encoder

Dependencies:   mbed

Files at this revision

API Documentation at this revision

Comitter:
ea78anana
Date:
Sun Oct 31 09:45:26 2021 +0000
Parent:
0:4d7336a951bd
Commit message:
for 3 encoders

Changed in this revision

QEI.cpp Show annotated file Show diff for this revision Revisions of this file
encoder.cpp Show diff for this revision Revisions of this file
encoder01.cpp Show annotated file Show diff for this revision Revisions of this file
diff -r 4d7336a951bd -r 92fd61600fa8 QEI.cpp
--- a/QEI.cpp	Wed Oct 27 05:18:30 2021 +0000
+++ b/QEI.cpp	Sun Oct 31 09:45:26 2021 +0000
@@ -1,290 +1,290 @@
-/**
- * @author Aaron Berk
- *
- * @section LICENSE
- *
- * Copyright (c) 2010 ARM Limited
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- *
- * @section DESCRIPTION
- *
- * Quadrature Encoder Interface.
- *
- * A quadrature encoder consists of two code tracks on a disc which are 90
- * degrees out of phase. It can be used to determine how far a wheel has
- * rotated, relative to a known starting position.
- *
- * Only one code track changes at a time leading to a more robust system than
- * a single track, because any jitter around any edge won't cause a state
- * change as the other track will remain constant.
- *
- * Encoders can be a homebrew affair, consisting of infrared emitters/receivers
- * and paper code tracks consisting of alternating black and white sections;
- * alternatively, complete disk and PCB emitter/receiver encoder systems can
- * be bought, but the interface, regardless of implementation is the same.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |  ^  |     |     |     |     |
- *            ---+  ^  +-----+     +-----+     +-----
- *               ^  ^
- *               ^  +-----+     +-----+     +-----+
- * Channel B     ^  |     |     |     |     |     |
- *            ------+     +-----+     +-----+     +-----
- *               ^  ^
- *               ^  ^
- *               90deg
- *
- * The interface uses X2 encoding by default which calculates the pulse count
- * based on reading the current state after each rising and falling edge of
- * channel A.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |     |     |     |     |     |
- *            ---+     +-----+     +-----+     +-----
- *               ^     ^     ^     ^     ^
- *               ^  +-----+  ^  +-----+  ^  +-----+
- * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
- *            ------+  ^  +-----+  ^  +-----+     +--
- *               ^     ^     ^     ^     ^
- *               ^     ^     ^     ^     ^
- * Pulse count 0 1     2     3     4     5  ...
- *
- * This interface can also use X4 encoding which calculates the pulse count
- * based on reading the current state after each rising and falling edge of
- * either channel.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |     |     |     |     |     |
- *            ---+     +-----+     +-----+     +-----
- *               ^     ^     ^     ^     ^
- *               ^  +-----+  ^  +-----+  ^  +-----+
- * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
- *            ------+  ^  +-----+  ^  +-----+     +--
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- * Pulse count 0 1  2  3  4  5  6  7  8  9  ...
- *
- * It defaults
- *
- * An optional index channel can be used which determines when a full
- * revolution has occured.
- *
- * If a 4 pules per revolution encoder was used, with X4 encoding,
- * the following would be observed.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |     |     |     |     |     |
- *            ---+     +-----+     +-----+     +-----
- *               ^     ^     ^     ^     ^
- *               ^  +-----+  ^  +-----+  ^  +-----+
- * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
- *            ------+  ^  +-----+  ^  +-----+     +--
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- *               ^  ^  ^  +--+  ^  ^  +--+  ^
- *               ^  ^  ^  |  |  ^  ^  |  |  ^
- * Index      ------------+  +--------+  +-----------
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- * Pulse count 0 1  2  3  4  5  6  7  8  9  ...
- * Rev.  count 0          1           2
- *
- * Rotational position in degrees can be calculated by:
- *
- * (pulse count / X * N) * 360
- *
- * Where X is the encoding type [e.g. X4 encoding => X=4], and N is the number
- * of pulses per revolution.
