David Rimer / RadioHead-148
Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers RH_RF22.cpp Source File

RH_RF22.cpp

00001 // RH_RF22.cpp
00002 //
00003 // Copyright (C) 2011 Mike McCauley
00004 // $Id: RH_RF22.cpp,v 1.24 2015/05/17 00:11:26 mikem Exp $
00005 
00006 #include <RH_RF22.h>
00007 
00008 // Interrupt vectors for the 2 Arduino interrupt pins
00009 // Each interrupt can be handled by a different instance of RH_RF22, allowing you to have
00010 // 2 RH_RF22s per Arduino
00011 RH_RF22* RH_RF22::_deviceForInterrupt[RH_RF22_NUM_INTERRUPTS] = {0, 0, 0};
00012 uint8_t RH_RF22::_interruptCount = 0; // Index into _deviceForInterrupt for next device
00013 
00014 // These are indexed by the values of ModemConfigChoice
00015 // Canned modem configurations generated with 
00016 // http://www.hoperf.com/upload/rf/RH_RF22B%2023B%2031B%2042B%2043B%20Register%20Settings_RevB1-v5.xls
00017 // Stored in flash (program) memory to save SRAM
00018 PROGMEM static const RH_RF22::ModemConfig MODEM_CONFIG_TABLE[] =
00019 {
00020     { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x00, 0x08 }, // Unmodulated carrier
00021     { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x33, 0x08 }, // FSK, PN9 random modulation, 2, 5
00022 
00023     // All the following enable FIFO with reg 71
00024     //  1c,   1f,   20,   21,   22,   23,   24,   25,   2c,   2d,   2e,   58,   69,   6e,   6f,   70,   71,   72
00025     // FSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
00026     { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x22, 0x08 }, // 2, 5
00027     { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a }, // 2.4, 36
00028     { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x22, 0x48 }, // 4.8, 45
00029     { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x22, 0x48 }, // 9.6, 45
00030     { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x22, 0x0f }, // 19.2, 9.6
00031     { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x22, 0x1f }, // 38.4, 19.6
00032     { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x22, 0x2e }, // 57.6. 28.8
00033     { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x22, 0xc8 }, // 125, 125
00034 
00035     { 0x2b, 0x03, 0xa1, 0xe0, 0x10, 0xc7, 0x00, 0x09, 0x40, 0x0a, 0x1d,  0x80, 0x60, 0x04, 0x32, 0x2c, 0x22, 0x04 }, // 512 baud, FSK, 2.5 Khz fd for POCSAG compatibility
00036     { 0x27, 0x03, 0xa1, 0xe0, 0x10, 0xc7, 0x00, 0x06, 0x40, 0x0a, 0x1d,  0x80, 0x60, 0x04, 0x32, 0x2c, 0x22, 0x07 }, // 512 baud, FSK, 4.5 Khz fd for POCSAG compatibility
00037 
00038     // GFSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
00039     // These differ from FSK only in register 71, for the modulation type
00040     { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x23, 0x08 }, // 2, 5
00041     { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x23, 0x3a }, // 2.4, 36
00042     { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x23, 0x48 }, // 4.8, 45
00043     { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x23, 0x48 }, // 9.6, 45
00044     { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x23, 0x0f }, // 19.2, 9.6
00045     { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x23, 0x1f }, // 38.4, 19.6
00046     { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x23, 0x2e }, // 57.6. 28.8
00047     { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x23, 0xc8 }, // 125, 125
00048 
00049     // OOK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
00050     { 0x51, 0x03, 0x68, 0x00, 0x3a, 0x93, 0x01, 0x3d, 0x2c, 0x11, 0x28, 0x80, 0x60, 0x09, 0xd5, 0x2c, 0x21, 0x08 }, // 1.2, 75
00051     { 0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 }, // 2.4, 335
00052     { 0xc8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x29, 0x04, 0x29, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x21, 0x08 }, // 4.8, 335
00053     { 0xb8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x82, 0x29, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x21, 0x08 }, // 9.6, 335
00054     { 0xa8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x41, 0x29, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x21, 0x08 }, // 19.2, 335
00055     { 0x98, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x20, 0x29, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x21, 0x08 }, // 38.4, 335
