Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FreescaleIAP SimpleDMA mbed-rtos mbed
Fork of CDMS_CODE by
cdms_sd.h
00001 //SPI spi(PTE1, PTE3, PTE2); // MOSI,MISO, CLOCK microcontroller(in order) 00002 //DigitalOut cs_sd(PTE22); 00003 00004 //Serial sd1(USBTX,USBRX); 00005 00006 00007 #define SD_COMMAND_TIMEOUT 325 00008 00009 #define SD_DBG 0 00010 00011 #define R1_IDLE_STATE (1 << 0) 00012 #define R1_ERASE_RESET (1 << 1) 00013 #define R1_ILLEGAL_COMMAND (1 << 2) 00014 #define R1_COM_CRC_ERROR (1 << 3) 00015 #define R1_ERASE_SEQUENCE_ERROR (1 << 4) 00016 #define R1_ADDRESS_ERROR (1 << 5) 00017 #define R1_PARAMETER_ERROR (1 << 6) 00018 00019 00020 00021 #define SD_MAX_CYCLES 10000 00022 00023 uint32_t SD_SCP_FIRST=1001; 00024 uint32_t SD_SCP_LAST=2000; 00025 uint32_t SD_SFF_AT_FIRST=2001; 00026 uint32_t SD_SFF_AT_LAST = 3000; 00027 uint32_t SD_SFF_BT_FIRST =3001; 00028 uint32_t SD_SFF_BT_LAST=4000; 00029 uint32_t SD_HK_ARCH_FIRST=4001; 00030 uint32_t SD_HK_ARCH_LAST= 5000; 00031 uint32_t LOG_FIRST =5001; 00032 uint32_t LOG_LAST=6000; 00033 uint32_t SD_MNG_SECT=7000; 00034 00035 extern uint8_t SD_INIT_FLAGS; 00036 00037 int initialise_card(); 00038 int initialise_card_v1(); 00039 int initialise_card_v2(); 00040 int disk_write(const uint8_t *, uint64_t); 00041 int disk_read(uint8_t *, uint64_t); 00042 int disk_erase(int,int); 00043 int disk_read_statusbits(uint8_t *); 00044 00045 void FCTN_SD_MNG(); 00046 int INCREMENT_SD_LIB(uint8_t); 00047 00048 00049 int cmd(int, int); 00050 int cmd58(); 00051 int cmdx(int, int); 00052 int cmd8(); 00053 int read(uint8_t*, uint32_t ); 00054 int write(const uint8_t*, uint32_t ); 00055 static uint32_t ext_bits(unsigned char *, int , int ); 00056 int SD_WRITE(uint8_t*,uint32_t,uint8_t); 00057 int FCTN_CDMS_SD_INIT(); 00058 uint8_t SD_READ(uint8_t*,uint32_t,uint8_t); 00059 #define SDCARD_FAIL 4 00060 #define SDCARD_V1 1 00061 #define SDCARD_V2 2 00062 #define SDCARD_V2HC 3 00063 00064 int cdv; 00065 uint64_t sd_sectors(); 00066 uint64_t sectors; 00067 00068 int FCTN_CDMS_SD_INIT() 00069 { 00070 int i = initialise_card(); 00071 if( i == 4) 00072 return 4; 00073 debug_if(SD_DBG, "init card = %d\n", i); 00074 sectors = sd_sectors(); 00075 00076 // Set block length to 512 (CMD16) 00077 if (cmd(16, 512) != 0) { 00078 debug("\rSet 512-byte block timed out\r\n"); 00079 return 1; 00080 } else { 00081 //printf("\rDisk initialization successfull\r\n"); 00082 } 00083 SD_STATUS = DEVICE_POWERED; 00084 spi.frequency(1000000); // Set to 1MHz for data transfer 00085 return 0; 00086 } 00087 00088 void FCTN_SD_MNGR() 00089 { 00090 uint32_t fsc; 00091 uint32_t start_fsc; 00092 uint8_t