- *
- * Linear position can be calculated by:
- *
- * (pulse count / X * N) * (1 / PPI)
- *
- * Where X is encoding type [e.g. X4 encoding => X=44], N is the number of
- * pulses per revolution, and PPI is pulses per inch, or the equivalent for
- * any other unit of displacement. PPI can be calculated by taking the
- * circumference of the wheel or encoder disk and dividing it by the number
- * of pulses per revolution.
- */
-
-/**
- * Includes
- */
-#include "QEI.h"
-
-QEI::QEI(PinName channelA,
-         PinName channelB,
-         PinName index,
-         int pulsesPerRev,
-         Encoding encoding) : channelA_(channelA), channelB_(channelB),
-        index_(index) {
-
-    pulses_       = 0;
-    revolutions_  = 0;
-    pulsesPerRev_ = pulsesPerRev;
-    encoding_     = encoding;
-
-    //Workout what the current state is.
-    int chanA = channelA_.read();
-    int chanB = channelB_.read();
-
-    //2-bit state.
-    currState_ = (chanA << 1) | (chanB);
-    prevState_ = currState_;
-
-    //X2 encoding uses interrupts on only channel A.
-    //X4 encoding uses interrupts on      channel A,
-    //and on channel B.
-    channelA_.rise(this, &QEI::encode);
-    channelA_.fall(this, &QEI::encode);
-
-    //If we're using X4 encoding, then attach interrupts to channel B too.
-    if (encoding == X4_ENCODING) {
-        channelB_.rise(this, &QEI::encode);
-        channelB_.fall(this, &QEI::encode);
-    }
-    //Index is optional.
-    if (index !=  NC) {
-        index_.rise(this, &QEI::index);
-    }
-
-}
-
-void QEI::reset(void) {
-
-    pulses_      = 0;
-    revolutions_ = 0;
-
-}
-
-int QEI::getCurrentState(void) {
-
-    return currState_;
-
-}
-
-int QEI::getPulses(void) {
-
-    return pulses_;
-
-}
-
-int QEI::getRevolutions(void) {
-
-    return revolutions_;
-
-}
-
-// +-------------+
-// | X2 Encoding |
-// +-------------+
-//
-// When observing states two patterns will appear:
-//
-// Counter clockwise rotation:
-//
-// 10 -> 01 -> 10 -> 01 -> ...
-//
-// Clockwise rotation:
-//
-// 11 -> 00 -> 11 -> 00 -> ...
-//
-// We consider counter clockwise rotation to be "forward" and
-// counter clockwise to be "backward". Therefore pulse count will increase
-// during counter clockwise rotation and decrease during clockwise rotation.
-//
-// +-------------+
-// | X4 Encoding |
-// +-------------+
-//
-// There are four possible states for a quadrature encoder which correspond to
-// 2-bit gray code.
-//
-// A state change is only valid if of only one bit has changed.
-// A state change is invalid if both bits have changed.
-//
-// Clockwise Rotation ->
-//
-//    00 01 11 10 00
-//
-// <- Counter Clockwise Rotation
-//
-// If we observe any valid state changes going from left to right, we have
-// moved one pulse clockwise [we will consider this "backward" or "negative"].
-//
-// If we observe any valid state changes going from right to left we have
-// moved one pulse counter clockwise [we will consider this "forward" or
-// "positive"].
-//
-// We might enter an invalid state for a number of reasons which are hard to
-// predict - if this is the case, it is generally safe to ignore it, update
-// the state and carry on, with the error correcting itself shortly after.
-void QEI::encode(void) {
-
-    int change = 0;
-    int chanA  = channelA_.read();
-    int chanB  = channelB_.read();
-
-    //2-bit state.
-    currState_ = (chanA << 1) | (chanB);
-
-    if (encoding_ == X2_ENCODING) {
-
-        //11->00->11->00 is counter clockwise rotation or "forward".
-        if ((prevState_ == 0x3 && currState_ == 0x0) ||
-                (prevState_ == 0x0 && currState_ == 0x3)) {
-
-            pulses_++;
-
-        }
-        //10->01->10->01 is clockwise rotation or "backward".
