Marco Mayer / Mbed OS Queue
Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers MPU9250.cpp Source File

MPU9250.cpp

00001 #include "MPU9250.h"
00002 
00003 
00004 uint8_t Ascale = AFS_2G;     // AFS_2G, AFS_4G, AFS_8G, AFS_16G
00005 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
00006 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
00007 uint8_t Mmode = 0x06;        // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
00008 float aRes, gRes, mRes;      // scale resolutions per LSB for the sensors
00009 
00010 //Set up I2C, (SDA,SCL)
00011 I2C i2c(PB_9, PB_8);
00012 
00013 DigitalOut myled(LED1);
00014 
00015 // Pin definitions
00016 int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
00017 
00018 int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
00019 int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
00020 int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output
00021 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0};  // Factory mag calibration and mag bias
00022 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
00023 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
00024 int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
00025 float temperature;
00026 float SelfTest[6];
00027 
00028 int delt_t = 0; // used to control display output rate
00029 int _count = 0;  // used to control display output rate
00030 
00031 // parameters for 6 DoF sensor fusion calculations
00032 float PI = 3.14159265358979323846f;
00033 float GyroMeasError = PI * (60.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
00034 float beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
00035 float GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
00036 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
00037 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
00038 #define Ki 0.0f
00039 
00040 float pitch, yaw, roll;
00041 float vx, vy, vz;
00042 float deltat = 0.0f;                             // integration interval for both filter schemes
00043 int lastUpdate = 0, firstUpdate = 0, Now = 0;    // used to calculate integration interval                               // used to calculate integration interval
00044 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};           // vector to hold quaternion
00045 float v_trans[3] = {0.0f, 0.0f, 0.0f};                 // vector to hold translative velocities
00046 float a_old[3] = {0.00f, 0.00f, 0.00f};
00047 float eInt[3] = {0.0f, 0.0f, 0.0f};              // vector to hold integral error for Mahony method
00048 
00049 accData_t myData;
00050 Timer t;
00051 
00052 #define SAMPLE_TIME 100
00053 
00054 #define STEP_NUMBER 5
00055 float sum = 0;
00056 uint32_t sumCount = 0;
00057 char buffer[14];
00058 float ax_sum = 0;
00059 static float vx_buffer[STEP_NUMBER];
00060 static int8_t stepCounter = 0;
00061 
00062 
00063 // MPU9250-Constructor
00064 MPU9250::MPU9250(Serial* serialPtr)
00065 {
00066     pc = serialPtr;
00067     imuSetup();
00068     vx_old = 0;
00069 }
00070 
00071 
00072 
00073 //===================================================================================================================
00074 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
00075 //===================================================================================================================
00076 
00077 void MPU9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
00078 {
00079     char data_write[2];
00080     data_write[0] = subAddress;
00081     data_write[1] = data;
00082     i2c.write(address, data_write, 2, 0);
00083 }
00084 
00085 char MPU9250::readByte(uint8_t address, uint8_t subAddress)
00086 {
00087     char data[1]; // `data` will store the register data
00088     char data_write[1];
00089     data_write[0] = subAddress;
00090     i2c.write(address, data_write, 1, 1); // no stop
00091     i2c.read(address, data, 1, 0);
00092     return data[0];
00093 }
00094 
00095 void MPU9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
00096 {
00097     char data[14];
00098     char data_write[1];
00099     data_write[0] = subAddress;
00100     i2c.write(address, data_write, 1, 1); // no stop
00101     i2c.read(address, data, count, 0);
00102     for(int ii = 0; ii < count; ii++) {
00103         dest[ii] = data[ii];
00104     }
00105 }
00106 
00107 
00108 void MPU9250::getMres()
00109 {
00110     switch (Mscale) {
00111         // Possible magnetometer scales (and their register bit settings) are:
00112         // 14 bit resolution (0) and 16 bit resolution (1)
00113         case MFS_14BITS:
00114             mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
00115             break;
00116         case MFS_16BITS:
00117             mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
00118             break;
00119     }
00120 }
00121 
00122 
00123 void MPU9250::getGres()
00124 {
00125     switch (Gscale) {
00126         // Possible gyro scales (and their register bit settings) are:
00127         // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11).