buffer[512]; 00093 int b; 00094 if(SD_STATUS == DEVICE_POWERED){ 00095 b=disk_read(buffer, SD_MNG_SECT); 00096 00097 fsc=(uint32_t)(buffer[0]<<24)+(uint32_t)(buffer[1]<<16)+(uint32_t)(buffer[2]<<8)+(uint32_t)buffer[3]; 00098 start_fsc=(uint32_t)(buffer[4]<<24)+(uint32_t)(buffer[5]<<16)+(uint32_t)(buffer[6]<<8)+(uint32_t)buffer[7]; 00099 FSC_CURRENT[1] = fsc; 00100 FSC_LAST[1] = start_fsc; 00101 00102 fsc=(uint32_t)(buffer[8]<<24)+(uint32_t)(buffer[9]<<16)+(uint32_t)(buffer[10]<<8)+(uint32_t)buffer[11]; 00103 start_fsc=(uint32_t)(buffer[12]<<24)+(uint32_t)(buffer[13]<<16)+(uint32_t)(buffer[14]<<8)+(uint32_t)buffer[15]; 00104 FSC_CURRENT[2] = fsc; 00105 FSC_LAST[2] = start_fsc; 00106 00107 fsc=(uint32_t)(buffer[16]<<24)+(uint32_t)(buffer[17]<<16)+(uint32_t)(buffer[18]<<8)+(uint32_t)buffer[19]; 00108 start_fsc=(uint32_t)(buffer[20]<<24)+(uint32_t)(buffer[21]<<16)+(uint32_t)(buffer[22]<<8)+(uint32_t)buffer[23]; 00109 FSC_CURRENT[3] = fsc; 00110 FSC_LAST[3] = start_fsc; 00111 00112 fsc=(uint32_t)(buffer[24]<<24)+(uint32_t)(buffer[25]<<16)+(uint32_t)(buffer[26]<<8)+(uint32_t)buffer[27]; 00113 start_fsc=(uint32_t)(buffer[28]<<24)+(uint32_t)(buffer[29]<<16)+(uint32_t)(buffer[30]<<8)+(uint32_t)buffer[31]; 00114 FSC_CURRENT[4] = fsc; 00115 FSC_LAST[4] = start_fsc; 00116 00117 fsc=(uint32_t)(buffer[32]<<24)+(uint32_t)(buffer[33]<<16)+(uint32_t)(buffer[34]<<8)+(uint32_t)buffer[35]; 00118 start_fsc=(uint32_t)(buffer[36]<<24)+(uint32_t)(buffer[37]<<16)+(uint32_t)(buffer[38]<<8)+(uint32_t)buffer[39]; 00119 FSC_CURRENT[5] = fsc; 00120 FSC_LAST[5] = start_fsc; 00121 } 00122 } 00123 00124 int INCREMENT_SD_LIB(uint8_t sid) 00125 { 00126 uint32_t fsc; 00127 uint32_t start_fsc; 00128 int i; 00129 uint8_t buffer[512]; 00130 SD_MNG_SECT += SD_LIB_WRITES/(int)0xFFFF; 00131 SD_LIB_WRITES = SD_LIB_WRITES%(int)0xFFFF; 00132 disk_read(buffer,SD_MNG_SECT); 00133 if(sid==0x01) 00134 { 00135 fsc=(uint32_t)(buffer[0]<<24)+(uint32_t)(buffer[1]<<16)+(uint32_t)(buffer[2]<<8)+(uint32_t)buffer[3]; 00136 start_fsc=(uint32_t)(buffer[4]<<24)+(uint32_t)(buffer[5]<<16)+(uint32_t)(buffer[6]<<8)+(uint32_t)buffer[7]; 00137 fsc++; 00138 buffer[0]=(uint8_t) (fsc>>24 & 0xFF); 00139 buffer[1]=(uint8_t) (fsc>>16 & 0xFF); 00140 buffer[2]=(uint8_t) (fsc>>8 & 0xFF); 00141 buffer[3]=(uint8_t) (fsc & 0xFF); 00142 if(fsc > SD_SCP_LAST-SD_SCP_FIRST+1) 00143 { 00144 start_fsc = start_fsc+1; 00145 buffer[4]=(uint8_t) (start_fsc>>24 & 0xFF); 00146 buffer[5]=(uint8_t) (start_fsc>>16 & 0xFF); 00147 buffer[6]=(uint8_t) (start_fsc>>8 & 0xFF); 00148 buffer[7]=(uint8_t) (start_fsc & 0xFF); 00149 } 00150 00151 i = disk_write(buffer,SD_MNG_SECT); 00152 if(i == 0) 