-        else if ((prevState_ == 0x2 && currState_ == 0x1) ||
-                 (prevState_ == 0x1 && currState_ == 0x2)) {
-
-            pulses_--;
-
-        }
-
-    } else if (encoding_ == X4_ENCODING) {
-
-        //Entered a new valid state.
-        if (((currState_ ^ prevState_) != INVALID) && (currState_ != prevState_)) {
-            //2 bit state. Right hand bit of prev XOR left hand bit of current
-            //gives 0 if clockwise rotation and 1 if counter clockwise rotation.
-            change = (prevState_ & PREV_MASK) ^ ((currState_ & CURR_MASK) >> 1);
-
-            if (change == 0) {
-                change = -1;
-            }
-
-            pulses_ -= change;
-        }
-
-    }
-
-    prevState_ = currState_;
-
-}
-
-void QEI::index(void) {
-
-    revolutions_++;
-
-}
+/**
+ * @author Aaron Berk
+ *
+ * @section LICENSE
+ *
+ * Copyright (c) 2010 ARM Limited
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ * @section DESCRIPTION
+ *
+ * Quadrature Encoder Interface.
+ *
+ * A quadrature encoder consists of two code tracks on a disc which are 90
+ * degrees out of phase. It can be used to determine how far a wheel has
+ * rotated, relative to a known starting position.
+ *
+ * Only one code track changes at a time leading to a more robust system than
+ * a single track, because any jitter around any edge won't cause a state
+ * change as the other track will remain constant.
+ *
+ * Encoders can be a homebrew affair, consisting of infrared emitters/receivers
+ * and paper code tracks consisting of alternating black and white sections;
+ * alternatively, complete disk and PCB emitter/receiver encoder systems can
+ * be bought, but the interface, regardless of implementation is the same.
+ *
+ *               +-----+     +-----+     +-----+
+ * Channel A     |  ^  |     |     |     |     |
+ *            ---+  ^  +-----+     +-----+     +-----
+ *               ^  ^
+ *               ^  +-----+     +-----+     +-----+
+ * Channel B     ^  |     |     |     |     |     |
+ *            ------+     +-----+     +-----+     +-----
+ *               ^  ^
+ *               ^  ^
+ *               90deg
+ *
+ * The interface uses X2 encoding by default which calculates the pulse count
+ * based on reading the current state after each rising and falling edge of
+ * channel A.
+ *
+ *               +-----+     +-----+     +-----+
+ * Channel A     |     |     |     |     |     |
+ *            ---+     +-----+     +-----+     +-----
+ *               ^     ^     ^     ^     ^
+ *               ^  +-----+  ^  +-----+  ^  +-----+
+ * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
+ *            ------+  ^  +-----+  ^  +-----+     +--
+ *               ^     ^     ^     ^     ^
+ *               ^     ^     ^     ^     ^
+ * Pulse count 0 1     2     3     4     5  ...
+ *
+ * This interface can also use X4 encoding which calculates the pulse count
+ * based on reading the current state after each rising and falling edge of
+ * either channel.
+ *
+ *               +-----+     +-----+     +-----+
+ * Channel A     |     |     |     |     |     |
+ *            ---+     +-----+     +-----+     +-----
+ *               ^     ^     ^     ^     ^
+ *               ^  +-----+  ^  +-----+  ^  +-----+
+ * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
+ *            ------+  ^  +-----+  ^  +-----+     +--
+ *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
+ *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
+ * Pulse count 0 1  2  3  4  5  6  7  8  9  ...
+ *
+ * It defaults
+ *
+ * An optional index channel can be used which determines when a full
+ * revolution has occured.
+ *
+ * If a 4 pules per revolution encoder was used, with X4 encoding,
+ * the following would be observed.
