my fork

Dependencies:   mbed PinDetect

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers LSM9DS1.cpp Source File

LSM9DS1.cpp

00001 /******************************************************************************
00002 SFE_LSM9DS1.cpp
00003 SFE_LSM9DS1 Library Source File
00004 Jim Lindblom @ SparkFun Electronics
00005 Original Creation Date: February 27, 2015
00006 https://github.com/sparkfun/LSM9DS1_Breakout
00007 
00008 This file implements all functions of the LSM9DS1 class. Functions here range
00009 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
00010 hardware reads and writes. Both SPI and I2C handler functions can be found
00011 towards the bottom of this file.
00012 
00013 Development environment specifics:
00014     IDE: Arduino 1.6
00015     Hardware Platform: Arduino Uno
00016     LSM9DS1 Breakout Version: 1.0
00017 
00018 This code is beerware; if you see me (or any other SparkFun employee) at the
00019 local, and you've found our code helpful, please buy us a round!
00020 
00021 Distributed as-is; no warranty is given.
00022 ******************************************************************************/
00023 
00024 #include "LSM9DS1.h"
00025 #include "LSM9DS1_Registers.h"
00026 #include "LSM9DS1_Types.h"
00027 //#include <Wire.h> // Wire library is used for I2C
00028 //#include <SPI.h>  // SPI library is used for...SPI.
00029 
00030 //#if defined(ARDUINO) && ARDUINO >= 100
00031 //  #include "Arduino.h"
00032 //#else
00033 //  #include "WProgram.h"
00034 //#endif
00035 
00036 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
00037 DigitalOut startCal(LED4);
00038 DigitalOut finishedCal(LED3);
00039 
00040 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
00041 extern Serial pc;
00042 
00043 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
00044     :i2c(sda, scl)
00045 {
00046     init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
00047 }
00048 /*
00049 LSM9DS1::LSM9DS1()
00050 {
00051     init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
00052 }
00053 
00054 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
00055 {
00056     init(interface, xgAddr, mAddr);
00057 }
00058 */
00059 
00060 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
00061 {
00062     settings.device.commInterface = interface;
00063     settings.device.agAddress = xgAddr;
00064     settings.device.mAddress = mAddr;
00065 
00066     settings.gyro.enabled = true;
00067     settings.gyro.enableX = true;
00068     settings.gyro.enableY = true;
00069     settings.gyro.enableZ = true;
00070     // gyro scale can be 245, 500, or 2000
00071     settings.gyro.scale = 245;
00072     // gyro sample rate: value between 1-6
00073     // 1 = 14.9    4 = 238
00074     // 2 = 59.5    5 = 476
00075     // 3 = 119     6 = 952
00076     settings.gyro.sampleRate = 6;
00077     // gyro cutoff frequency: value between 0-3
00078     // Actual value of cutoff frequency depends
00079     // on sample rate.
00080     settings.gyro.bandwidth = 0;
00081     settings.gyro.lowPowerEnable = false;
00082     settings.gyro.HPFEnable = false;
00083     // Gyro HPF cutoff frequency: value between 0-9
00084     // Actual value depends on sample rate. Only applies
00085     // if gyroHPFEnable is true.
00086     settings.gyro.HPFCutoff = 0;
00087     settings.gyro.flipX = false;
00088     settings.gyro.flipY = false;
00089     settings.gyro.flipZ = false;
00090     settings.gyro.orientation = 0;
00091     settings.gyro.latchInterrupt = true;
00092 
00093     settings.accel.enabled = true;
00094     settings.accel.enableX = true;
00095     settings.accel.enableY = true;
00096     settings.accel.enableZ = true;
00097     // accel scale can be 2, 4, 8, or 16
00098     settings.accel.scale = 2;
00099     // accel sample rate can be 1-6
00100     // 1 = 10 Hz    4 = 238 Hz
00101     // 2 = 50 Hz    5 = 476 Hz
00102     // 3 = 119 Hz   6 = 952 Hz
00103     settings.accel.sampleRate = 6;
00104     // Accel cutoff freqeuncy can be any value between -1 - 3.