00056     { 0x98, 0x03, 0x96, 0x00, 0xda, 0x74, 0x00, 0xdc, 0x28, 0x1f, 0x29, 0x80, 0x60, 0x0a, 0x3d, 0x0c, 0x21, 0x08 }, // 40, 335
00057 };
00058 
00059 RH_RF22::RH_RF22(PINS slaveSelectPin, PINS interruptPin, RHGenericSPI& spi)
00060     :
00061     RHSPIDriver(slaveSelectPin, spi),
00062     _interruptPin(interruptPin)
00063 {
00064     _idleMode = RH_RF22_XTON; // Default idle state is READY mode
00065     _polynomial = CRC_16_IBM; // Historical
00066     _myInterruptIndex = 0xff; // Not allocated yet
00067 }
00068 
00069 void RH_RF22::setIdleMode(uint8_t idleMode)
00070 {
00071     _idleMode = idleMode;
00072 }
00073 
00074 bool RH_RF22::init()
00075 {
00076     if (!RHSPIDriver::init())
00077     return false;
00078 
00079 #if (RH_PLATFORM != RH_PLATFORM_MBED)
00080     // Determine the interrupt number that corresponds to the interruptPin
00081     int interruptNumber = digitalPinToInterrupt(_interruptPin);
00082     if (interruptNumber == NOT_AN_INTERRUPT)
00083     return false;
00084 #endif
00085 
00086     // Software reset the device
00087     reset();
00088 
00089     // Get the device type and check it
00090     // This also tests whether we are really connected to a device
00091     _deviceType = spiRead(RH_RF22_REG_00_DEVICE_TYPE);
00092     if (   _deviceType != RH_RF22_DEVICE_TYPE_RX_TRX
00093         && _deviceType != RH_RF22_DEVICE_TYPE_TX)
00094     {
00095     return false;
00096     }
00097 
00098 
00099 #if (RH_PLATFORM != RH_PLATFORM_MBED)
00100     // Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
00101     // ARM M4 requires the below. else pin interrupt doesn't work properly.
00102     // On all other platforms, its innocuous, belt and braces
00103     pinMode(_interruptPin, INPUT); 
00104 #endif
00105 
00106     // Enable interrupt output on the radio. Interrupt line will now go high until
00107     // an interrupt occurs
00108     spiWrite(RH_RF22_REG_05_INTERRUPT_ENABLE1, RH_RF22_ENTXFFAEM | RH_RF22_ENRXFFAFULL | RH_RF22_ENPKSENT | RH_RF22_ENPKVALID | RH_RF22_ENCRCERROR | RH_RF22_ENFFERR);
00109     spiWrite(RH_RF22_REG_06_INTERRUPT_ENABLE2, RH_RF22_ENPREAVAL);
00110 
00111     // Set up interrupt handler
00112     // Since there are a limited number of interrupt glue functions isr*() available,
00113     // we can only support a limited number of devices simultaneously
00114     // On some devices, notably most Arduinos, the interrupt pin passed in is actually the 
00115     // interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
00116     // yourself based on knowledge of what Arduino board you are running on.
00117     if (_myInterruptIndex == 0xff)
00118     {
00119     // First run, no interrupt allocated yet
00120     if (_interruptCount <= RH_RF22_NUM_INTERRUPTS)
00121         _myInterruptIndex = _interruptCount++;
00122     else
00123         return false; // Too many devices, not enough interrupt vectors
00124     }
00125     _deviceForInterrupt[_myInterruptIndex] = this;
00126     
00127 #if (RH_PLATFORM == RH_PLATFORM_MBED)
00128     if (_myInterruptIndex == 0)
00129         _interruptPin.fall(&isr0);
00130     else if (_myInterruptIndex == 1)
00131         _interruptPin.fall(&isr1);
00132     else if (_myInterruptIndex == 2)
00133         _interruptPin.fall(&isr2);
00134     else
00135     return false; // Too many devices, not enough interrupt vectors
00136 #else
00137     if (_myInterruptIndex == 0)
00138     attachInterrupt(interruptNumber, isr0, FALLING);
00139     else if (_myInterruptIndex == 1)
00140     attachInterrupt(interruptNumber, isr1, FALLING);
00141     else if (_myInterruptIndex == 2)
00142     attachInterrupt(interruptNumber, isr2, FALLING);
00143     else
00144     return false; // Too many devices, not enough interrupt vectors
00145 #endif
00146 
00147     setModeIdle();
00148 
00149     clearTxBuf();
00150     clearRxBuf();
00151 
00152     // Most of these are the POR default
00153     spiWrite(RH_RF22_REG_7D_TX_FIFO_CONTROL2, RH_RF22_TXFFAEM_THRESHOLD);
00154     spiWrite(RH_RF22_REG_7E_RX_FIFO_CONTROL,  RH_RF22_RXFFAFULL_THRESHOLD);
00155     spiWrite(RH_RF22_REG_30_DATA_ACCESS_CONTROL, RH_RF22_ENPACRX | RH_RF22_ENPACTX | RH_RF22_ENCRC | (_polynomial & RH_RF22_CRC));