00128         // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
00129         case GFS_250DPS:
00130             gRes = 250.0/32768.0;
00131             break;
00132         case GFS_500DPS:
00133             gRes = 500.0/32768.0;
00134             break;
00135         case GFS_1000DPS:
00136             gRes = 1000.0/32768.0;
00137             break;
00138         case GFS_2000DPS:
00139             gRes = 2000.0/32768.0;
00140             break;
00141     }
00142 }
00143 
00144 
00145 void MPU9250::getAres()
00146 {
00147     switch (Ascale) {
00148         // Possible accelerometer scales (and their register bit settings) are:
00149         // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11).
00150         // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
00151         case AFS_2G:
00152             aRes = 2.0/32768.0;
00153             break;
00154         case AFS_4G:
00155             aRes = 4.0/32768.0;
00156             break;
00157         case AFS_8G:
00158             aRes = 8.0/32768.0;
00159             break;
00160         case AFS_16G:
00161             aRes = 16.0/32768.0;
00162             break;
00163     }
00164 }
00165 
00166 
00167 void MPU9250::readAccelData(int16_t * destination)
00168 {
00169     uint8_t rawData[6];  // x/y/z accel register data stored here
00170     readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
00171     destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
00172     destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
00173     destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
00174 }
00175 
00176 void MPU9250::readGyroData(int16_t * destination)
00177 {
00178     uint8_t rawData[6];  // x/y/z gyro register data stored here
00179     readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
00180     destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
00181     destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
00182     destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
00183 }
00184 
00185 void MPU9250::readMagData(int16_t * destination)
00186 {
00187     uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
00188     if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
00189         readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
00190         uint8_t c = rawData[6]; // End data read by reading ST2 register
00191         if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
00192             destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
00193             destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ;  // Data stored as little Endian
00194             destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
00195         }
00196     }
00197 }
00198 
00199 int16_t MPU9250::readTempData()
00200 {
00201     uint8_t rawData[2];  // x/y/z gyro register data stored here
00202     readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array
00203     return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
00204 }
00205 
00206 
00207 void MPU9250::resetMPU9250()
00208 {
00209     // reset device
00210     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
00211     wait(0.1);
00212 }
00213 
00214 void MPU9250::initAK8963(float * destination)
00215 {
00216     // First extract the factory calibration for each magnetometer axis
00217     uint8_t rawData[3];  // x/y/z gyro calibration data stored here
00218     writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
00219     wait(0.01);
00220     writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
00221     wait(0.01);
00222     readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
00223     destination[0] =  (float)(rawData[0] - 128)/256.0f + 1.0f;   // Return x-axis sensitivity adjustment values, etc.
00224     destination[1] =  (float)(rawData[1] - 128)/256.0f + 1.0f;
00225     destination[2] =  (float)(rawData[2] - 128)/256.0f + 1.0f;
00226     writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
00227     wait(0.01);
00228     // Configure the magnetometer for continuous read and highest resolution
00229     // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
00230     // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
00231     writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
00232     wait(0.01);
00233 }
00234 
00235 
00236 void MPU9250::initMPU9250()
00237 {
00238 // Initialize MPU9250 device
00239 // wake up device
00240     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
00241     wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
00242 
00243 // get stable time source
00244     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
00245 
00246 // Configure Gyro and Accelerometer
00247 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
00248 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
00249 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
00250     writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
00251 
00252 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
00253     writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
00254 
00255 // Set gyroscope full scale range
00256 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
00257     uint8_t c =  readByte(MPU9250_ADDRESS, GYRO_CONFIG);
00258     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
00259     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
00260     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
00261 
00262 // Set accelerometer configuration
00263     c =  readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
00264     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
00265     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
00266     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
00267 
00268 // Set accelerometer sample rate configuration
00269 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
00270 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
00271     c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
00272     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
00273     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
00274 
00275 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
00276 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
00277 
00278     // Configure Interrupts and Bypass Enable
00279     // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
00280     // can join the I2C bus and all can be controlled by the Arduino as master
00281     writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
00282     writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
00283 }
00284 
00285 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
00286 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
00287 void MPU9250::calibrateMPU9250(float * dest1, float * dest2)
00288 {
00289     uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
