 180 }
farbodjam 0:fc0482177a6d 181
farbodjam 0:fc0482177a6d 182 int QEI::getPulses(void) {
farbodjam 0:fc0482177a6d 183
farbodjam 0:fc0482177a6d 184 return pulses_;
farbodjam 0:fc0482177a6d 185
farbodjam 0:fc0482177a6d 186 }
farbodjam 0:fc0482177a6d 187
farbodjam 0:fc0482177a6d 188 int QEI::getRevolutions(void) {
farbodjam 0:fc0482177a6d 189
farbodjam 0:fc0482177a6d 190 return revolutions_;
farbodjam 0:fc0482177a6d 191
farbodjam 0:fc0482177a6d 192 }
farbodjam 0:fc0482177a6d 193
farbodjam 0:fc0482177a6d 194 // +-------------+
farbodjam 0:fc0482177a6d 195 // | X2 Encoding |
farbodjam 0:fc0482177a6d 196 // +-------------+
farbodjam 0:fc0482177a6d 197 //
farbodjam 0:fc0482177a6d 198 // When observing states two patterns will appear:
farbodjam 0:fc0482177a6d 199 //
farbodjam 0:fc0482177a6d 200 // Counter clockwise rotation:
farbodjam 0:fc0482177a6d 201 //
farbodjam 0:fc0482177a6d 202 // 10 -> 01 -> 10 -> 01 -> ...
farbodjam 0:fc0482177a6d 203 //
farbodjam 0:fc0482177a6d 204 // Clockwise rotation:
farbodjam 0:fc0482177a6d 205 //
farbodjam 0:fc0482177a6d 206 // 11 -> 00 -> 11 -> 00 -> ...
farbodjam 0:fc0482177a6d 207 //
farbodjam 0:fc0482177a6d 208 // We consider counter clockwise rotation to be "forward" and
farbodjam 0:fc0482177a6d 209 // counter clockwise to be "backward". Therefore pulse count will increase
farbodjam 0:fc0482177a6d 210 // during counter clockwise rotation and decrease during clockwise rotation.
farbodjam 0:fc0482177a6d 211 //
farbodjam 0:fc0482177a6d 212 // +-------------+
farbodjam 0:fc0482177a6d 213 // | X4 Encoding |
farbodjam 0:fc0482177a6d 214 // +-------------+
farbodjam 0:fc0482177a6d 215 //
farbodjam 0:fc0482177a6d 216 // There are four possible states for a quadrature encoder which correspond to
farbodjam 0:fc0482177a6d 217 // 2-bit gray code.
farbodjam 0:fc0482177a6d 218 //
farbodjam 0:fc0482177a6d 219 // A state change is only valid if of only one bit has changed.
farbodjam 0:fc0482177a6d 220 // A state change is invalid if both bits have changed.
farbodjam 0:fc0482177a6d 221 //
farbodjam 0:fc0482177a6d 222 // Clockwise Rotation ->
farbodjam 0:fc0482177a6d 223 //
farbodjam 0:fc0482177a6d 224 // 00 01 11 10 00
farbodjam 0:fc0482177a6d 225 //
farbodjam 0:fc0482177a6d 226 // <- Counter Clockwise Rotation
farbodjam 0:fc0482177a6d 227 //
farbodjam 0:fc0482177a6d 228 // If we observe any valid state changes going from left to right, we have
farbodjam 0:fc0482177a6d 229 // moved one pulse clockwise [we will consider this "backward" or "negative"].
farbodjam 0:fc0482177a6d 230 //
farbodjam 0:fc0482177a6d 231 // If we observe any valid state changes going from right to left we have
farbodjam 0:fc0482177a6d 232 // moved one pulse counter clockwise [we will consider this "forward" or
farbodjam 0:fc0482177a6d 233 // "positive"].
