Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-src by
targets/hal/TARGET_NXP/TARGET_LPC11XX_11CXX/TARGET_LPC11CXX/can_api.c
- Committer:
- ersatzavian
- Date:
- 2015-07-21
- Revision:
- 596:d25a30803853
- Parent:
- 539:aad7ca793a89
File content as of revision 596:d25a30803853:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "can_api.h" #include "cmsis.h" #include "mbed_error.h" #include <math.h> #include <string.h> /* Handy defines */ #define MSG_OBJ_MAX 32 #define DLC_MAX 8 #define ID_STD_MASK 0x07FF #define ID_EXT_MASK 0x1FFFFFFF #define DLC_MASK 0x0F static uint32_t can_irq_id = 0; static can_irq_handler irq_handler; static uint32_t can_disable(can_t *obj) { uint32_t sm = LPC_CAN->CNTL; LPC_CAN->CNTL |= CANCNTL_INIT; return sm; } static inline void can_enable(can_t *obj) { if (LPC_CAN->CNTL & CANCNTL_INIT) { LPC_CAN->CNTL &= ~CANCNTL_INIT; } } int can_mode(can_t *obj, CanMode mode) { int success = 0; switch (mode) { case MODE_RESET: LPC_CAN->CNTL &=~CANCNTL_TEST; can_disable(obj); success = 1; break; case MODE_NORMAL: LPC_CAN->CNTL &=~CANCNTL_TEST; can_enable(obj); success = 1; break; case MODE_SILENT: LPC_CAN->CNTL |= CANCNTL_TEST; LPC_CAN->TEST |= CANTEST_SILENT; LPC_CAN->TEST &=~CANTEST_LBACK; success = 1; break; case MODE_TEST_LOCAL: LPC_CAN->CNTL |= CANCNTL_TEST; LPC_CAN->TEST &=~CANTEST_SILENT; LPC_CAN->TEST |= CANTEST_LBACK; success = 1; break; case MODE_TEST_SILENT: LPC_CAN->CNTL |= CANCNTL_TEST; LPC_CAN->TEST |= (CANTEST_LBACK | CANTEST_SILENT); success = 1; break; case MODE_TEST_GLOBAL: default: success = 0; break; } return success; } int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) { uint16_t i; // Find first free message object if(handle == 0) { uint32_t msgval = LPC_CAN->MSGV1 | (LPC_CAN->MSGV2 << 16); // Find first free messagebox for(i = 0; i < 32; i++) { if((msgval & (1 << i)) == 0) { handle = i+1; break; } } } if(handle > 0 && handle < 32) { if(format == CANExtended) { // Mark message valid, Direction = TX, Extended Frame, Set Identifier and mask everything LPC_CAN->IF1_ARB1 = BFN_PREP(id, CANIFn_ARB1_ID); LPC_CAN->IF1_ARB2 = CANIFn_ARB2_MSGVAL | CANIFn_ARB2_XTD | BFN_PREP(id >> 16, CANIFn_ARB2_ID); LPC_CAN->IF1_MSK1 = BFN_PREP(mask, CANIFn_MSK1_MSK); LPC_CAN->IF1_MSK2 = CANIFn_MSK2_MXTD /* | CANIFn_MSK2_MDIR */ | BFN_PREP(mask >> 16, CANIFn_MSK2_MSK); } else { // Mark message valid, Direction = TX, Set Identifier and mask everything LPC_CAN->IF1_ARB2 = CANIFn_ARB2_MSGVAL | BFN_PREP(id << 2, CANIFn_ARB2_ID); LPC_CAN->IF1_MSK2 = /* CANIFn_MSK2_MDIR | */ BFN_PREP(mask << 2, CANIFn_MSK2_MSK); } // Use mask, single message object and set DLC LPC_CAN->IF1_MCTRL = CANIFn_MCTRL_UMASK | CANIFn_MCTRL_EOB | CANIFn_MCTRL_RXIE | BFN_PREP(DLC_MAX, CANIFn_MCTRL_DLC); // Transfer all fields to message object LPC_CAN->IF1_CMDMSK = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL; // Start Transfer to given message number LPC_CAN->IF1_CMDREQ = BFN_PREP(handle, CANIFn_CMDREQ_MN); // Wait