00290     uint16_t ii, packet_count, fifo_count;
00291     int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
00292 
00293 // reset device, reset all registers, clear gyro and accelerometer bias registers
00294     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
00295     wait(0.1);
00296 
00297 // get stable time source
00298 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
00299     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
00300     writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
00301     wait(0.2);
00302 
00303 // Configure device for bias calculation
00304     writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
00305     writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
00306     writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
00307     writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
00308     writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
00309     writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
00310     wait(0.015);
00311 
00312 // Configure MPU9250 gyro and accelerometer for bias calculation
00313     writeByte(MPU9250_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
00314     writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
00315     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
00316     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
00317 
00318     uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
00319     uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
00320 
00321 // Configure FIFO to capture accelerometer and gyro data for bias calculation
00322     writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO
00323     writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
00324     wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
00325 
00326 // At end of sample accumulation, turn off FIFO sensor read
00327     writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
00328     readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
00329     fifo_count = ((uint16_t)data[0] << 8) | data[1];
00330     packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
00331 
00332     for (ii = 0; ii < packet_count; ii++) {
00333         int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
00334         readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
00335         accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
00336         accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
00337         accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;
00338         gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
00339         gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
00340         gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
00341 
00342         accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
00343         accel_bias[1] += (int32_t) accel_temp[1];
00344         accel_bias[2] += (int32_t) accel_temp[2];
00345         gyro_bias[0]  += (int32_t) gyro_temp[0];
00346         gyro_bias[1]  += (int32_t) gyro_temp[1];
00347         gyro_bias[2]  += (int32_t) gyro_temp[2];
00348 
00349     }
00350     accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
00351     accel_bias[1] /= (int32_t) packet_count;
00352     accel_bias[2] /= (int32_t) packet_count;
00353     gyro_bias[0]  /= (int32_t) packet_count;
00354     gyro_bias[1]  /= (int32_t) packet_count;
00355     gyro_bias[2]  /= (int32_t) packet_count;
00356 
00357     if(accel_bias[2] > 0L) {
00358         accel_bias[2] -= (int32_t) accelsensitivity;   // Remove gravity from the z-axis accelerometer bias calculation
00359     } else {
00360         accel_bias[2] += (int32_t) accelsensitivity;
00361     }
00362 
00363 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
00364     data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
00365     data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
00366     data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
00367     data[3] = (-gyro_bias[1]/4)       & 0xFF;
00368     data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
00369     data[5] = (-gyro_bias[2]/4)       & 0xFF;
00370 
00371 /// Push gyro biases to hardware registers
00372     /*  writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
00373       writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
00374       writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
00375       writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
00376       writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
00377       writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
00378     */
00379     dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
00380     dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
00381     dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
00382 
00383 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
00384 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
00385 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
00386 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
00387 // the accelerometer biases calculated above must be divided by 8.
00388 
00389     int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
00390     readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
00391     accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00392     readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
00393     accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00394     readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
00395     accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00396 
00397     uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
00398     uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
00399 
00400     for(ii = 0; ii < 3; ii++) {
00401         if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
00402     }
00403 
00404     // Construct total accelerometer bias, including calculated average accelerometer bias from above
00405     accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
00406     accel_bias_reg[1] -= (accel_bias[1]/8);
00407     accel_bias_reg[2] -= (accel_bias[2]/8);
00408 
00409     data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
00410     data[1] = (accel_bias_reg[0])      & 0xFF;
00411     data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00412     data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
00413     data[3] = (accel_bias_reg[1])      & 0xFF;
00414     data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00415     data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
00416     data[5] = (accel_bias_reg[2])      & 0xFF;
00417     data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00418 
00419 // Apparently this is not working for the acceleration biases in the MPU-9250
00420 // Are we handling the temperature correction bit properly?