00105     // -1 = bandwidth determined by sample rate
00106     // 0 = 408 Hz   2 = 105 Hz
00107     // 1 = 211 Hz   3 = 50 Hz
00108     settings.accel.bandwidth = -1;
00109     settings.accel.highResEnable = false;
00110     // accelHighResBandwidth can be any value between 0-3
00111     // LP cutoff is set to a factor of sample rate
00112     // 0 = ODR/50    2 = ODR/9
00113     // 1 = ODR/100   3 = ODR/400
00114     settings.accel.highResBandwidth = 0;
00115 
00116     settings.mag.enabled = true;
00117     // mag scale can be 4, 8, 12, or 16
00118     settings.mag.scale = 4;
00119     // mag data rate can be 0-7
00120     // 0 = 0.625 Hz  4 = 10 Hz
00121     // 1 = 1.25 Hz   5 = 20 Hz
00122     // 2 = 2.5 Hz    6 = 40 Hz
00123     // 3 = 5 Hz      7 = 80 Hz
00124     settings.mag.sampleRate = 7;
00125     settings.mag.tempCompensationEnable = false;
00126     // magPerformance can be any value between 0-3
00127     // 0 = Low power mode      2 = high performance
00128     // 1 = medium performance  3 = ultra-high performance
00129     settings.mag.XYPerformance = 3;
00130     settings.mag.ZPerformance = 3;
00131     settings.mag.lowPowerEnable = false;
00132     // magOperatingMode can be 0-2
00133     // 0 = continuous conversion
00134     // 1 = single-conversion
00135     // 2 = power down
00136     settings.mag.operatingMode = 0;
00137 
00138     settings.temp.enabled = true;
00139     for (int i=0; i<3; i++) {
00140         gBias[i] = 0;
00141         aBias[i] = 0;
00142         mBias[i] = 0;
00143         gBiasRaw[i] = 0;
00144         aBiasRaw[i] = 0;
00145         mBiasRaw[i] = 0;
00146     }
00147     _autoCalc = false;
00148 }
00149 
00150 
00151 uint16_t LSM9DS1::begin()
00152 {
00153     //! Todo: don't use _xgAddress or _mAddress, duplicating memory
00154     _xgAddress = settings.device.agAddress;
00155     _mAddress = settings.device.mAddress;
00156 
00157     constrainScales();
00158     // Once we have the scale values, we can calculate the resolution
00159     // of each sensor. That's what these functions are for. One for each sensor
00160     calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
00161     calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
00162     calcaRes(); // Calculate g / ADC tick, stored in aRes variable
00163 
00164     // Now, initialize our hardware interface.
00165     if (settings.device.commInterface == IMU_MODE_I2C)  // If we're using I2C
00166         initI2C();  // Initialize I2C
00167     else if (settings.device.commInterface == IMU_MODE_SPI)     // else, if we're using SPI
00168         initSPI();  // Initialize SPI
00169 
00170     // To verify communication, we can read from the WHO_AM_I register of
00171     // each device. Store those in a variable so we can return them.
00172     uint8_t mTest = mReadByte(WHO_AM_I_M);      // Read the gyro WHO_AM_I
00173     uint8_t xgTest = xgReadByte(WHO_AM_I_XG);   // Read the accel/mag WHO_AM_I
00174     pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
00175     uint16_t whoAmICombined = (xgTest << 8) | mTest;
00176 
00177     if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
00178         return 0;
00179 
00180     // Gyro initialization stuff:
00181     initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
00182 
00183     // Accelerometer initialization stuff:
00184     initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
00185 
00186     // Magnetometer initialization stuff:
00187     initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
00188 
00189     // Once everything is initialized, return the WHO_AM_I registers we read:
00190     return whoAmICombined;
00191 }
00192 
00193 void LSM9DS1::initGyro()
00194 {
00195     uint8_t tempRegValue = 0;
00196 
00197     // CTRL_REG1_G (Default value: 0x00)
00198     // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
00199     // ODR_G[2:0] - Output data rate selection
00200     // FS_G[1:0] - Gyroscope full-scale selection
00201     // BW_G[1:0] - Gyroscope bandwidth selection
00202 
00203     // To disable gyro, set sample rate bits to 0. We'll only set sample
00204     // rate if the gyro is enabled.
