Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
mbed-os/targets/TARGET_NXP/TARGET_LPC15XX/analogin_api.c
- Committer:
- demayer
- Date:
- 2020-03-28
- Revision:
- 0:6bf0743ece18
File content as of revision 0:6bf0743ece18:
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "analogin_api.h"
#include "cmsis.h"
#include "pinmap.h"
#define ANALOGIN_MEDIAN_FILTER 1
#define ADC_10BIT_RANGE 0x3FF
#define ADC_12BIT_RANGE 0xFFF
#define ADC_RANGE ADC_12BIT_RANGE
static const PinMap PinMap_ADC[] = {
{P0_8 , ADC0_0, 0},
{P0_7 , ADC0_1, 0},
{P0_6 , ADC0_2, 0},
{P0_5 , ADC0_3, 0},
{P0_4 , ADC0_4, 0},
{P0_3 , ADC0_5, 0},
{P0_2 , ADC0_6, 0},
{P0_1 , ADC0_7, 0},
{P1_0 , ADC0_8, 0},
{P0_31, ADC0_9, 0},
{P0_0 , ADC0_10,0},
{P0_30, ADC0_11,0},
{P1_1 , ADC1_0, 0},
{P0_9 , ADC1_1, 0},
{P0_10, ADC1_2, 0},
{P0_11, ADC1_3, 0},
{P1_2 , ADC1_4, 0},
{P1_3 , ADC1_5, 0},
{P0_13, ADC1_6, 0},
{P0_14, ADC1_7, 0},
{P0_15, ADC1_8, 0},
{P0_16, ADC1_9, 0},
{P1_4 , ADC1_10,0},
{P1_5 , ADC1_11,0},
};
void analogin_init(analogin_t *obj, PinName pin) {
obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
MBED_ASSERT(obj->adc != (ADCName)NC);
uint32_t port = (pin >> 5);
// enable clock for GPIOx
LPC_SYSCON->SYSAHBCLKCTRL0 |= (1UL << (14 + port));
// pin enable
LPC_SWM->PINENABLE0 &= ~(1UL << obj->adc);
// configure GPIO as input
LPC_GPIO_PORT->DIR[port] &= ~(1UL << (pin & 0x1F));
// power up ADC
if (obj->adc < ADC1_0)
{
// ADC0
LPC_SYSCON->PDRUNCFG &= ~(1 << 10);
LPC_SYSCON->SYSAHBCLKCTRL0 |= (1 << 27);
}
else {
// ADC1
LPC_SYSCON->PDRUNCFG &= ~(1 << 11);
LPC_SYSCON->SYSAHBCLKCTRL0 |= (1 << 28);
}
__IO LPC_ADC0_Type *adc_reg = (obj->adc < ADC1_0) ? (__IO LPC_ADC0_Type*)(LPC_ADC0) : (__IO LPC_ADC0_Type*)(LPC_ADC1);
// determine the system clock divider for a 500kHz ADC clock during calibration
uint32_t clkdiv = (SystemCoreClock / 500000) - 1;
// perform a self-calibration
adc_reg->CTRL = (1UL << 30) | (clkdiv & 0xFF);
while ((adc_reg->CTRL & (1UL << 30)) != 0);
// Sampling clock: SystemClock divided by 1
adc_reg->CTRL = 0;
}
static inline uint32_t adc_read(analogin_t *obj) {
uint32_t channels;
__IO LPC_ADC0_Type *adc_reg = (obj->adc < ADC1_0) ? (__IO LPC_ADC0_Type*)(LPC_ADC0) : (__IO LPC_ADC0_Type*)(LPC_ADC1);
if (obj->adc >= ADC1_0)
channels = ((obj->adc - ADC1_0) & 0x1F);
else
channels = (obj->adc & 0x1F);
// select channel
adc_reg->SEQA_CTRL &= ~(0xFFF);
adc_reg->SEQA_CTRL |= (1UL << channels);
// start conversion and sequence enable
adc_reg->SEQA_CTRL |= ((1UL << 26) | (1UL << 31));
// Repeatedly get the sample data until DONE bit
volatile uint32_t data;
do {
data = adc_reg->SEQA_GDAT;
} while ((data & (1UL << 31)) == 0);
// Stop conversion
adc_reg->SEQA_CTRL &= ~(1UL << 31);
return ((data >> 4) & ADC_RANGE);
}
static inline void order(uint32_t *a, uint32_t *b) {
if (*a > *b) {
uint32_t t = *a;
*a = *b;
*b = t;
}
}
static inline uint32_t adc_read_u32(analogin_t *obj) {
uint32_t value;
#if ANALOGIN_MEDIAN_FILTER
uint32_t v1 = adc_read(obj);
uint32_t v2 = adc_read(obj);
uint32_t v3 = adc_read(obj);
order(&v1, &v2);
order(&v2, &v3);
order(&v1, &v2);
value = v2;
#else
value = adc_read(obj);
#endif
return value;
}
uint16_t analogin_read_u16(analogin_t *obj) {
uint32_t value = adc_read_u32(obj);
return (value << 4) | ((value >> 8) & 0x000F); // 12 bit
}
float analogin_read(analogin_t *obj) {
uint32_t value = adc_read_u32(obj);
return (float)value * (1.0f / (float)ADC_RANGE);
}