00421 // Push accelerometer biases to hardware registers
00422     /*  writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
00423       writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
00424       writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
00425       writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
00426       writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
00427       writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
00428     */
00429 // Output scaled accelerometer biases for manual subtraction in the main program
00430     dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
00431     dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
00432     dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
00433 }
00434 
00435 
00436 // Accelerometer and gyroscope self test; check calibration wrt factory settings
00437 void MPU9250::MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
00438 {
00439     uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
00440     uint8_t selfTest[6];
00441     int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
00442     float factoryTrim[6];
00443     uint8_t FS = 0;
00444 
00445     writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
00446     writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
00447     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
00448     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
00449     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
00450 
00451     for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
00452 
00453         readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
00454         aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
00455         aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
00456         aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
00457 
00458         readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
00459         gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
00460         gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
00461         gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
00462     }
00463 
00464     for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
00465         aAvg[ii] /= 200;
00466         gAvg[ii] /= 200;
00467     }
00468 
00469 // Configure the accelerometer for self-test
00470     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
00471     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
00472     wait(0.025); // Delay a while to let the device stabilize
00473 
00474     for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
00475 
00476         readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
00477         aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
00478         aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
00479         aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
00480 
00481         readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
00482         gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
00483         gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
00484         gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
00485     }
00486 
00487     for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
00488         aSTAvg[ii] /= 200;
00489         gSTAvg[ii] /= 200;
00490     }
00491 
00492 // Configure the gyro and accelerometer for normal operation
00493     writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
00494     writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
00495     wait(0.025); // Delay a while to let the device stabilize
00496 
00497     // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
00498     selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
00499     selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
00500     selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
00501     selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
00502     selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
00503     selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
00504 
00505     // Retrieve factory self-test value from self-test code reads
00506     factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[0] - 1.0) ));  // FT[Xa] factory trim calculation
00507     factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[1] - 1.0) ));  // FT[Ya] factory trim calculation
00508     factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[2] - 1.0) ));  // FT[Za] factory trim calculation
00509     factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[3] - 1.0) ));  // FT[Xg] factory trim calculation
00510     factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[4] - 1.0) ));  // FT[Yg] factory trim calculation
00511     factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[5] - 1.0) ));  // FT[Zg] factory trim calculation
00512 
00513 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
00514 // To get percent, must multiply by 100
00515     for (int i = 0; i < 3; i++) {
00516         destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
00517         destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
00518     }
00519 
00520 }
00521 
00522 
00523 
00524 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
00525 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
00526 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
00527 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
00528 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
00529 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
00530 void MPU9250::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
00531 {