00156 
00157     // Configure the message headers
00158     // Here we set up the standard packet format for use by the RH_RF22 library
00159     // 8 nibbles preamble
00160     // 2 SYNC words 2d, d4
00161     // Header length 4 (to, from, id, flags)
00162     // 1 octet of data length (0 to 255)
00163     // 0 to 255 octets data
00164     // 2 CRC octets as CRC16(IBM), computed on the header, length and data
00165     // On reception the to address is check for validity against RH_RF22_REG_3F_CHECK_HEADER3
00166     // or the broadcast address of 0xff
00167     // If no changes are made after this, the transmitted
00168     // to address will be 0xff, the from address will be 0xff
00169     // and all such messages will be accepted. This permits the out-of the box
00170     // RH_RF22 config to act as an unaddresed, unreliable datagram service
00171     spiWrite(RH_RF22_REG_32_HEADER_CONTROL1, RH_RF22_BCEN_HEADER3 | RH_RF22_HDCH_HEADER3);
00172     spiWrite(RH_RF22_REG_33_HEADER_CONTROL2, RH_RF22_HDLEN_4 | RH_RF22_SYNCLEN_2);
00173 
00174     setPreambleLength(8);
00175     uint8_t syncwords[] = { 0x2d, 0xd4 };
00176     setSyncWords(syncwords, sizeof(syncwords));
00177     setPromiscuous(false); 
00178 
00179     // Set some defaults. An innocuous ISM frequency, and reasonable pull-in
00180     setFrequency(434.0, 0.05);
00181 //    setFrequency(900.0);
00182     // Some slow, reliable default speed and modulation
00183     setModemConfig(FSK_Rb2_4Fd36);
00184 //    setModemConfig(FSK_Rb125Fd125);
00185     setGpioReversed(false);
00186     // Lowish power
00187     setTxPower(RH_RF22_TXPOW_8DBM);
00188 
00189     return true;
00190 }
00191 
00192 // C++ level interrupt handler for this instance
00193 void RH_RF22::handleInterrupt()
00194 {
00195     uint8_t _lastInterruptFlags[2];
00196     // Read the interrupt flags which clears the interrupt
00197     spiBurstRead(RH_RF22_REG_03_INTERRUPT_STATUS1, _lastInterruptFlags, 2);
00198 
00199 #if 0
00200     // DEVELOPER TESTING ONLY
00201     // Caution: Serial printing in this interrupt routine can cause mysterious crashes
00202     Serial.print("interrupt ");
00203     Serial.print(_lastInterruptFlags[0], HEX);
00204     Serial.print(" ");
00205     Serial.println(_lastInterruptFlags[1], HEX);
00206     if (_lastInterruptFlags[0] == 0 && _lastInterruptFlags[1] == 0)
00207     Serial.println("FUNNY: no interrupt!");
00208 #endif
00209 
00210 #if 0
00211     // DEVELOPER TESTING ONLY
00212     // TESTING: fake an RH_RF22_IFFERROR
00213     static int counter = 0;
00214     if (_lastInterruptFlags[0] & RH_RF22_IPKSENT && counter++ == 10)
00215     {
00216     _lastInterruptFlags[0] = RH_RF22_IFFERROR;
00217     counter = 0;
00218     }
00219 #endif
00220 
00221     if (_lastInterruptFlags[0] & RH_RF22_IFFERROR)
00222     {
00223     resetFifos(); // Clears the interrupt
00224     if (_mode == RHModeTx)
00225         restartTransmit();
00226     else if (_mode == RHModeRx)
00227         clearRxBuf();
00228 //  Serial.println("IFFERROR");  
00229     }
00230     // Caution, any delay here may cause a FF underflow or overflow
00231     if (_lastInterruptFlags[0] & RH_RF22_ITXFFAEM)
00232     {
00233     // See if more data has to be loaded into the Tx FIFO 
00234     sendNextFragment();
00235 //  Serial.println("ITXFFAEM");  
00236     }
00237     if (_lastInterruptFlags[0] & RH_RF22_IRXFFAFULL)
00238     {
00239     // Caution, any delay here may cause a FF overflow
00240     // Read some data from the Rx FIFO
00241     readNextFragment();
00242 //  Serial.println("IRXFFAFULL"); 
00243     }
00244     if (_lastInterruptFlags[0] & RH_RF22_IEXT)
00245     {
00246     // This is not enabled by the base code, but users may want to enable it
00247     handleExternalInterrupt();
00248 //  Serial.println("IEXT"); 
00249     }
00250     if (_lastInterruptFlags[1] & RH_RF22_IWUT)
00251     {
00252     // This is not enabled by the base code, but users may want to enable it
00253     handleWakeupTimerInterrupt();
00254 //  Serial.println("IWUT"); 
00255     }
00256     if (_lastInterruptFlags[0] & RH_RF22_IPKSENT)
00257     {
00258 //  Serial.println("IPKSENT");   
00259     _txGood++; 
00260     // Transmission does not automatically clear the tx buffer.