00205     if (settings.gyro.enabled) {
00206         tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
00207     }
00208     switch (settings.gyro.scale) {
00209         case 500:
00210             tempRegValue |= (0x1 << 3);
00211             break;
00212         case 2000:
00213             tempRegValue |= (0x3 << 3);
00214             break;
00215             // Otherwise we'll set it to 245 dps (0x0 << 4)
00216     }
00217     tempRegValue |= (settings.gyro.bandwidth & 0x3);
00218     xgWriteByte(CTRL_REG1_G, tempRegValue);
00219 
00220     // CTRL_REG2_G (Default value: 0x00)
00221     // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
00222     // INT_SEL[1:0] - INT selection configuration
00223     // OUT_SEL[1:0] - Out selection configuration
00224     xgWriteByte(CTRL_REG2_G, 0x00);
00225 
00226     // CTRL_REG3_G (Default value: 0x00)
00227     // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
00228     // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
00229     // HP_EN - HPF enable (0:disabled, 1: enabled)
00230     // HPCF_G[3:0] - HPF cutoff frequency
00231     tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
00232     if (settings.gyro.HPFEnable) {
00233         tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
00234     }
00235     xgWriteByte(CTRL_REG3_G, tempRegValue);
00236 
00237     // CTRL_REG4 (Default value: 0x38)
00238     // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
00239     // Zen_G - Z-axis output enable (0:disable, 1:enable)
00240     // Yen_G - Y-axis output enable (0:disable, 1:enable)
00241     // Xen_G - X-axis output enable (0:disable, 1:enable)
00242     // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
00243     // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
00244     tempRegValue = 0;
00245     if (settings.gyro.enableZ) tempRegValue |= (1<<5);
00246     if (settings.gyro.enableY) tempRegValue |= (1<<4);
00247     if (settings.gyro.enableX) tempRegValue |= (1<<3);
00248     if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
00249     xgWriteByte(CTRL_REG4, tempRegValue);
00250 
00251     // ORIENT_CFG_G (Default value: 0x00)
00252     // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
00253     // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
00254     // Orient [2:0] - Directional user orientation selection
00255     tempRegValue = 0;
00256     if (settings.gyro.flipX) tempRegValue |= (1<<5);
00257     if (settings.gyro.flipY) tempRegValue |= (1<<4);
00258     if (settings.gyro.flipZ) tempRegValue |= (1<<3);
00259     xgWriteByte(ORIENT_CFG_G, tempRegValue);
00260 }
00261 
00262 void LSM9DS1::initAccel()
00263 {
00264     uint8_t tempRegValue = 0;
00265 
00266     //  CTRL_REG5_XL (0x1F) (Default value: 0x38)
00267     //  [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
00268     //  DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
00269     //      00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
00270     //  Zen_XL - Z-axis output enabled
00271     //  Yen_XL - Y-axis output enabled
00272     //  Xen_XL - X-axis output enabled
00273     if (settings.accel.enableZ) tempRegValue |= (1<<5);
00274     if (settings.accel.enableY) tempRegValue |= (1<<4);
00275     if (settings.accel.enableX) tempRegValue |= (1<<3);
00276 
00277     xgWriteByte(CTRL_REG5_XL, tempRegValue);
00278 
00279     // CTRL_REG6_XL (0x20) (Default value: 0x00)
00280     // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
00281     // ODR_XL[2:0] - Output data rate & power mode selection
00282     // FS_XL[1:0] - Full-scale selection
00283     // BW_SCAL_ODR - Bandwidth selection
00284     // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
00285     tempRegValue = 0;
00286     // To disable the accel, set the sampleRate bits to 0.
00287     if (settings.accel.enabled) {
00288         tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
00289     }
00290     switch (settings.accel.scale) {
00291         case 4:
00292             tempRegValue |= (0x2 << 3);
00293             break;
00294         case 8:
00295             tempRegValue |= (0x3 << 3);
00296             break;
00297         case 16:
00298             tempRegValue |= (0x1 << 3);
00299             break;
00300             // Otherwise it'll be set to 2g (0x0 << 3)
00301     }
00302     if (settings.accel.bandwidth >= 0) {
00303         tempRegValue |= (1<<2); // Set BW_SCAL_ODR
00304         tempRegValue |= (settings.accel.bandwidth & 0x03);
00305     }
00306     xgWriteByte(CTRL_REG6_XL, tempRegValue);
00307 
00308     // CTRL_REG7_XL (0x21) (Default value: 0x00)
00309     // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
00310     // HR - High resolution mode (0: disable, 1: enable)
00311     // DCF[1:0] - Digital filter cutoff frequency
00312     // FDS - Filtered data selection
00313     // HPIS1 - HPF enabled for interrupt function
00314     tempRegValue = 0;
00315     if (settings.accel.highResEnable) {
00316         tempRegValue |= (1<<7); // Set HR bit
00317         tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
00318     }
00319     xgWriteByte(CTRL_REG7_XL, tempRegValue);
00320 }
00321 
00322 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
00323 // them, scales them to  gs and deg/s, respectively, and then passes the biases to the main sketch
00324 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
00325 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
00326 // subtract the biases ourselves. This results in a more accurate measurement in general and can
00327 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
00328 // is good practice.