00532     float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
00533     float norm;
00534     float hx, hy, _2bx, _2bz;
00535     float s1, s2, s3, s4;
00536     float qDot1, qDot2, qDot3, qDot4;
00537 
00538     // Auxiliary variables to avoid repeated arithmetic
00539     float _2q1mx;
00540     float _2q1my;
00541     float _2q1mz;
00542     float _2q2mx;
00543     float _4bx;
00544     float _4bz;
00545     float _2q1 = 2.0f * q1;
00546     float _2q2 = 2.0f * q2;
00547     float _2q3 = 2.0f * q3;
00548     float _2q4 = 2.0f * q4;
00549     float _2q1q3 = 2.0f * q1 * q3;
00550     float _2q3q4 = 2.0f * q3 * q4;
00551     float q1q1 = q1 * q1;
00552     float q1q2 = q1 * q2;
00553     float q1q3 = q1 * q3;
00554     float q1q4 = q1 * q4;
00555     float q2q2 = q2 * q2;
00556     float q2q3 = q2 * q3;
00557     float q2q4 = q2 * q4;
00558     float q3q3 = q3 * q3;
00559     float q3q4 = q3 * q4;
00560     float q4q4 = q4 * q4;
00561 
00562     // Normalise accelerometer measurement
00563     norm = sqrt(ax * ax + ay * ay + az * az);
00564     if (norm == 0.0f) return; // handle NaN
00565     norm = 1.0f/norm;
00566     ax *= norm;
00567     ay *= norm;
00568     az *= norm;
00569 
00570     // Normalise magnetometer measurement
00571     norm = sqrt(mx * mx + my * my + mz * mz);
00572     if (norm == 0.0f) return; // handle NaN
00573     norm = 1.0f/norm;
00574     mx *= norm;
00575     my *= norm;
00576     mz *= norm;
00577 
00578     // Reference direction of Earth's magnetic field
00579     _2q1mx = 2.0f * q1 * mx;
00580     _2q1my = 2.0f * q1 * my;
00581     _2q1mz = 2.0f * q1 * mz;
00582     _2q2mx = 2.0f * q2 * mx;
00583     hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
00584     hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
00585     _2bx = sqrt(hx * hx + hy * hy);
00586     _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
00587     _4bx = 2.0f * _2bx;
00588     _4bz = 2.0f * _2bz;
00589 
00590     // Gradient decent algorithm corrective step
00591     s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00592     s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00593     s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00594     s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
00595     norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
00596     norm = 1.0f/norm;
00597     s1 *= norm;
00598     s2 *= norm;
00599     s3 *= norm;
00600     s4 *= norm;
00601 
00602     // Compute rate of change of quaternion
00603     qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
00604     qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
00605     qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
00606     qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
00607 
00608     // Integrate to yield quaternion
00609     q1 += qDot1 * deltat;
00610     q2 += qDot2 * deltat;
00611     q3 += qDot3 * deltat;
00612     q4 += qDot4 * deltat;
00613     norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
00614     norm = 1.0f/norm;
00615     q[0] = q1 * norm;
00616     q[1] = q2 * norm;
00617     q[2] = q3 * norm;
00618     q[3] = q4 * norm;
00619 
00620 }
00621 
00622 
00623 void MPU9250::readIMU()
00624 {
00625     // If intPin goes high, all data registers have new data
00626     if(readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
00627 
00628         readAccelData(accelCount);  // Read the x/y/z adc values
00629         // Now we'll calculate the accleration value into actual g's
00630         ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
00631         ay = (float)accelCount[1]*aRes - accelBias[1];
00632         az = (float)accelCount[2]*aRes - accelBias[2];
00633 
00634         readGyroData(gyroCount);  // Read the x/y/z adc values
00635         // Calculate the gyro value into actual degrees per second
00636         gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
00637         gy = (float)gyroCount[1]*gRes - gyroBias[1];
00638         gz = (float)gyroCount[2]*gRes - gyroBias[2];
00639 
00640         readMagData(magCount);  // Read the x/y/z adc values
00641         // Calculate the magnetometer values in milliGauss
00642         // Include factory calibration per data sheet and user environmental corrections
00643         mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
00644         my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
00645         mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
00646     }
00647     
00648 
00649 
00650     //pc.printf("ax, ay, az, delta_t;%f;%f;%f;%f\n\r", ax, ay, az*GRAVITATION + GRAVITATION, deltat);
00651 
00652     Now = t.read_us();
00653 
00654     deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
00655     lastUpdate = Now;
00656     
00657     //pc.printf("%f,%f,%f,%f\n\r",ax, ay, az, deltat);
00658 
00659 
00660     sum += deltat;
00661     sumCount++;
00662 
00663     // Pass gyro rate as rad/s
00664     MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
00665     //mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
00666 
00667     // Serial print and/or display at 0.5 s rate independent of data rates
00668     delt_t = t.read_ms() - _count;
00669     //pc.printf("Zeit intern: %d\n\r", t.read_ms());
00670 }
00671 
00672 
00673 
00674 /*//-----------------------------------------
00675 // Update displayed value
00676 if (delt_t > SAMPLE_TIME) {
00677 
00678 
00679 
00680     //pc.printf("vx, vy, vz: %f %f %f\n\r", v_trans[0], v_trans[1], v_trans[2]);
00681 
00682 
00683     yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
00684     pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
00685     roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
00686     pitch *= 180.0f / PI;