00261     // Could retransmit if we wanted
00262     // RH_RF22 transitions automatically to Idle
00263     _mode = RHModeIdle;
00264     }
00265     if (_lastInterruptFlags[0] & RH_RF22_IPKVALID)
00266     {
00267     uint8_t len = spiRead(RH_RF22_REG_4B_RECEIVED_PACKET_LENGTH);
00268 //  Serial.println("IPKVALID");   
00269 
00270     // May have already read one or more fragments
00271     // Get any remaining unread octets, based on the expected length
00272     // First make sure we dont overflow the buffer in the case of a stupid length
00273     // or partial bad receives
00274     if (   len >  RH_RF22_MAX_MESSAGE_LEN
00275         || len < _bufLen)
00276     {
00277         _rxBad++;
00278         _mode = RHModeIdle;
00279         clearRxBuf();
00280         return; // Hmmm receiver buffer overflow. 
00281     }
00282 
00283     spiBurstRead(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, len - _bufLen);
00284     _rxHeaderTo = spiRead(RH_RF22_REG_47_RECEIVED_HEADER3);
00285     _rxHeaderFrom = spiRead(RH_RF22_REG_48_RECEIVED_HEADER2);
00286     _rxHeaderId = spiRead(RH_RF22_REG_49_RECEIVED_HEADER1);
00287     _rxHeaderFlags = spiRead(RH_RF22_REG_4A_RECEIVED_HEADER0);
00288     _rxGood++;
00289     _bufLen = len;
00290     _mode = RHModeIdle;
00291     _rxBufValid = true;
00292     }
00293     if (_lastInterruptFlags[0] & RH_RF22_ICRCERROR)
00294     {
00295 //  Serial.println("ICRCERR");  
00296     _rxBad++;
00297     clearRxBuf();
00298     resetRxFifo();
00299     _mode = RHModeIdle;
00300     setModeRx(); // Keep trying
00301     }
00302     if (_lastInterruptFlags[1] & RH_RF22_IPREAVAL)
00303     {
00304 //  Serial.println("IPREAVAL");  
00305     _lastRssi = (int8_t)(-120 + ((spiRead(RH_RF22_REG_26_RSSI) / 2)));
00306     _lastPreambleTime = millis();
00307     resetRxFifo();
00308     clearRxBuf();
00309     }
00310 }
00311 
00312 // These are low level functions that call the interrupt handler for the correct
00313 // instance of RH_RF22.