00329 void LSM9DS1::calibrate(bool autoCalc)
00330 {
00331     uint8_t data[6] = {0, 0, 0, 0, 0, 0};
00332     uint8_t samples = 0;
00333     int ii;
00334     int32_t aBiasRawTemp[3] = {0, 0, 0};
00335     int32_t gBiasRawTemp[3] = {0, 0, 0};
00336     pc.printf("\n\rPlace IMU on level surface and do not move it for gyro and accel calibration.\n\r");
00337     wait(1);
00338     // Turn on FIFO and set threshold to 32 samples
00339     enableFIFO(true);
00340     setFIFO(FIFO_THS, 0x1F);
00341     while (samples < 0x1F) {
00342         samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
00343     }
00344     for(ii = 0; ii < samples ; ii++) {
00345         // Read the gyro data stored in the FIFO
00346         readGyro();
00347         gBiasRawTemp[0] += gx;
00348         gBiasRawTemp[1] += gy;
00349         gBiasRawTemp[2] += gz;
00350         readAccel();
00351         aBiasRawTemp[0] += ax;
00352         aBiasRawTemp[1] += ay;
00353         aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
00354     }
00355     for (ii = 0; ii < 3; ii++) {
00356         gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
00357         gBias[ii] = calcGyro(gBiasRaw[ii]);
00358         aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
00359         aBias[ii] = calcAccel(aBiasRaw[ii]);
00360     }
00361 
00362     enableFIFO(false);
00363     setFIFO(FIFO_OFF, 0x00);
00364 
00365     if (autoCalc) _autoCalc = true;
00366 }
00367 
00368 void LSM9DS1::calibrateMag(bool loadIn)
00369 {
00370     int i, j;
00371     int16_t magMin[3] = {0, 0, 0};
00372     int16_t magMax[3] = {0, 0, 0}; // The road warrior
00373     startCal = 1;
00374     //pc.printf("\n\n\r Rotate IMU device at least 360 in horizontal plane for magnetometer calibration\n\r");
00375     wait(0.5);
00376     for (i=0; i<1000; i++) {
00377         while (!magAvailable(ALL_AXIS));
00378         readMag();
00379         int16_t magTemp[3] = {0, 0, 0};
00380         magTemp[0] = mx;
00381         magTemp[1] = my;
00382         magTemp[2] = mz;
00383         for (j = 0; j < 3; j++) {
00384             if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
00385             if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
00386         }
00387     }
00388     for (j = 0; j < 3; j++) {
00389         mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
00390         mBias[j] = calcMag(mBiasRaw[j]);
00391         pc.printf("%f  ",mBias[j]);
00392         if (loadIn)
00393             magOffset(j, mBiasRaw[j]);
00394     }
00395     //pc.printf("\n\rMAG calibration done\n\r");
00396     finishedCal = 1;
00397     startCal = 0;
00398     wait(.5);
00399     finishedCal = 0;
00400 }
00401 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
00402 {
00403     if (axis > 2)
00404         return;
00405     uint8_t msb, lsb;
00406     msb = (offset & 0xFF00) >> 8;
00407     lsb = offset & 0x00FF;
00408     mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
00409     mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
00410 }
00411 
00412 void LSM9DS1::initMag()
00413 {
00414     uint8_t tempRegValue = 0;
00415 
00416     // CTRL_REG1_M (Default value: 0x10)
00417     // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
00418     // TEMP_COMP - Temperature compensation
00419     // OM[1:0] - X & Y axes op mode selection
00420     //  00:low-power, 01:medium performance
00421     //  10: high performance, 11:ultra-high performance
00422     // DO[2:0] - Output data rate selection
00423     // ST - Self-test enable
00424     if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
00425     tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
00426     tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
00427     mWriteByte(CTRL_REG1_M, tempRegValue);
00428 
00429     // CTRL_REG2_M (Default value 0x00)
00430     // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
00431     // FS[1:0] - Full-scale configuration
00432     // REBOOT - Reboot memory content (0:normal, 1:reboot)
00433     // SOFT_RST - Reset config and user registers (0:default, 1:reset)
00434     tempRegValue = 0;
00435     switch (settings.mag.scale) {
00436         case 8:
00437             tempRegValue |= (0x1 << 5);
00438             break;
00439         case 12:
00440             tempRegValue |= (0x2 << 5);
00441             break;
00442         case 16:
00443             tempRegValue |= (0x3 << 5);
00444             break;
00445             // Otherwise we'll default to 4 gauss (00)
00446     }
00447     mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
00448 
00449     // CTRL_REG3_M (Default value: 0x03)
00450     // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
00451     // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
00452     // LP - Low-power mode cofiguration (1:enable)
00453     // SIM - SPI mode selection (0:write-only, 1:read/write enable)
00454     // MD[1:0] - Operating mode
00455     //  00:continuous conversion, 01:single-conversion,
00456     //  10,11: Power-down
00457     tempRegValue = 0;
00458     if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
00459     tempRegValue |= (settings.mag.operatingMode & 0x3);
00460     mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
00461 