until transfer to message ram complete - TODO: maybe not block?? while( LPC_CAN->IF1_CMDREQ & CANIFn_CMDREQ_BUSY ); } return handle; } static inline void can_irq() { irq_handler(can_irq_id, IRQ_RX); } // Register CAN object's irq handler void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) { irq_handler = handler; can_irq_id = id; } // Unregister CAN object's irq handler void can_irq_free(can_t *obj) { LPC_CAN->CNTL &= ~CANCNTL_IE; // Disable Interrupts :) can_irq_id = 0; NVIC_DisableIRQ(CAN_IRQn); } // Clear or set a irq void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) { // Put CAN in Reset Mode and enable interrupt can_disable(obj); if(enable == 0) { LPC_CAN->CNTL &= ~(CANCNTL_IE | CANCNTL_SIE); } else { LPC_CAN->CNTL |= CANCNTL_IE | CANCNTL_SIE; } // Take it out of reset... can_enable(obj); // Enable NVIC if at least 1 interrupt is active NVIC_SetVector(CAN_IRQn, (uint32_t) &can_irq); NVIC_EnableIRQ(CAN_IRQn); } // This table has the sampling points as close to 75% as possible. The first // value is TSEG1, the second TSEG2. static const int timing_pts[23][2] = { {0x0, 0x0}, // 2, 50% {0x1, 0x0}, // 3, 67% {0x2, 0x0}, // 4, 75% {0x3, 0x0}, // 5, 80% {0x3, 0x1}, // 6, 67% {0x4, 0x1}, // 7, 71% {0x5, 0x1}, // 8, 75% {0x6, 0x1}, // 9, 78% {0x6, 0x2}, // 10, 70% {0x7, 0x2}, // 11, 73% {0x8, 0x2}, // 12, 75% {0x9, 0x2}, // 13, 77% {0x9, 0x3}, // 14, 71% {0xA, 0x3}, // 15, 73% {0xB, 0x3}, // 16, 75% {0xC, 0x3}, // 17, 76% {0xD, 0x3}, // 18, 78% {0xD, 0x4}, // 19, 74% {0xE, 0x4}, // 20, 75% {0xF, 0x4}, // 21, 76% {0xF, 0x5}, // 22, 73% {0xF, 0x6}, // 23, 70% {0xF, 0x7}, // 24, 67% }; static unsigned int can_speed(unsigned int sclk, unsigned int cclk, unsigned char psjw) { uint32_t btr; uint32_t clkdiv = 1; uint16_t brp = 0; uint32_t calcbit; uint32_t bitwidth; int hit = 0; int bits = 0; bitwidth = sclk / cclk; brp = bitwidth / 0x18; while ((!hit) && (brp < bitwidth / 4)) { brp++; for (bits = 22; bits > 0; bits--) { calcbit = (bits + 3) * (brp + 1); if (calcbit == bitwidth) { hit = 1; break; } } } /* This might be funky while(btr > 63 && clkdiv < 16) { btr = btr / 2; clkdiv = clkdiv * 2; } */ clkdiv = clkdiv - 1; if (hit) { btr = BFN_PREP(timing_pts[bits][1], CANBT_TSEG2) | BFN_PREP(timing_pts[bits][0], CANBT_TSEG1) | BFN_PREP(psjw, CANBT_SJW) | BFN_PREP(brp, CANBT_BRP); btr = btr | (clkdiv << 16); } else { btr = 0; } return btr; } int can_config_rxmsgobj(can_t *obj) { uint16_t i = 0; // Make sure the interface is available //while( LPC_CAN->IF1_CMDREQ & CANIFn_CMDREQ_BUSY ); // Mark message valid, Direction = RX, Don't care about anything else LPC_CAN->IF1_ARB1 = 0; LPC_CAN->IF1_ARB2 = 0; LPC_CAN->IF1_MCTRL = 0; for ( i = 0; i < MSG_OBJ_MAX; i++ ) { // Transfer arb and control fields to message object LPC_CAN->IF1_CMDMSK = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL | CANIFn_CMDMSK_TXRQST; // Start Transfer to given message number LPC_CAN->IF1_CMDREQ = BFN_PREP(i, CANIFn_CMDREQ_MN); // Wait until transfer to message ram complete - TODO: maybe not block?? while( LPC_CAN->IF1_CMDREQ & CANIFn_CMDREQ_BUSY ); } // Accept all messages can_filter(obj, 0, 0, CANStandard, 1); return 1; } void can_init(can_t *obj, PinName rd, PinName td) { // Enable power and clock LPC_SYSCON->PRESETCTRL |= PRESETCTRL_CAN_RST_N; LPC_SYSCON->SYSAHBCLKCTRL |= SYSAHBCLKCTRL_CAN; // Enable Initialization mode if (!