+ *
+ *               +-----+     +-----+     +-----+
+ * Channel A     |     |     |     |     |     |
+ *            ---+     +-----+     +-----+     +-----
+ *               ^     ^     ^     ^     ^
+ *               ^  +-----+  ^  +-----+  ^  +-----+
+ * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
+ *            ------+  ^  +-----+  ^  +-----+     +--
+ *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
+ *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
+ *               ^  ^  ^  +--+  ^  ^  +--+  ^
+ *               ^  ^  ^  |  |  ^  ^  |  |  ^
+ * Index      ------------+  +--------+  +-----------
+ *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
+ * Pulse count 0 1  2  3  4  5  6  7  8  9  ...
+ * Rev.  count 0          1           2
+ *
+ * Rotational position in degrees can be calculated by:
+ *
+ * (pulse count / X * N) * 360
+ *
+ * Where X is the encoding type [e.g. X4 encoding => X=4], and N is the number
+ * of pulses per revolution.
+ *
+ * Linear position can be calculated by:
+ *
+ * (pulse count / X * N) * (1 / PPI)
+ *
+ * Where X is encoding type [e.g. X4 encoding => X=44], N is the number of
+ * pulses per revolution, and PPI is pulses per inch, or the equivalent for
+ * any other unit of displacement. PPI can be calculated by taking the
+ * circumference of the wheel or encoder disk and dividing it by the number
+ * of pulses per revolution.
+ */
+
+/**
+ * Includes
+ */
+#include "QEI.h"
+
+QEI::QEI(PinName channelA,
+         PinName channelB,
+         PinName index,
+         int pulsesPerRev,
+         Encoding encoding) : channelA_(channelA), channelB_(channelB),
+        index_(index) {
+
+    pulses_       = 0;
+    revolutions_  = 0;
+    pulsesPerRev_ = pulsesPerRev;
+    encoding_     = encoding;
 
+    //Workout what the current state is.
+    int chanA = channelA_.read();
+    int chanB = channelB_.read();
+
+    //2-bit state.
+    currState_ = (chanA << 1) | (chanB);
+    prevState_ = currState_;
+
+    //X2 encoding uses interrupts on only channel A.
+    //X4 encoding uses interrupts on      channel A,
+    //and on channel B.
+    channelA_.rise(this, &QEI::encode);
+    channelA_.fall(this, &QEI::encode);
+
+    //If we're using X4 encoding, then attach interrupts to channel B too.
+    if (encoding == X4_ENCODING) {
+        channelB_.rise(this, &QEI::encode);
+        channelB_.fall(this, &QEI::encode);
+    }
+    //Index is optional.
+    if (index !=  NC) {
+        index_.rise(this, &QEI::index);
+    }
+
+}
+
+void QEI::reset(void) {
+
+    pulses_      = 0;
+    revolutions_ = 0;
+
+}
+
+int QEI::getCurrentState(void) {
+
+    return currState_;
+
+}
+
+int QEI::getPulses(void) {
+
+    return pulses_;
+
+}
+
+int QEI::getRevolutions(void) {
+
+    return revolutions_;
+
+}
+
+// +-------------+
+// | X2 Encoding |
+// +-------------+
+//
+// When observing states two patterns will appear:
+//
+// Counter clockwise rotation:
+//
+// 10 -> 01 -> 10 -> 01 -> ...
+//
+// Clockwise rotation:
+//
+// 11 -> 00 -> 11 -> 00 -> ...
+//
+// We consider counter clockwise rotation to be "forward" and
+// counter clockwise to be "backward". Therefore pulse count will increase
+// during counter clockwise rotation and decrease during clockwise rotation.
+//
+// +-------------+
+// | X4 Encoding |
+// +-------------+
+//
+// There are four possible states for a quadrature encoder which correspond to
+// 2-bit gray code.
+//
+// A state change is only valid if of only one bit has changed.
+// A state change is invalid if both bits have changed.
+//
+// Clockwise Rotation ->
+//
+//    00 01 11 10 00
+//
+// <- Counter Clockwise Rotation
+//
+// If we observe any valid state changes going from left to right, we have
+// moved one pulse clockwise [we will consider this "backward" or "negative"].
+//
+// If we observe any valid state changes going from right to left we have
+// moved one pulse counter clockwise [we will consider this "forward" or
+// "positive"].