00314 // 3 interrupts allows us to have 3 different devices
00315 void RH_RF22::isr0()
00316 {
00317     if (_deviceForInterrupt[0])
00318     _deviceForInterrupt[0]->handleInterrupt();
00319 }
00320 void RH_RF22::isr1()
00321 {
00322     if (_deviceForInterrupt[1])
00323     _deviceForInterrupt[1]->handleInterrupt();
00324 }
00325 void RH_RF22::isr2()
00326 {
00327     if (_deviceForInterrupt[2])
00328     _deviceForInterrupt[2]->handleInterrupt();
00329 }
00330 
00331 void RH_RF22::reset()
00332 {
00333     spiWrite(RH_RF22_REG_07_OPERATING_MODE1, RH_RF22_SWRES);
00334     // Wait for it to settle
00335     delay(1); // SWReset time is nominally 100usec
00336 }
00337 
00338 uint8_t RH_RF22::statusRead()
00339 {
00340     return spiRead(RH_RF22_REG_02_DEVICE_STATUS);
00341 }
00342 
00343 uint8_t RH_RF22::adcRead(uint8_t adcsel,
00344                       uint8_t adcref ,
00345                       uint8_t adcgain, 
00346                       uint8_t adcoffs)
00347 {
00348     uint8_t configuration = adcsel | adcref | (adcgain & RH_RF22_ADCGAIN);
00349     spiWrite(RH_RF22_REG_0F_ADC_CONFIGURATION, configuration | RH_RF22_ADCSTART);
00350     spiWrite(RH_RF22_REG_10_ADC_SENSOR_AMP_OFFSET, adcoffs);
00351 
00352     // Conversion time is nominally 305usec
00353     // Wait for the DONE bit
00354     while (!(spiRead(RH_RF22_REG_0F_ADC_CONFIGURATION) & RH_RF22_ADCDONE))
00355     ;
00356     // Return the value  
00357     return spiRead(RH_RF22_REG_11_ADC_VALUE);
00358 }
00359 
00360 uint8_t RH_RF22::temperatureRead(uint8_t tsrange, uint8_t tvoffs)
00361 {
00362     spiWrite(RH_RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION, tsrange | RH_RF22_ENTSOFFS);
00363     spiWrite(RH_RF22_REG_13_TEMPERATURE_VALUE_OFFSET, tvoffs);
00364     return adcRead(RH_RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR | RH_RF22_ADCREF_BANDGAP_VOLTAGE); 
00365 }
00366 
00367 uint16_t RH_RF22::wutRead()
00368 {
00369     uint8_t buf[2];
00370     spiBurstRead(RH_RF22_REG_17_WAKEUP_TIMER_VALUE1, buf, 2);
00371     return ((uint16_t)buf[0] << 8) | buf[1]; // Dont rely on byte order
00372 }
00373 
00374 // RFM-22 doc appears to be wrong: WUT for wtm = 10000, r, = 0, d = 0 is about 1 sec
00375 void RH_RF22::setWutPeriod(uint16_t wtm, uint8_t wtr, uint8_t wtd)
00376 {
00377     uint8_t period[3];
00378 
00379     period[0] = ((wtr & 0xf) << 2) | (wtd & 0x3);
00380     period[1] = wtm >> 8;
00381     period[2] = wtm & 0xff;
00382     spiBurstWrite(RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1, period, sizeof(period));
00383 }
00384 
00385 // Returns true if centre + (fhch * fhs) is within limits
00386 // Caution, different versions of the RH_RF22 support different max freq
00387 // so YMMV
00388 bool RH_RF22::setFrequency(float centre, float afcPullInRange)
00389 {
00390     uint8_t fbsel = RH_RF22_SBSEL;
00391     uint8_t afclimiter;
00392     if (centre < 240.0 || centre > 960.0) // 930.0 for early silicon
00393     return false;
00394     if (centre >= 480.0)
00395     {
00396     if (afcPullInRange < 0.0 || afcPullInRange > 0.318750)
00397         return false;
00398     centre /= 2;
00399     fbsel |= RH_RF22_HBSEL;
00400     afclimiter = afcPullInRange * 1000000.0 / 1250.0;
00401     }
00402     else
00403     {
00404     if (afcPullInRange < 0.0 || afcPullInRange > 0.159375)
00405         return false;
00406     afclimiter = afcPullInRange * 1000000.0 / 625.0;
00407     }
00408     centre /= 10.0;
00409     float integerPart = floor(centre);
00410     float fractionalPart = centre - integerPart;
00411 
00412     uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23
00413     fbsel |= fb;