00687     yaw   *= 180.0f / PI;
00688     yaw   -= 2.93f; // Declination at 8572 Berg TG: +2° 56'
00689     roll  *= 180.0f / PI;
00690 
00691 
00692 
00693     myled= !myled;
00694     _count = t.read_ms();
00695 
00696     if(_count > 1<<21) {
00697         t.start(); // start the timer over again if ~30 minutes has passed
00698         _count = 0;
00699         deltat= 0;
00700         lastUpdate = t.read_us();
00701     }
00702     sum = 0;
00703     sumCount = 0;
00704 }*/
00705 
00706 
00707 
00708 void MPU9250::imuSetup()
00709 {
00710     //Set up I2C
00711     i2c.frequency(400000);  // use fast (400 kHz) I2C
00712 
00713     pc->printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
00714 
00715     t.start();
00716 //  lcd.setBrightness(0.05);
00717 
00718 
00719     // Read the WHO_AM_I register, this is a good test of communication
00720     uint8_t whoami = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
00721     pc->printf("I AM 0x%x\n\r", whoami);
00722     pc->printf("I SHOULD BE 0x71\n\r");
00723 
00724     if (whoami == 0x71) { // WHO_AM_I should always be 0x68
00725         pc->printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
00726         pc->printf("MPU9250 is online...\n\r");
00727         sprintf(buffer, "0x%x", whoami);
00728         wait(1);
00729 
00730         resetMPU9250(); // Reset registers to default in preparation for device calibration
00731         MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
00732         pc->printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
00733         pc->printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
00734         pc->printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
00735         pc->printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
00736         pc->printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
00737         pc->printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
00738         calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
00739         pc->printf("x gyro bias = %f\n\r", gyroBias[0]);
00740         pc->printf("y gyro bias = %f\n\r", gyroBias[1]);
00741         pc->printf("z gyro bias = %f\n\r", gyroBias[2]);
00742         pc->printf("x accel bias = %f\n\r", accelBias[0]);
00743         pc->printf("y accel bias = %f\n\r", accelBias[1]);
00744         pc->printf("z accel bias = %f\n\r", accelBias[2]);
00745         wait(2);
00746         initMPU9250();
00747         pc->printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
00748         initAK8963(magCalibration);
00749         pc->printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
00750         pc->printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
00751         pc->printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
00752         if(Mscale == 0) pc->printf("Magnetometer resolution = 14  bits\n\r");
00753         if(Mscale == 1) pc->printf("Magnetometer resolution = 16  bits\n\r");
00754         if(Mmode == 2) pc->printf("Magnetometer ODR = 8 Hz\n\r");
00755         if(Mmode == 6) pc->printf("Magnetometer ODR = 100 Hz\n\r");
00756         wait(1);
00757     } else {
00758         pc->printf("Could not connect to MPU9250: \n\r");
00759         pc->printf("%#x \n",  whoami);
00760         sprintf(buffer, "WHO_AM_I 0x%x", whoami);
00761 
00762         while(1) {
00763             // Loop forever if communication doesn't happen
00764             pc->printf("no IMU detected (verify if it's plugged in)\n\r");
00765         }
00766     }
00767 
00768     getAres(); // Get accelerometer sensitivity
00769     getGres(); // Get gyro sensitivity
00770     getMres(); // Get magnetometer sensitivity
00771     pc->printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
00772     pc->printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
00773     pc->printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
00774     magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
00775     magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
00776     magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
00777 }
00778 
00779 
00780 // N Werte sammeln, Integrale aufsummieren
00781 /*float MPU9250::getMedianAcc(){
00782     int8_t i;
00783     ax_sum = 0;
00784     for (i=0; i<STEP_NUMBER; i++) {
00785         readIMU();
00786         //pc.printf("Zeit extern: %d\n\n\r", t.read_ms());
00787         pc.printf("i=%d: ax=%f\n\r", i, ax);
00788         ax_sum += ax;
00789     }
00790     pc.printf("Summe: %f\n\n\r", ax_sum/steps);
00791     return ax_sum/steps;
00792 }*/
00793 
00794 
00795 // BufferArray-Variante
00796 float MPU9250::getVBuffer()
00797 {
00798     // Save the last ax value before readIMU() is executed
00799     float ax_old = ax;
00800     
00801     // Save the last vx value
00802     if (stepCounter == 0) {
00803         vx_old = vx_buffer[STEP_NUMBER-1];
00804     }
00805     else{
00806         vx_old = vx_buffer[stepCounter - 1];
00807     }
00808     
00809     
00810     // Sets new ax value
00811     readIMU();
00812 
00813 
00814     // Calculate Integration Step of new and old value
00815     vx_buffer[stepCounter] = vx_old + deltat*0.5f*(ax + ax_old)/GRAVITATION;
00816 
00817     int i;
00818     float vx_median = 0;
00819     for (i=0; i<STEP_NUMBER; i++) {
00820         vx_median += vx_buffer[i];
00821         //pc.printf("%d: %f\n\r", i, vx_buffer[i]);
00822     }
00823     //pc.printf("\n\r");
00824     //pc.printf("%f,%f,%f,%f\n\r", ax, vx_median/STEP_NUMBER, vx_buffer[stepCounter], deltat);
00825 
00826     stepCounter++;
00827     if (stepCounter >= STEP_NUMBER) {
00828         stepCounter = 0;
00829     }
00830     return vx_median/STEP_NUMBER;
00831 }