+//
+// We might enter an invalid state for a number of reasons which are hard to
+// predict - if this is the case, it is generally safe to ignore it, update
+// the state and carry on, with the error correcting itself shortly after.
+void QEI::encode(void) {
+
+    int change = 0;
+    int chanA  = channelA_.read();
+    int chanB  = channelB_.read();
+
+    //2-bit state.
+    currState_ = (chanA << 1) | (chanB);
+
+    if (encoding_ == X2_ENCODING) {
+
+        //11->00->11->00 is counter clockwise rotation or "forward".
+        if ((prevState_ == 0x3 && currState_ == 0x0) ||
+                (prevState_ == 0x0 && currState_ == 0x3)) {
+
+            pulses_++;
+
+        }
+        //10->01->10->01 is clockwise rotation or "backward".
+        else if ((prevState_ == 0x2 && currState_ == 0x1) ||
+                 (prevState_ == 0x1 && currState_ == 0x2)) {
+
+            pulses_--;
+
+        }
+
+    } else if (encoding_ == X4_ENCODING) {
+
+        //Entered a new valid state.
+        if (((currState_ ^ prevState_) != INVALID) && (currState_ != prevState_)) {
+            //2 bit state. Right hand bit of prev XOR left hand bit of current
+            //gives 0 if clockwise rotation and 1 if counter clockwise rotation.
+            change = (prevState_ & PREV_MASK) ^ ((currState_ & CURR_MASK) >> 1);
+
+            if (change == 0) {
+                change = -1;
+            }
+
+            pulses_ -= change;
+        }
+
+    }
+
+    prevState_ = currState_;
+
+}
+
+void QEI::index(void) {
+
+    revolutions_++;
+
+}
+
diff -r 4d7336a951bd -r 92fd61600fa8 encoder.cpp
--- a/encoder.cpp	Wed Oct 27 05:18:30 2021 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,18 +0,0 @@
-#include "mbed.h"
-#include "QEI.h"
-
-QEI encoder (A0,A1,NC,2500);
-DigitalOut dout(LED1);
-Serial pc(USBTX, USBRX);
-int counter = 0;
-int cur_state = 0;
-
-int main(void) {  
-        while(1){
-        counter = encoder.getPulses();
-        if( counter > cur_state){
-            cur_state = counter;
-            printf("%d ", cur_state);
-            }
-        }
-}
\ No newline at end of file
diff -r 4d7336a951bd -r 92fd61600fa8 encoder01.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/encoder01.cpp	Sun Oct 31 09:45:26 2021 +0000
@@ -0,0 +1,44 @@
+#include "mbed.h"
+#include "QEI.h"
+
+QEI encoder1 (D14,D15,NC,2500);
+QEI encoder2 (D8,D9,NC,2500);
+QEI encoder3 (D4,D5,NC,2500);
+Serial pc(USBTX, USBRX);
+int counter1 = 0;
+int cur_state1 = 0;
+int counter2 = 0;
+int cur_state2 = 0;
+int counter3 = 0;
+int cur_state3 = 0;
+
+int main(void) {  
+        while(1){
+        counter1 = encoder1.getPulses();
+        counter2 = encoder2.getPulses();
+        counter3 = encoder3.getPulses();
+        if( counter1 >= cur_state1){
+            cur_state1 = counter1;
+            printf("1: %d ", cur_state1);
+            }else if(counter1 < cur_state1){
+                cur_state1 = counter1;
+                printf("1: %d ", cur_state1);
+                };
+                
+        if( counter2 >= cur_state2){
+            cur_state2 = counter2;
+            printf("2: %d ", cur_state2);
+            }else if(counter2 < cur_state2){
+                cur_state2 = counter2;
+                printf("2: %d ", cur_state2);
+                };
+                
+        if( counter3 >= cur_state3){
+            cur_state3 = counter3;
+            printf("3: %d ", cur_state3);
+            }else if(counter3 < cur_state3){
+                cur_state3 = counter3;
+                printf("3: %d ", cur_state3);
+                }              
+        }
+}
\ No newline at end of file