00414     uint16_t fc = fractionalPart * 64000;
00415     spiWrite(RH_RF22_REG_73_FREQUENCY_OFFSET1, 0);  // REVISIT
00416     spiWrite(RH_RF22_REG_74_FREQUENCY_OFFSET2, 0);
00417     spiWrite(RH_RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel);
00418     spiWrite(RH_RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8);
00419     spiWrite(RH_RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff);
00420     spiWrite(RH_RF22_REG_2A_AFC_LIMITER, afclimiter);
00421     return !(statusRead() & RH_RF22_FREQERR);
00422 }
00423 
00424 // Step size in 10kHz increments
00425 // Returns true if centre + (fhch * fhs) is within limits
00426 bool RH_RF22::setFHStepSize(uint8_t fhs)
00427 {
00428     spiWrite(RH_RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE, fhs);
00429     return !(statusRead() & RH_RF22_FREQERR);
00430 }
00431 
00432 // Adds fhch * fhs to centre frequency
00433 // Returns true if centre + (fhch * fhs) is within limits
00434 bool RH_RF22::setFHChannel(uint8_t fhch)
00435 {
00436     spiWrite(RH_RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT, fhch);
00437     return !(statusRead() & RH_RF22_FREQERR);
00438 }
00439 
00440 uint8_t RH_RF22::rssiRead()
00441 {
00442     return spiRead(RH_RF22_REG_26_RSSI);
00443 }
00444 
00445 uint8_t RH_RF22::ezmacStatusRead()
00446 {
00447     return spiRead(RH_RF22_REG_31_EZMAC_STATUS);
00448 }
00449 
00450 void RH_RF22::setOpMode(uint8_t mode)
00451 {
00452     spiWrite(RH_RF22_REG_07_OPERATING_MODE1, mode);
00453 }
00454 
00455 void RH_RF22::setModeIdle()
00456 {
00457     if (_mode != RHModeIdle)
00458     {
00459     setOpMode(_idleMode);
00460     _mode = RHModeIdle;
00461     }
00462 }
00463 
00464 bool RH_RF22::sleep()
00465 {
00466     if (_mode != RHModeSleep)
00467     {
00468     setOpMode(0);
00469     _mode = RHModeSleep;
00470     }
00471     return true;
00472 }
00473 
00474 void RH_RF22::setModeRx()
00475 {
00476     if (_mode != RHModeRx)
00477     {
00478     setOpMode(_idleMode | RH_RF22_RXON);
00479     _mode = RHModeRx;
00480     }
00481 }
00482 
00483 void RH_RF22::setModeTx()
00484 {
00485     if (_mode != RHModeTx)
00486     {
00487     setOpMode(_idleMode | RH_RF22_TXON);
00488     // Hmmm, if you dont clear the RX FIFO here, then it appears that going
00489     // to transmit mode in the middle of a receive can corrupt the
00490     // RX FIFO
00491     resetRxFifo();
00492     _mode = RHModeTx;
00493     }
00494 }
00495 
00496 void RH_RF22::setTxPower(uint8_t power)
00497 {
00498     spiWrite(RH_RF22_REG_6D_TX_POWER, power | RH_RF22_LNA_SW); // On RF23, LNA_SW must be set.
00499 }
00500 
00501 // Sets registers from a canned modem configuration structure
00502 void RH_RF22::setModemRegisters(const ModemConfig* config)
00503 {
00504     spiWrite(RH_RF22_REG_1C_IF_FILTER_BANDWIDTH,                    config->reg_1c);
00505     spiWrite(RH_RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE,      config->reg_1f);
00506     spiBurstWrite(RH_RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE, &config->reg_20, 6);
00507     spiBurstWrite(RH_RF22_REG_2C_OOK_COUNTER_VALUE_1,              &config->reg_2c, 3);
00508     spiWrite(RH_RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING,           config->reg_58);
00509     spiWrite(RH_RF22_REG_69_AGC_OVERRIDE1,                          config->reg_69);
00510     spiBurstWrite(RH_RF22_REG_6E_TX_DATA_RATE1,                    &config->reg_6e, 5);
00511 }
00512 
00513 // Set one of the canned FSK Modem configs
00514 // Returns true if its a valid choice
00515 bool RH_RF22::setModemConfig(ModemConfigChoice index)
00516 {
00517     if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