00462     // CTRL_REG4_M (Default value: 0x00)
00463     // [0][0][0][0][OMZ1][OMZ0][BLE][0]
00464     // OMZ[1:0] - Z-axis operative mode selection
00465     //  00:low-power mode, 01:medium performance
00466     //  10:high performance, 10:ultra-high performance
00467     // BLE - Big/little endian data
00468     tempRegValue = 0;
00469     tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
00470     mWriteByte(CTRL_REG4_M, tempRegValue);
00471 
00472     // CTRL_REG5_M (Default value: 0x00)
00473     // [0][BDU][0][0][0][0][0][0]
00474     // BDU - Block data update for magnetic data
00475     //  0:continuous, 1:not updated until MSB/LSB are read
00476     tempRegValue = 0;
00477     mWriteByte(CTRL_REG5_M, tempRegValue);
00478 }
00479 
00480 uint8_t LSM9DS1::accelAvailable()
00481 {
00482     uint8_t status = xgReadByte(STATUS_REG_1);
00483 
00484     return (status & (1<<0));
00485 }
00486 
00487 uint8_t LSM9DS1::gyroAvailable()
00488 {
00489     uint8_t status = xgReadByte(STATUS_REG_1);
00490 
00491     return ((status & (1<<1)) >> 1);
00492 }
00493 
00494 uint8_t LSM9DS1::tempAvailable()
00495 {
00496     uint8_t status = xgReadByte(STATUS_REG_1);
00497 
00498     return ((status & (1<<2)) >> 2);
00499 }
00500 
00501 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
00502 {
00503     uint8_t status;
00504     status = mReadByte(STATUS_REG_M);
00505 
00506     return ((status & (1<<axis)) >> axis);
00507 }
00508 
00509 void LSM9DS1::readAccel()
00510 {
00511     uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
00512     xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
00513     ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
00514     ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
00515     az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
00516     if (_autoCalc) {
00517         ax -= aBiasRaw[X_AXIS];
00518         ay -= aBiasRaw[Y_AXIS];
00519         az -= aBiasRaw[Z_AXIS];
00520     }
00521 }
00522 
00523 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
00524 {
00525     uint8_t temp[2];
00526     int16_t value;
00527     xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
00528     value = (temp[1] << 8) | temp[0];
00529 
00530     if (_autoCalc)
00531         value -= aBiasRaw[axis];
00532 
00533     return value;
00534 }
00535 
00536 void LSM9DS1::readMag()
00537 {
00538     uint8_t temp[6]; // We'll read six bytes from the mag into temp
00539     mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
00540     mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
00541     my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
00542     mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
00543     mx = mx - mBiasRaw[0];
00544     my = my - mBiasRaw[1];
00545     mz = mz - mBiasRaw[2];
00546 }
00547 
00548 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
00549 {
00550     uint8_t temp[2];
00551     mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
00552     return (temp[1] << 8) | temp[0];
00553 }
00554 
00555 void LSM9DS1::readTemp()
00556 {
00557     uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
00558     xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
00559     temperature = (int16_t)((temp[1] << 8) | temp[0]);
00560 }
00561 
00562 void LSM9DS1::readGyro()
00563 {
00564     uint8_t temp[6]; // We'll read six bytes from the gyro into temp
00565     xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
00566     gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
00567     gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
00568     gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
00569     if (_autoCalc) {
00570         gx -= gBiasRaw[X_AXIS];
00571         gy -= gBiasRaw[Y_AXIS];
00572         gz -= gBiasRaw[Z_AXIS];
00573     }
00574 }
00575 
00576 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
00577 {
00578     uint8_t temp[2];
00579     int16_t value;
00580 
00581     xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
00582 
00583     value = (temp[1] << 8) | temp[0];
00584 
00585     if (_autoCalc)
00586         value -= gBiasRaw[axis];
00587 
00588     return value;
00589 }
00590 
00591 float LSM9DS1::calcGyro(int16_t gyro)
00592 {
00593     // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
00594     return gRes * gyro;
00595 }
00596 
00597 float LSM9DS1::calcAccel(int16_t accel)
00598 {
00599     // Return the accel raw reading times our pre-calculated g's / (ADC tick):
00600     return aRes * accel;
00601 }
00602 
00603 float LSM9DS1::calcMag(int16_t mag)
00604 {
00605     // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
00606     return mRes * mag;
00607 }
00608 
00609 void LSM9DS1::setGyroScale(uint16_t gScl)
00610 {
00611     // Read current value of CTRL_REG1_G:
00612     uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
00613     // Mask out scale bits (3 & 4):
00614     ctrl1RegValue &= 0xE7;
00615     switch (gScl) {
00616         case 500:
00617             ctrl1RegValue |= (0x1 << 3);
00618             settings.gyro.scale = 500;
00619             break;
00620         case 2000:
00621             ctrl1RegValue |= (0x3 << 3);
00622             settings.gyro.scale = 2000;
00623             break;
00624         default: // Otherwise we'll set it to 245 dps (0x0 << 4)