00153 { 00154 FSC_CURRENT[1] = fsc; 00155 FSC_LAST[1] = start_fsc; 00156 return i; 00157 } 00158 } 00159 if(sid==0x02) 00160 { 00161 fsc=(uint32_t)(buffer[8]<<24)+(uint32_t)(buffer[9]<<16)+(uint32_t)(buffer[10]<<8)+(uint32_t)buffer[11]; 00162 start_fsc=(uint32_t)(buffer[12]<<24)+(uint32_t)(buffer[13]<<16)+(uint32_t)(buffer[14]<<8)+(uint32_t)buffer[15]; 00163 fsc++; 00164 buffer[8]=(uint8_t) (fsc>>24 & 0xFF); 00165 buffer[9]=(uint8_t) (fsc>>16 & 0xFF); 00166 buffer[10]=(uint8_t) (fsc>>8 & 0xFF); 00167 buffer[11]=(uint8_t) (fsc & 0xFF); 00168 if(fsc > SD_SFF_AT_LAST-SD_SFF_AT_FIRST+1) 00169 { 00170 start_fsc = start_fsc+1; 00171 buffer[12]=(uint8_t) (start_fsc>>24 & 0xFF); 00172 buffer[13]=(uint8_t) (start_fsc>>16 & 0xFF); 00173 buffer[14]=(uint8_t) (start_fsc>>8 & 0xFF); 00174 buffer[15]=(uint8_t) (start_fsc & 0xFF); 00175 } 00176 i = disk_write(buffer,SD_MNG_SECT); 00177 if(i == 0) 00178 { 00179 FSC_CURRENT[2] = fsc; 00180 FSC_LAST[2] = start_fsc; 00181 return i; 00182 } 00183 } 00184 if(sid==0x03) 00185 { 00186 fsc=(uint32_t)(buffer[16]<<24)+(uint32_t)(buffer[17]<<16)+(uint32_t)(buffer[18]<<8)+(uint32_t)buffer[19]; 00187 start_fsc=(uint32_t)(buffer[20]<<24)+(uint32_t)(buffer[21]<<16)+(uint32_t)(buffer[22]<<8)+(uint32_t)buffer[23]; 00188 fsc++; 00189 buffer[16]=(uint8_t) (fsc>>24 & 0xFF); 00190 buffer[17]=(uint8_t) (fsc>>16 & 0xFF); 00191 buffer[18]=(uint8_t) (fsc>>8 & 0xFF); 00192 buffer[19]=(uint8_t) (fsc & 0xFF); 00193 if(fsc > SD_SFF_BT_LAST-SD_SFF_BT_FIRST+1) 00194 { 00195 start_fsc = start_fsc+1; 00196 buffer[20]=(uint8_t) (start_fsc>>24 & 0xFF); 00197 buffer[21]=(uint8_t) (start_fsc>>16 & 0xFF); 00198 buffer[22]=(uint8_t) (start_fsc>>8 & 0xFF); 00199 buffer[23]=(uint8_t) (start_fsc & 0xFF); 00200 } 00201 i = disk_write(buffer,SD_MNG_SECT); 00202 if(i == 0) 00203 { 00204 FSC_CURRENT[3] = fsc; 00205 FSC_LAST[3] = start_fsc; 00206 return i; 00207 } 00208 } 00209 if(sid==0x04) 00210 { 00211 fsc=(uint32_t)(buffer[24]<<24)+(uint32_t)(buffer[25]<<16)+(uint32_t)(buffer[26]<<8)+(uint32_t)buffer[27]; 00212 start_fsc=(uint32_t)(buffer[28]<<24)+(uint32_t)(buffer[29]<<16)+(uint32_t)(buffer[30]<<8)+(uint32_t)buffer[31]; 00213 fsc++; 00214 buffer[24]=(uint8_t) (fsc>>24 & 0xFF); 00215 buffer[25]=(uint8_t) (fsc>>16 & 0xFF); 00216 buffer[26]=(uint8_t) (fsc>>8 & 0xFF); 00217 buffer[27]=(uint8_t) (fsc & 0xFF); 00218 if(fsc > SD_HK_ARCH_LAST-SD_HK_ARCH_FIRST+1) 00219 { 00220 start_fsc = start_fsc+1; 00221 buffer[28]=(uint8_t) (start_fsc>>24 & 0xFF); 00222 buffer[29]=(uint8_t) (start_fsc>>16 & 0xFF); 00223 buffer[30]=(uint8_t) (start_fsc>>8 & 0xFF); 00224 buffer[31]=(uint8_t) (start_fsc & 0xFF); 00225 } 00226 i = disk_write(buffer,SD_MNG_SECT); 00227 if(i == 0) 00228 { 00229 FSC_CURRENT[4] = fsc; 00230 FSC_LAST[4] = start_fsc; 00231 return i; 00232 } 00233 } 00234 if(sid==0x05) 00235 { 00236 fsc=(uint32_t)(buffer[32]<<24)+(uint32_t)(buffer[33]<<16)+(uint32_t)(buffer[34]<<8)+(uint32_t)buffer[35]; 00237 start_fsc=(uint32_t)(buffer[36]<<24)+(uint32_t)(buffer[37]<<16)+(uint32_t)(buffer[38]<<8)+(uint32_t)buffer[39]; 00238 fsc++; 00239 buffer[32]=(uint8_t) (fsc>>24 & 0xFF); 00240 buffer[33]=(uint8_t) (fsc>>16 & 0xFF); 00241 buffer[34]=(uint8_t) (fsc>>8 & 0xFF); 00242 buffer[35]=(uint8_t) (fsc & 0xFF); 00243 if(fsc > LOG_LAST-LOG_FIRST+1) 00244 { 00245 start_fsc = start_fsc+1; 00246 buffer[36]=(uint8_t) (start_fsc>>24 & 0xFF); 00247 buffer[37]=(uint8_t) (start_fsc>>16 & 0xFF); 00248 buffer[38]=(uint8_t) (start_fsc>>8 & 0xFF); 00249 buffer[39]=(uint8_t) (start_fsc & 0xFF); 00250 } 00251 i = disk_write(buffer,SD_MNG_SECT); 00252 if(i == 0) 00253 { 00254 FSC_CURRENT[5] = fsc; 00255 FSC_LAST[5] = start_fsc; 00256 return i; 00257 } 00258 } 00259 return -1; 00260 } 00261 00262 00263 int SD_WRITE(uint8_t* buffer,uint32_t fsc,uint8_t sid) 00264 { 00265 uint32_t block_number; 00266 int result = 10; 00267 if(SD_STATUS == DEVICE_POWERED){ 00268 if(sid==0x01) 00269 { 00270 //block_number=SD_SCP_FIRST+(fsc%(SD_SCP_LAST-SD_SCP_FIRST+1))-1; 00271 block_number=SD_SCP_FIRST+fsc; 00272 result= disk_write(buffer,block_number); 00273 if(result == 0) 00274 { 00275 if(INCREMENT_SD_LIB(sid) == 0) 00276 SD_LIB_WRITES++; 00277 } 00278 return result; 00279 } 00280 if(sid==0x02) 00281 { 00282 //block_number= SD_SFF_AT_FIRST+(fsc%(SD_SFF_AT_LAST - SD_SFF_AT_FIRST+1))-1; 00283 block_number= SD_SFF_AT_FIRST+fsc; 00284 result= disk_write(buffer,block_number); 00285 if(result == 0) 00286 { 00287 if(INCREMENT_SD_LIB(sid) == 0) 00288 SD_LIB_WRITES++; 00289 } 00290 return result; 00291 } 00292 if(sid==0x03) 00293 { 00294 //block_number= SD_SFF_BT_FIRST +(fsc%(SD_SFF_BT_LAST - SD_SFF_BT_FIRST +1))-1; 00295 block_number= SD_SFF_BT_FIRST +fsc; 00296 result= disk_write(buffer,block_number); 00297 if(result == 0) 00298 { 00299 if(INCREMENT_SD_LIB(sid) == 0) 00300 SD_LIB_WRITES++; 00301 } 00302 return result; 00303 } 00304 if(sid==0x04) 00305 { 00306 //block_number=SD_HK_ARCH_FIRST +(fsc%(SD_HK_ARCH_LAST - SD_HK_ARCH_FIRST +1))-1; 00307 block_number=SD_HK_ARCH_FIRST +fsc; 00308 result= disk_write(buffer,block_number); 00309 if(result == 0) 00310 { 00311 if(INCREMENT_SD_LIB(sid) == 0) 00312 SD_LIB_WRITES++; 00313 } 00314 return result; 00315 } 00316 if(sid==0x05) 00317 { 00318 //block_number= LOG_FIRST +(fsc%(LOG_FIRST - LOG_FIRST +1))-1; 00319 block_number= LOG_FIRST +fsc; 00320 result= disk_write(buffer,block_number); 00321 if(result == 0) 00322 { 00323 if(INCREMENT_SD_LIB(sid) == 0) 00324 SD_LIB_WRITES++; 00325 } 00326 return result; 00327 } 00328 } 00329 return 1; 00330 } 00331 00332 uint8_t SD_READ(uint8_t* buffer,uint32_t fsc,uint8_t sid) 00333 { 00334 FCTN_SD_MNGR(); 00335 uint32_t block_number; 00336 int result; 00337 if(SD_SW_EN_DS == 1) 00338 return 0x89; 00339 if(sid==0x01) 00340 { 00341 if(!(FSC_LAST[1]<=fsc && fsc<=FSC_CURRENT[1])){ 00342 return 0x86; 00343 } 00344 block_number=SD_SCP_FIRST + fsc; 00345 result= disk_read(buffer,block_number); 00346 } 00347 else if(sid==0x02) 00348 { 00349 if(!(FSC_LAST[2]<=fsc && fsc<=FSC_CURRENT[2])){ 00350 return 0x86; 00351 } 00352 block_number=SD_SFF_AT_FIRST + fsc; 00353 result= disk_read(buffer,block_number); 00354 } 00355 else if(sid==0x03) 00356 { 00357 if(!(FSC_LAST[3]<=fsc && fsc<=FSC_CURRENT[3])){ 00358 return 0x86; 00359 } 00360 block_number=SD_SFF_BT_FIRST + fsc; 00361 result= disk_read(buffer,block_number); 00362 } 00363 else if(sid==0x04) 00364 { 00365 if(!(FSC_LAST[4]<=fsc && fsc<=FSC_CURRENT[4])){ 00366 return 0x86; 00367 } 00368 block_number=SD_HK_ARCH_FIRST + fsc; 00369 result= disk_read(buffer,block_number); 00370 } 00371 else if(sid==0x05) 00372 { 00373 if(!(FSC_LAST[5]<=fsc && fsc<=FSC_CURRENT[5])){ 00374 return 0x86; 00375 } 00376 block_number=LOG_FIRST +fsc; 00377 result= disk_read(buffer,block_number); 00378 } 00379 else 00380 { 00381 return 0x02; 00382 } 00383 if(result == 0) 00384 return 0xA0; 00385 else 00386 return 0x88; 00387 } 00388 00389 00390 int initialise_card() 00391 { 00392 // Set to 100kHz for initialisation, and clock card with cs_sd = 1 00393 spi.frequency(100000); // changed on 31 12 2015 to 1 MHz 00394 cs_sd = 1; 00395 for (int i = 0; i < 16; i++) { 00396 spi.write(0xFF); 00397 } 00398 uint8_t R1_response = cmd(0,0); 00399 gPC.printf("0x%02X",R1_response); 00400 // send CMD0, should return with all zeros except IDLE STATE set (bit 0) 00401 if (R1_response != R1_IDLE_STATE) { 00402 debug("No disk, or could not put SD card in to spi idle state\r\n"); 00403 return SDCARD_FAIL; 00404 } 00405 else 00406 gPC.puts("SD Card is in IDLE state\n\r"); 00407 00408 // send CMD8 to determine whther it is ver 2.x 00409 int r = cmd8(); 00410 if (r == R1_IDLE_STATE) { 00411 gPC.puts("Entering V2\r"); 00412 int q = initialise_card_v2(); 00413 return q; 00414 00415 } else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) { 00416 gPC.puts("Entering V1"); 00417 return initialise_card_v1(); 00418 00419 } else { 00420 debug("\rNot in idle state after sending CMD8 (not an SD card?)