(LPC_CAN->CNTL & CANCNTL_INIT)) { LPC_CAN->CNTL |= CANCNTL_INIT; } can_frequency(obj, 125000); // Resume operation LPC_CAN->CNTL &= ~CANCNTL_INIT; while ( LPC_CAN->CNTL & CANCNTL_INIT ); // Initialize RX message object can_config_rxmsgobj(obj); } void can_free(can_t *obj) { LPC_SYSCON->SYSAHBCLKCTRL &= ~(SYSAHBCLKCTRL_CAN); LPC_SYSCON->PRESETCTRL &= ~(PRESETCTRL_CAN_RST_N); } int can_frequency(can_t *obj, int f) { int btr = can_speed(SystemCoreClock, (unsigned int)f, 1); int clkdiv = (btr >> 16) & 0x0F; btr = btr & 0xFFFF; if (btr > 0) { uint32_t cntl_init = LPC_CAN->CNTL | CANCNTL_INIT; // Set the bit clock LPC_CAN->CNTL |= CANCNTL_CCE | CANCNTL_INIT; LPC_CAN->CLKDIV = clkdiv; LPC_CAN->BT = btr; LPC_CAN->BRPE = 0x0000; LPC_CAN->CNTL &= ~(CANCNTL_CCE | CANCNTL_INIT); LPC_CAN->CNTL |= cntl_init; return 1; } return 0; } int can_write(can_t *obj, CAN_Message msg, int cc) { uint16_t msgnum = 0; // Make sure controller is enabled can_enable(obj); // Make sure the interface is available while( LPC_CAN->IF1_CMDREQ & CANIFn_CMDREQ_BUSY ); // Set the direction bit based on the message type uint32_t direction = 0; if (msg.type == CANData) { direction = CANIFn_ARB2_DIR; } if(msg.format == CANExtended) { // Mark message valid, Extended Frame, Set Identifier and mask everything LPC_CAN->IF1_ARB1 = BFN_PREP(msg.id, CANIFn_ARB1_ID); LPC_CAN->IF1_ARB2 = CANIFn_ARB2_MSGVAL | CANIFn_ARB2_XTD | direction | BFN_PREP(msg.id >> 16, CANIFn_ARB2_ID); LPC_CAN->IF1_MSK1 = BFN_PREP(ID_EXT_MASK, CANIFn_MSK1_MSK); LPC_CAN->IF1_MSK2 = CANIFn_MSK2_MXTD | CANIFn_MSK2_MDIR | BFN_PREP(ID_EXT_MASK >> 16, CANIFn_MSK2_MSK); } else { // Mark message valid, Set Identifier and mask everything LPC_CAN->IF1_ARB2 = CANIFn_ARB2_MSGVAL | direction | BFN_PREP(msg.id << 2, CANIFn_ARB2_ID); LPC_CAN->IF1_MSK2 = CANIFn_MSK2_MDIR | BFN_PREP(ID_STD_MASK << 2, CANIFn_MSK2_MSK); } // Use mask, request transmission, single message object and set DLC LPC_CAN->IF1_MCTRL = CANIFn_MCTRL_UMASK | CANIFn_MCTRL_TXRQST | CANIFn_MCTRL_EOB | BFN_PREP(msg.len, CANIFn_MCTRL_DLC); LPC_CAN->IF1_DA1 = BFN_PREP(msg.data[1], CANIFn_DA1_DATA1) | BFN_PREP(msg.data[0], CANIFn_DA1_DATA0); LPC_CAN->IF1_DA2 = BFN_PREP(msg.data[3], CANIFn_DA2_DATA3) | BFN_PREP(msg.data[2], CANIFn_DA2_DATA2); LPC_CAN->IF1_DB1 = BFN_PREP(msg.data[5], CANIFn_DB1_DATA5) | BFN_PREP(msg.data[4], CANIFn_DB1_DATA4); LPC_CAN->IF1_DB2 = BFN_PREP(msg.data[7], CANIFn_DB2_DATA7) | BFN_PREP(msg.data[6], CANIFn_DB2_DATA6); // Transfer all fields to message object LPC_CAN->IF1_CMDMSK = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL | CANIFn_CMDMSK_TXRQST | CANIFn_CMDMSK_DATA_A | CANIFn_CMDMSK_DATA_B; // Start Transfer to given message number LPC_CAN->IF1_CMDREQ = BFN_PREP(msgnum, CANIFn_CMDREQ_MN); // Wait until transfer to message ram complete - TODO: maybe not block?? while( LPC_CAN->IF1_CMDREQ & CANIFn_CMDREQ_BUSY); // Wait until TXOK is set, then clear it - TODO: maybe not block //while( !