00625             settings.gyro.scale = 245;
00626             break;
00627     }
00628     xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
00629 
00630     calcgRes();
00631 }
00632 
00633 void LSM9DS1::setAccelScale(uint8_t aScl)
00634 {
00635     // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
00636     uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
00637     // Mask out accel scale bits:
00638     tempRegValue &= 0xE7;
00639 
00640     switch (aScl) {
00641         case 4:
00642             tempRegValue |= (0x2 << 3);
00643             settings.accel.scale = 4;
00644             break;
00645         case 8:
00646             tempRegValue |= (0x3 << 3);
00647             settings.accel.scale = 8;
00648             break;
00649         case 16:
00650             tempRegValue |= (0x1 << 3);
00651             settings.accel.scale = 16;
00652             break;
00653         default: // Otherwise it'll be set to 2g (0x0 << 3)
00654             settings.accel.scale = 2;
00655             break;
00656     }
00657     xgWriteByte(CTRL_REG6_XL, tempRegValue);
00658 
00659     // Then calculate a new aRes, which relies on aScale being set correctly:
00660     calcaRes();
00661 }
00662 
00663 void LSM9DS1::setMagScale(uint8_t mScl)
00664 {
00665     // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
00666     uint8_t temp = mReadByte(CTRL_REG2_M);
00667     // Then mask out the mag scale bits:
00668     temp &= 0xFF^(0x3 << 5);
00669 
00670     switch (mScl) {
00671         case 8:
00672             temp |= (0x1 << 5);
00673             settings.mag.scale = 8;
00674             break;
00675         case 12:
00676             temp |= (0x2 << 5);
00677             settings.mag.scale = 12;
00678             break;
00679         case 16:
00680             temp |= (0x3 << 5);
00681             settings.mag.scale = 16;
00682             break;
00683         default: // Otherwise we'll default to 4 gauss (00)
00684             settings.mag.scale = 4;
00685             break;
00686     }
00687 
00688     // And write the new register value back into CTRL_REG6_XM:
00689     mWriteByte(CTRL_REG2_M, temp);
00690 
00691     // We've updated the sensor, but we also need to update our class variables
00692     // First update mScale:
00693     //mScale = mScl;
00694     // Then calculate a new mRes, which relies on mScale being set correctly:
00695     calcmRes();
00696 }
00697 
00698 void LSM9DS1::setGyroODR(uint8_t gRate)
00699 {
00700     // Only do this if gRate is not 0 (which would disable the gyro)
00701     if ((gRate & 0x07) != 0) {
00702         // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
00703         uint8_t temp = xgReadByte(CTRL_REG1_G);
00704         // Then mask out the gyro ODR bits:
00705         temp &= 0xFF^(0x7 << 5);
00706         temp |= (gRate & 0x07) << 5;
00707         // Update our settings struct
00708         settings.gyro.sampleRate = gRate & 0x07;
00709         // And write the new register value back into CTRL_REG1_G:
00710         xgWriteByte(CTRL_REG1_G, temp);
00711     }
00712 }
00713 
00714 void LSM9DS1::setAccelODR(uint8_t aRate)
00715 {
00716     // Only do this if aRate is not 0 (which would disable the accel)
00717     if ((aRate & 0x07) != 0) {
00718         // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
00719         uint8_t temp = xgReadByte(CTRL_REG6_XL);
00720         // Then mask out the accel ODR bits:
00721         temp &= 0x1F;
00722         // Then shift in our new ODR bits:
00723         temp |= ((aRate & 0x07) << 5);
00724         settings.accel.sampleRate = aRate & 0x07;
00725         // And write the new register value back into CTRL_REG1_XM:
00726         xgWriteByte(CTRL_REG6_XL, temp);
00727     }
00728 }
00729 
00730 void LSM9DS1::setMagODR(uint8_t mRate)
00731 {
00732     // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
00733     uint8_t temp = mReadByte(CTRL_REG1_M);
00734     // Then mask out the mag ODR bits:
00735     temp &= 0xFF^(0x7 << 2);
00736     // Then shift in our new ODR bits:
00737     temp |= ((mRate & 0x07) << 2);
00738     settings.mag.sampleRate = mRate & 0x07;
00739     // And write the new register value back into CTRL_REG5_XM:
00740     mWriteByte(CTRL_REG1_M, temp);
00741 }
00742 
00743 void LSM9DS1::calcgRes()
00744 {
00745     gRes = ((float) settings.gyro.scale) / 32768.0;
00746 }
00747 
00748 void LSM9DS1::calcaRes()
00749 {
00750     aRes = ((float) settings.accel.scale) / 32768.0;
00751 }
00752 
00753 void LSM9DS1::calcmRes()
00754 {
00755     //mRes = ((float) settings.mag.scale) / 32768.0;
00756     switch (settings.mag.scale) {
00757         case 4:
00758             mRes = magSensitivity[0];
00759             break;
00760         case 8:
00761             mRes = magSensitivity[1];
00762             break;
00763         case 12:
00764             mRes = magSensitivity[2];
00765             break;
00766         case 16:
00767             mRes = magSensitivity[3];
00768             break;
00769     }
00770 
00771 }
00772 
00773 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
00774                         h_lactive activeLow, pp_od pushPull)
00775 {
00776     // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
00777     // those two values.