\r\n"); 00421 return SDCARD_FAIL; 00422 } 00423 } 00424 00425 int initialise_card_v1() 00426 { 00427 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00428 cmd(55, 0); 00429 if (cmd(41, 0) == 0) { 00430 gPC.puts("\rv1 initialization successfull\r\n"); 00431 cdv = 512; 00432 debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r"); 00433 00434 return SDCARD_V1; 00435 } 00436 } 00437 00438 debug("\rTimeout waiting for v1.x card\r\n"); 00439 return SDCARD_FAIL; 00440 } 00441 00442 00443 int initialise_card_v2() 00444 { 00445 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00446 wait_ms(50); 00447 cmd58(); 00448 cmd(55, 0); 00449 if (cmd(41, 0x40000000) == 0) { 00450 if (DEBUG) 00451 gPC.puts("\rv2 initialization successfull\r\n"); 00452 cmd58(); 00453 debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r"); 00454 cdv = 1; 00455 return SDCARD_V2; 00456 } 00457 } 00458 00459 debug("\rTimeout waiting for v2.x card\r\n"); 00460 return SDCARD_FAIL; 00461 } 00462 00463 int cmd(int cmd, int arg) 00464 { 00465 cs_sd = 0; 00466 00467 // send a command 00468 spi.write(0x40 | cmd); 00469 spi.write(arg >> 24); 00470 spi.write(arg >> 16); 00471 spi.write(arg >> 8); 00472 spi.write(arg >> 0); 00473 spi.write(0x95); 00474 00475 // wait for the repsonse (response[7] == 0) 00476 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00477 int response = spi.write(0xFF); 00478 if (!(response & 0x80)) { 00479 cs_sd = 1; 00480 spi.write(0xFF); 00481 return response; 00482 } 00483 } 00484 cs_sd = 1; 00485 spi.write(0xFF); 00486 return -1; // timeout 00487 } 00488 00489 00490 int cmd58() 00491 { 00492 cs_sd = 0; 00493 int arg = 0; 00494 00495 // send a command 00496 spi.write(0x40 | 58); 00497 spi.write(arg >> 24); 00498 spi.write(arg >> 16); 00499 spi.write(arg >> 8); 00500 spi.write(arg >> 0); 00501 spi.write(0x95); 00502 00503 // wait for the repsonse (response[7] == 0) 00504 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00505 int response = spi.write(0xFF); 00506 if (!(response & 0x80)) { 00507 int ocr = spi.write(0xFF) << 24; 00508 ocr |= spi.write(0xFF) << 16; 00509 ocr |= spi.write(0xFF) << 8; 00510 ocr |= spi.write(0xFF) << 0; 00511 cs_sd = 1; 00512 spi.write(0xFF); 00513 return response; 00514 } 00515 } 00516 cs_sd = 1; 00517 spi.write(0xFF); 00518 return -1; // timeout 00519 } 00520 00521 00522 int cmd8() 00523 { 00524 cs_sd = 0; 00525 00526 // send a command 00527 spi.write(0x40 | 8); // CMD8 00528 spi.write(0x00); // reserved 00529 spi.write(0x00); // reserved 00530 spi.write(0x01); // 3.3v 00531 spi.write(0xAA); // check pattern 00532 spi.write(0x87); // crc 00533 00534 // wait for the repsonse (response[7] == 0) 00535 for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) { 00536 char response[5]; 00537 response[0] = spi.write(0xFF); 00538 if (!