00518         return false;
00519 
00520     RH_RF22::ModemConfig cfg;
00521     memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF22::ModemConfig));
00522     setModemRegisters(&cfg);
00523 
00524     return true;
00525 }
00526 
00527 // REVISIT: top bit is in Header Control 2 0x33
00528 void RH_RF22::setPreambleLength(uint8_t nibbles)
00529 {
00530     spiWrite(RH_RF22_REG_34_PREAMBLE_LENGTH, nibbles);
00531 }
00532 
00533 // Caution doesnt set sync word len in Header Control 2 0x33
00534 void RH_RF22::setSyncWords(const uint8_t* syncWords, uint8_t len)
00535 {
00536     spiBurstWrite(RH_RF22_REG_36_SYNC_WORD3, syncWords, len);
00537 }
00538 
00539 void RH_RF22::clearRxBuf()
00540 {
00541     ATOMIC_BLOCK_START;
00542     _bufLen = 0;
00543     _rxBufValid = false;
00544     ATOMIC_BLOCK_END;
00545 }
00546 
00547 bool RH_RF22::available()
00548 {
00549     if (!_rxBufValid)
00550     {
00551     if (_mode == RHModeTx)
00552         return false;
00553     setModeRx(); // Make sure we are receiving
00554     }
00555     return _rxBufValid;
00556 }
00557 
00558 bool RH_RF22::recv(uint8_t* buf, uint8_t* len)
00559 {
00560     if (!available())
00561     return false;
00562 
00563     if (buf && len)
00564     {
00565     ATOMIC_BLOCK_START;
00566     if (*len > _bufLen)
00567         *len = _bufLen;
00568     memcpy(buf, _buf, *len);
00569     ATOMIC_BLOCK_END;
00570     }
00571     clearRxBuf();
00572 //    printBuffer("recv:", buf, *len);
00573     return true;
00574 }
00575 
00576 void RH_RF22::clearTxBuf()
00577 {
00578     ATOMIC_BLOCK_START;
00579     _bufLen = 0;
00580     _txBufSentIndex = 0;
00581     ATOMIC_BLOCK_END;
00582 }
00583 
00584 void RH_RF22::startTransmit()
00585 {
00586     sendNextFragment(); // Actually the first fragment
00587     spiWrite(RH_RF22_REG_3E_PACKET_LENGTH, _bufLen); // Total length that will be sent
00588     setModeTx(); // Start the transmitter, turns off the receiver
00589 }
00590 
00591 // Restart the transmission of a packet that had a problem
00592 void RH_RF22::restartTransmit()
00593 {
00594     _mode = RHModeIdle;
00595     _txBufSentIndex = 0;
00596 //      Serial.println("Restart");
00597     startTransmit();
00598 }
00599 
00600 bool RH_RF22::send(const uint8_t* data, uint8_t len)
00601 {
00602     bool ret = true;
00603     waitPacketSent();
00604     ATOMIC_BLOCK_START;
00605     spiWrite(RH_RF22_REG_3A_TRANSMIT_HEADER3, _txHeaderTo);
00606     spiWrite(RH_RF22_REG_3B_TRANSMIT_HEADER2, _txHeaderFrom);
00607     spiWrite(RH_RF22_REG_3C_TRANSMIT_HEADER1, _txHeaderId);
00608     spiWrite(RH_RF22_REG_3D_TRANSMIT_HEADER0, _txHeaderFlags);
00609     if (!fillTxBuf(data, len))
00610     ret = false;
00611     else
00612     startTransmit();
00613     ATOMIC_BLOCK_END;
00614 //    printBuffer("send:", data, len);
00615     return ret;
00616 }
00617 
00618 bool RH_RF22::fillTxBuf(const uint8_t* data, uint8_t len)
00619 {
00620     clearTxBuf();
00621     if (!len)
00622     return false; 
00623     return appendTxBuf(data, len);
00624 }
00625 
00626 bool RH_RF22::appendTxBuf(const uint8_t* data, uint8_t len)
00627 {
00628     if (((uint16_t)_bufLen + len) > RH_RF22_MAX_MESSAGE_LEN)
00629     return false;
00630     ATOMIC_BLOCK_START;
00631     memcpy(_buf + _bufLen, data, len);
00632     _bufLen += len;
00633     ATOMIC_BLOCK_END;
00634 //    printBuffer("txbuf:", _buf, _bufLen);
00635     return true;
00636 }
00637 
00638 // Assumption: there is currently <= RH_RF22_TXFFAEM_THRESHOLD bytes in the Tx FIFO
00639 void RH_RF22::sendNextFragment()
00640 {
00641     if (_txBufSentIndex < _bufLen)
00642     {
00643     // Some left to send?