farbodjam 0:fc0482177a6d 234 //
farbodjam 0:fc0482177a6d 235 // We might enter an invalid state for a number of reasons which are hard to
farbodjam 0:fc0482177a6d 236 // predict - if this is the case, it is generally safe to ignore it, update
farbodjam 0:fc0482177a6d 237 // the state and carry on, with the error correcting itself shortly after.
farbodjam 0:fc0482177a6d 238 void QEI::encode(void) {
farbodjam 0:fc0482177a6d 239
farbodjam 0:fc0482177a6d 240 int change = 0;
farbodjam 0:fc0482177a6d 241 int chanA = channelA_.read();
farbodjam 0:fc0482177a6d 242 int chanB = channelB_.read();
farbodjam 0:fc0482177a6d 243
farbodjam 0:fc0482177a6d 244 //2-bit state.
farbodjam 0:fc0482177a6d 245 currState_ = (chanA << 1) | (chanB);
farbodjam 0:fc0482177a6d 246
farbodjam 0:fc0482177a6d 247 if (encoding_ == X2_ENCODING) {
farbodjam 0:fc0482177a6d 248
farbodjam 0:fc0482177a6d 249 //11->00->11->00 is counter clockwise rotation or "forward".
farbodjam 0:fc0482177a6d 250 if ((prevState_ == 0x3 && currState_ == 0x0) ||
farbodjam 0:fc0482177a6d 251 (prevState_ == 0x0 && currState_ == 0x3)) {
farbodjam 0:fc0482177a6d 252
farbodjam 0:fc0482177a6d 253 pulses_++;
farbodjam 0:fc0482177a6d 254
farbodjam 0:fc0482177a6d 255 }
farbodjam 0:fc0482177a6d 256 //10->01->10->01 is clockwise rotation or "backward".
farbodjam 0:fc0482177a6d 257 else if ((prevState_ == 0x2 && currState_ == 0x1) ||
farbodjam 0:fc0482177a6d 258 (prevState_ == 0x1 && currState_ == 0x2)) {
farbodjam 0:fc0482177a6d 259
farbodjam 0:fc0482177a6d 260 pulses_--;
farbodjam 0:fc0482177a6d 261
farbodjam 0:fc0482177a6d 262 }
farbodjam 0:fc0482177a6d 263
farbodjam 0:fc0482177a6d 264 } else if (encoding_ == X4_ENCODING) {
farbodjam 0:fc0482177a6d 265
farbodjam 0:fc0482177a6d 266 //Entered a new valid state.
farbodjam 0:fc0482177a6d 267 if (((currState_ ^ prevState_) != INVALID) && (currState_ != prevState_)) {
farbodjam 0:fc0482177a6d 268 //2 bit state. Right hand bit of prev XOR left hand bit of current
farbodjam 0:fc0482177a6d 269 //gives 0 if clockwise rotation and 1 if counter clockwise rotation.
farbodjam 0:fc0482177a6d 270 change = (prevState_ & PREV_MASK) ^ ((currState_ & CURR_MASK) >> 1);
farbodjam 0:fc0482177a6d 271
farbodjam 0:fc0482177a6d 272 if (change == 0) {
farbodjam 0:fc0482177a6d 273 change = -1;
farbodjam 0:fc0482177a6d 274 }
farbodjam 0:fc0482177a6d 275
farbodjam 0:fc0482177a6d 276 pulses_ -= change;
farbodjam 0:fc0482177a6d 277 }
farbodjam 0:fc0482177a6d 278
farbodjam 0:fc0482177a6d 279 }
farbodjam 0:fc0482177a6d 280
farbodjam 0:fc0482177a6d 281 prevState_ = currState_;
farbodjam 0:fc0482177a6d 282
farbodjam 0:fc0482177a6d 283 }
farbodjam 0:fc0482177a6d 284
farbodjam 0:fc0482177a6d 285 void QEI::index(void) {
farbodjam 0:fc0482177a6d 286
farbodjam 0:fc0482177a6d 287 revolutions_++;
farbodjam 0:fc0482177a6d 288
farbodjam 0:fc0482177a6d 289 }