00778     // [generator] should be an OR'd list of values from the interrupt_generators enum
00779     xgWriteByte(interrupt, generator);
00780 
00781     // Configure CTRL_REG8
00782     uint8_t temp;
00783     temp = xgReadByte(CTRL_REG8);
00784 
00785     if (activeLow) temp |= (1<<5);
00786     else temp &= ~(1<<5);
00787 
00788     if (pushPull) temp &= ~(1<<4);
00789     else temp |= (1<<4);
00790 
00791     xgWriteByte(CTRL_REG8, temp);
00792 }
00793 
00794 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
00795 {
00796     uint8_t temp = 0;
00797 
00798     temp = threshold & 0x7F;
00799     if (sleepOn) temp |= (1<<7);
00800     xgWriteByte(ACT_THS, temp);
00801 
00802     xgWriteByte(ACT_DUR, duration);
00803 }
00804 
00805 uint8_t LSM9DS1::getInactivity()
00806 {
00807     uint8_t temp = xgReadByte(STATUS_REG_0);
00808     temp &= (0x10);
00809     return temp;
00810 }
00811 
00812 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
00813 {
00814     // Use variables from accel_interrupt_generator, OR'd together to create
00815     // the [generator]value.
00816     uint8_t temp = generator;
00817     if (andInterrupts) temp |= 0x80;
00818     xgWriteByte(INT_GEN_CFG_XL, temp);
00819 }
00820 
00821 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
00822 {
00823     // Write threshold value to INT_GEN_THS_?_XL.
00824     // axis will be 0, 1, or 2 (x, y, z respectively)
00825     xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
00826 
00827     // Write duration and wait to INT_GEN_DUR_XL
00828     uint8_t temp;
00829     temp = (duration & 0x7F);
00830     if (wait) temp |= 0x80;
00831     xgWriteByte(INT_GEN_DUR_XL, temp);
00832 }
00833 
00834 uint8_t LSM9DS1::getAccelIntSrc()
00835 {
00836     uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
00837 
00838     // Check if the IA_XL (interrupt active) bit is set
00839     if (intSrc & (1<<6)) {
00840         return (intSrc & 0x3F);
00841     }
00842 
00843     return 0;
00844 }
00845 
00846 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
00847 {
00848     // Use variables from accel_interrupt_generator, OR'd together to create
00849     // the [generator]value.
00850     uint8_t temp = generator;
00851     if (aoi) temp |= 0x80;
00852     if (latch) temp |= 0x40;
00853     xgWriteByte(INT_GEN_CFG_G, temp);
00854 }
00855 
00856 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
00857 {
00858     uint8_t buffer[2];
00859     buffer[0] = (threshold & 0x7F00) >> 8;
00860     buffer[1] = (threshold & 0x00FF);
00861     // Write threshold value to INT_GEN_THS_?H_G and  INT_GEN_THS_?L_G.
00862     // axis will be 0, 1, or 2 (x, y, z respectively)
00863     xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
00864     xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
00865 
00866     // Write duration and wait to INT_GEN_DUR_XL
00867     uint8_t temp;
00868     temp = (duration & 0x7F);
00869     if (wait) temp |= 0x80;
00870     xgWriteByte(INT_GEN_DUR_G, temp);
00871 }
00872 
00873 uint8_t LSM9DS1::getGyroIntSrc()
00874 {
00875     uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
00876 
00877     // Check if the IA_G (interrupt active) bit is set
00878     if (intSrc & (1<<6)) {
00879         return (intSrc & 0x3F);
00880     }
00881 
00882     return 0;
00883 }
00884 
00885 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
00886 {
00887     // Mask out non-generator bits (0-4)
00888     uint8_t config = (generator & 0xE0);
00889     // IEA bit is 0 for active-low, 1 for active-high.