00644     uint8_t len = _bufLen - _txBufSentIndex;
00645     // But dont send too much
00646     if (len > (RH_RF22_FIFO_SIZE - RH_RF22_TXFFAEM_THRESHOLD - 1))
00647         len = (RH_RF22_FIFO_SIZE - RH_RF22_TXFFAEM_THRESHOLD - 1);
00648     spiBurstWrite(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len);
00649 //  printBuffer("frag:", _buf  + _txBufSentIndex, len);
00650     _txBufSentIndex += len;
00651     }
00652 }
00653 
00654 // Assumption: there are at least RH_RF22_RXFFAFULL_THRESHOLD in the RX FIFO
00655 // That means it should only be called after a RXFFAFULL interrupt
00656 void RH_RF22::readNextFragment()
00657 {
00658     if (((uint16_t)_bufLen + RH_RF22_RXFFAFULL_THRESHOLD) > RH_RF22_MAX_MESSAGE_LEN)
00659     return; // Hmmm receiver overflow. Should never occur
00660 
00661     // Read the RH_RF22_RXFFAFULL_THRESHOLD octets that should be there
00662     spiBurstRead(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, RH_RF22_RXFFAFULL_THRESHOLD);
00663     _bufLen += RH_RF22_RXFFAFULL_THRESHOLD;
00664 }
00665 
00666 // Clear the FIFOs
00667 void RH_RF22::resetFifos()
00668 {
00669     spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRRX | RH_RF22_FFCLRTX);
00670     spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0);
00671 }
00672 
00673 // Clear the Rx FIFO
00674 void RH_RF22::resetRxFifo()
00675 {
00676     spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRRX);
00677     spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0);
00678 }
00679 
00680 // CLear the TX FIFO
00681 void RH_RF22::resetTxFifo()
00682 {
00683     spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRTX);
00684     spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0);
00685 }
00686 
00687 // Default implmentation does nothing. Override if you wish
00688 void RH_RF22::handleExternalInterrupt()
00689 {
00690 }
00691 
00692 // Default implmentation does nothing. Override if you wish
00693 void RH_RF22::handleWakeupTimerInterrupt()
00694 {
00695 }
00696 
00697 void RH_RF22::setPromiscuous(bool promiscuous)
00698 {
00699     RHSPIDriver::setPromiscuous(promiscuous);
00700     spiWrite(RH_RF22_REG_43_HEADER_ENABLE3, promiscuous ? 0x00 : 0xff);
00701 }
00702 
00703 bool RH_RF22::setCRCPolynomial(CRCPolynomial polynomial)
00704 {
00705     if (polynomial >= CRC_CCITT &&
00706     polynomial <= CRC_Biacheva)
00707     {
00708     _polynomial = polynomial;
00709     return true;
00710     }
00711     else
00712     return false;
00713 }
00714 
00715 uint8_t RH_RF22::maxMessageLength()
00716 {
00717     return RH_RF22_MAX_MESSAGE_LEN;
00718 }
00719 
00720 void RH_RF22::setThisAddress(uint8_t thisAddress)
00721 {
00722     RHSPIDriver::setThisAddress(thisAddress);
00723     spiWrite(RH_RF22_REG_3F_CHECK_HEADER3, thisAddress);
00724 }
00725 
00726 uint32_t RH_RF22::getLastPreambleTime()
00727 {
00728     return _lastPreambleTime;
00729 }
00730 
00731 void RH_RF22::setGpioReversed(bool gpioReversed)
00732 {
00733     // Ensure the antenna can be switched automatically according to transmit and receive
00734     // This assumes GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit
00735     // This assumes GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive
00736     if (gpioReversed)
00737     {
00738     // Reversed for HAB-RFM22B-BOA HAB-RFM22B-BO, also Si4432 sold by Dorji.com via Tindie.com.
00739     spiWrite(RH_RF22_REG_0B_GPIO_CONFIGURATION0, 0x15) ; // RX state
00740     spiWrite(RH_RF22_REG_0C_GPIO_CONFIGURATION1, 0x12) ; // TX state
00741     }
00742     else
00743     {
00744     spiWrite(RH_RF22_REG_0B_GPIO_CONFIGURATION0, 0x12) ; // TX state
00745     spiWrite(RH_RF22_REG_0C_GPIO_CONFIGURATION1, 0x15) ; // RX state
00746     }
00747 }
00748