(response[0] & 0x80)) { 00539 for (int j = 1; j < 5; j++) { 00540 response[i] = spi.write(0xFF); 00541 } 00542 cs_sd = 1; 00543 spi.write(0xFF); 00544 return response[0]; 00545 } 00546 } 00547 cs_sd = 1; 00548 spi.write(0xFF); 00549 return -1; // timeout 00550 } 00551 00552 uint64_t sd_sectors() 00553 { 00554 uint32_t c_size, c_size_mult, read_bl_len; 00555 uint32_t block_len, mult, blocknr, capacity; 00556 uint32_t hc_c_size; 00557 uint64_t blocks; 00558 00559 // CMD9, Response R2 (R1 byte + 16-byte block read) 00560 if (cmdx(9, 0) != 0) { 00561 debug("\rDidn't get a response from the disk\n"); 00562 return 0; 00563 } 00564 00565 uint8_t cs_sdd[16]; 00566 if (read(cs_sdd, 16) != 0) { 00567 debug("\rCouldn't read cs_sdd response from disk\n"); 00568 return 0; 00569 } 00570 00571 // cs_sdd_structure : cs_sdd[127:126] 00572 // c_size : cs_sdd[73:62] 00573 // c_size_mult : cs_sdd[49:47] 00574 // read_bl_len : cs_sdd[83:80] - the *maximum* read block length 00575 00576 int cs_sdd_structure = ext_bits(cs_sdd, 127, 126); 00577 00578 switch (cs_sdd_structure) { 00579 case 0: 00580 cdv = 512; 00581 c_size = ext_bits(cs_sdd, 73, 62); 00582 c_size_mult = ext_bits(cs_sdd, 49, 47); 00583 read_bl_len = ext_bits(cs_sdd, 83, 80); 00584 00585 block_len = 1 << read_bl_len; 00586 mult = 1 << (c_size_mult + 2); 00587 blocknr = (c_size + 1) * mult; 00588 capacity = blocknr * block_len; 00589 blocks = capacity / 512; 00590 debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks); 00591 break; 00592 00593 case 1: 00594 cdv = 1; 00595 hc_c_size = ext_bits(cs_sdd, 63, 48); 00596 blocks = (hc_c_size+1)*1024; 00597 debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks); 00598 break; 00599 00600 default: 00601 debug("cs_sdD struct unsupported\r\n"); 00602 return 0; 00603 }; 00604 return blocks; 00605 } 00606 00607 int cmdx(int cmd, int arg) 00608 { 00609 cs_sd = 0; 00610 00611 // send a command 00612 spi.write(0x40 | cmd); 00613 spi.write(arg >> 24); 00614 spi.write(arg >> 16); 00615 spi.write(arg >> 8); 00616 spi.write(arg >> 0); 00617 spi.write(0x95); 00618 00619 // wait for the repsonse (response[7] == 0) 00620 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00621 int response = spi.write(0xFF); 00622 if (!