(LPC_CAN->STAT & CANSTAT_TXOK) ); LPC_CAN->STAT &= ~(CANSTAT_TXOK); return 1; } int can_read(can_t *obj, CAN_Message *msg, int handle) { uint16_t i; // Make sure controller is enabled can_enable(obj); // Find first message object with new data if(handle == 0) { uint32_t newdata = LPC_CAN->ND1 | (LPC_CAN->ND2 << 16); // Find first free messagebox for(i = 0; i < 32; i++) { if(newdata & (1 << i)) { handle = i+1; break; } } } if(handle > 0 && handle < 32) { // Wait until message interface is free while( LPC_CAN->IF2_CMDREQ & CANIFn_CMDREQ_BUSY ); // Transfer all fields to message object LPC_CAN->IF2_CMDMSK = CANIFn_CMDMSK_RD | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL | CANIFn_CMDMSK_CLRINTPND | CANIFn_CMDMSK_TXRQST | CANIFn_CMDMSK_DATA_A | CANIFn_CMDMSK_DATA_B; // Start Transfer from given message number LPC_CAN->IF2_CMDREQ = BFN_PREP(handle, CANIFn_CMDREQ_MN); // Wait until transfer to message ram complete while( LPC_CAN->IF2_CMDREQ & CANIFn_CMDREQ_BUSY ); if (LPC_CAN->IF2_ARB2 & CANIFn_ARB2_XTD) { msg->format = CANExtended; msg->id = (LPC_CAN->IF2_ARB1 & CANIFn_ARB2_ID_MASK) << 16; msg->id |= (LPC_CAN->IF2_ARB2 & CANIFn_ARB2_ID_MASK); } else { msg->format = CANStandard; msg->id = (LPC_CAN->IF2_ARB2 & CANIFn_ARB2_ID_MASK) >> 2; } if (LPC_CAN->IF2_ARB2 & CANIFn_ARB2_DIR) { msg->type = CANRemote; } else { msg->type = CANData; } msg->len = BFN_GET(LPC_CAN->IF2_MCTRL, CANIFn_MCTRL_DLC); // TODO: If > 8, len = 8 msg->data[0] = BFN_GET(LPC_CAN->IF2_DA1, CANIFn_DA1_DATA0); msg->data[1] = BFN_GET(LPC_CAN->IF2_DA1, CANIFn_DA1_DATA1); msg->data[2] = BFN_GET(LPC_CAN->IF2_DA2, CANIFn_DA2_DATA2); msg->data[3] = BFN_GET(LPC_CAN->IF2_DA2, CANIFn_DA2_DATA3); msg->data[4] = BFN_GET(LPC_CAN->IF2_DB1, CANIFn_DB1_DATA4); msg->data[5] = BFN_GET(LPC_CAN->IF2_DB1, CANIFn_DB1_DATA5); msg->data[6] = BFN_GET(LPC_CAN->IF2_DB2, CANIFn_DB2_DATA6); msg->data[7] = BFN_GET(LPC_CAN->IF2_DB2, CANIFn_DB2_DATA7); LPC_CAN->STAT &= ~(CANSTAT_RXOK); return 1; } return 0; } void can_reset(can_t *obj) { LPC_SYSCON->PRESETCTRL &= ~PRESETCTRL_CAN_RST_N; LPC_CAN->STAT = 0; can_config_rxmsgobj(obj); } unsigned char can_rderror(can_t *obj) { return BFN_GET(LPC_CAN->EC, CANEC_REC); } unsigned char can_tderror(can_t *obj) { return BFN_GET(LPC_CAN->EC, CANEC_TEC); } void can_monitor(can_t *obj, int silent) { if (silent) { LPC_CAN->CNTL |= CANCNTL_TEST; LPC_CAN->TEST |= CANTEST_SILENT; } else { LPC_CAN->CNTL &= ~(CANCNTL_TEST); LPC_CAN->TEST &= ~CANTEST_SILENT; } if (!(LPC_CAN->CNTL & CANCNTL_INIT)) { LPC_CAN->CNTL |= CANCNTL_INIT; } }