(response & 0x80)) { 00623 return response; 00624 } 00625 } 00626 cs_sd = 1; 00627 spi.write(0xFF); 00628 return 1; // timeout 00629 } 00630 00631 static uint32_t ext_bits(unsigned char *data, int msb, int lsb) 00632 { 00633 uint32_t bits = 0; 00634 uint32_t size = 1 + msb - lsb; 00635 for (int i = 0; i < size; i++) { 00636 uint32_t position = lsb + i; 00637 uint32_t byte = 15 - (position >> 3); 00638 uint32_t bit = position & 0x7; 00639 uint32_t value = (data[byte] >> bit) & 1; 00640 bits |= value << i; 00641 } 00642 return bits; 00643 } 00644 00645 int disk_write(const uint8_t *buffer, uint64_t block_number) 00646 00647 { 00648 // set write address for single block (CMD24) 00649 if (cmd(24, block_number * cdv) != 0) { 00650 return 1; 00651 } 00652 00653 uint64_t temp; 00654 int r = write(buffer, 512); 00655 if(r == 0 ){ 00656 temp = FCTN_CDMS_RD_RTC(); 00657 TIME_LATEST_SD_RD = temp >> 7; 00658 } 00659 return r; 00660 } 00661 00662 int write(const uint8_t*buffer, uint32_t length) 00663 { 00664 cs_sd = 0; 00665 00666 // indicate start of block 00667 spi.write(0xFE); 00668 00669 // write the data 00670 for (int i = 0; i < length; i++) { 00671 spi.write(buffer[i]); 00672 } 00673 00674 // write the checksum 00675 spi.write(0xFF); 00676 spi.write(0xFF); 00677 00678 // check the response token 00679 if ((spi.write(0xFF) & 0x1F) != 0x05) { 00680 cs_sd = 1; 00681 spi.write(0xFF); 00682 return 1; 00683 } 00684 00685 // wait for write to finish 00686 while (spi.write(0xFF) == 0); 00687 00688 cs_sd = 1; 00689 spi.write(0xFF); 00690 return 0; 00691 } 00692 00693 int disk_read(uint8_t *buffer, uint64_t block_number) 00694 { 00695 // set read address for single block (CMD17) 00696 if (cmd(17, block_number * cdv) != 0) { 00697 SD_RD_ERROR = 1; 00698 return 1; 00699 } 00700 00701 // receive the data 00702 read(buffer, 512); 00703 uint64_t temp = FCTN_CDMS_RD_RTC(); 00704 TIME_LATEST_SD_RD = temp >> 7; 00705 return 0; 00706 } 00707 00708 int read(uint8_t *buffer, uint32_t length) 00709 { 00710 cs_sd = 0; 00711 00712 // read until start byte (0xFF) 00713 while (spi.write(0xFF) != 0xFE); 00714 00715 // read data 00716 for (int i = 0; i < length; i++) { 00717 buffer[i] = spi.write(0xFF); 00718 } 00719 spi.write(0xFF); // checksum 00720 spi.write(0xFF); 00721 00722 cs_sd = 1; 00723 spi.write(0xFF); 00724 return 0; 00725 } 00726 00727 int disk_erase(int startBlock, int totalBlocks) 00728 { 00729 if(cmd(32, startBlock * cdv) != 0) { 00730 return 1; 00731 } 00732 if (cmd(33, (startBlock+totalBlocks-1) * cdv) != 0) { 00733 return 1; 00734 } 00735 if (cmd(38,0) != 0) { 00736 return 1; 00737 } 00738 00739 return 0; //normal return 00740 } 00741 00742 int disk_read_statusbits(uint8_t *buffer) 00743 { 00744 if (cmd(17, 0) != 0) { 00745 SD_RD_ERROR = 1; 00746 return -1; 00747 } 00748 00749 // receive the data 00750 return read(buffer,64); 00751 }
Generated on Fri Jul 15 2022 20:36:46 by
1.7.2