00890     if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
00891     // IEL bit is 0 for latched, 1 for not-latched
00892     if (!latch) config |= (1<<1);
00893     // As long as we have at least 1 generator, enable the interrupt
00894     if (generator != 0) config |= (1<<0);
00895 
00896     mWriteByte(INT_CFG_M, config);
00897 }
00898 
00899 void LSM9DS1::configMagThs(uint16_t threshold)
00900 {
00901     // Write high eight bits of [threshold] to INT_THS_H_M
00902     mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
00903     // Write low eight bits of [threshold] to INT_THS_L_M
00904     mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
00905 }
00906 
00907 uint8_t LSM9DS1::getMagIntSrc()
00908 {
00909     uint8_t intSrc = mReadByte(INT_SRC_M);
00910 
00911     // Check if the INT (interrupt active) bit is set
00912     if (intSrc & (1<<0)) {
00913         return (intSrc & 0xFE);
00914     }
00915 
00916     return 0;
00917 }
00918 
00919 void LSM9DS1::sleepGyro(bool enable)
00920 {
00921     uint8_t temp = xgReadByte(CTRL_REG9);
00922     if (enable) temp |= (1<<6);
00923     else temp &= ~(1<<6);
00924     xgWriteByte(CTRL_REG9, temp);
00925 }
00926 
00927 void LSM9DS1::enableFIFO(bool enable)
00928 {
00929     uint8_t temp = xgReadByte(CTRL_REG9);
00930     if (enable) temp |= (1<<1);
00931     else temp &= ~(1<<1);
00932     xgWriteByte(CTRL_REG9, temp);
00933 }
00934 
00935 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
00936 {
00937     // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
00938     // limit it to the maximum.
00939     uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
00940     xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
00941 }
00942 
00943 uint8_t LSM9DS1::getFIFOSamples()
00944 {
00945     return (xgReadByte(FIFO_SRC) & 0x3F);
00946 }
00947 
00948 void LSM9DS1::constrainScales()
00949 {
00950     if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
00951             (settings.gyro.scale != 2000)) {
00952         settings.gyro.scale = 245;
00953     }
00954 
00955     if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
00956             (settings.accel.scale != 8) && (settings.accel.scale != 16)) {
00957         settings.accel.scale = 2;
00958     }
00959 
00960     if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
00961             (settings.mag.scale != 12) && (settings.mag.scale != 16)) {
00962         settings.mag.scale = 4;
00963     }
00964 }
00965 
00966 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
00967 {
00968     // Whether we're using I2C or SPI, write a byte using the
00969     // gyro-specific I2C address or SPI CS pin.
00970     if (settings.device.commInterface == IMU_MODE_I2C) {
00971         pc.printf("yo");
00972         I2CwriteByte(_xgAddress, subAddress, data);
00973     } else if (settings.device.commInterface == IMU_MODE_SPI) {
00974         SPIwriteByte(_xgAddress, subAddress, data);
00975     }
00976 }
00977 
00978 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
00979 {
00980     // Whether we're using I2C or SPI, write a byte using the
00981     // accelerometer-specific I2C address or SPI CS pin.
00982     if (settings.device.commInterface == IMU_MODE_I2C) {
00983         pc.printf("mo");
00984         return I2CwriteByte(_mAddress, subAddress, data);
00985     } else if (settings.device.commInterface == IMU_MODE_SPI)
00986         return SPIwriteByte(_mAddress, subAddress, data);
00987 }
00988 
00989 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
00990 {
00991     // Whether we're using I2C or SPI, read a byte using the
00992     // gyro-specific I2C address or SPI CS pin.
00993     if (settings.device.commInterface == IMU_MODE_I2C)
00994         return I2CreadByte(_xgAddress, subAddress);
00995     else if (settings.device.commInterface == IMU_MODE_SPI)
00996         return SPIreadByte(_xgAddress, subAddress);
00997 }
00998 
00999 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
01000 {
01001     // Whether we're using I2C or SPI, read multiple bytes using the
01002     // gyro-specific I2C address or SPI CS pin.
01003     if (settings.device.commInterface == IMU_MODE_I2C) {
01004         I2CreadBytes(_xgAddress, subAddress, dest, count);
01005     } else if (settings.device.commInterface == IMU_MODE_SPI) {
01006         SPIreadBytes(_xgAddress, subAddress, dest, count);
01007     }
01008 }
01009 
01010 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
01011 {
01012     // Whether we're using I2C or SPI, read a byte using the
01013     // accelerometer-specific I2C address or SPI CS pin.
01014     if (settings.device.commInterface == IMU_MODE_I2C)
01015         return I2CreadByte(_mAddress, subAddress);
01016     else if (settings.device.commInterface == IMU_MODE_SPI)
01017         return SPIreadByte(_mAddress, subAddress);
01018 }
01019 
01020 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
01021 {
01022     // Whether we're using I2C or SPI, read multiple bytes using the
01023     // accelerometer-specific I2C address or SPI CS pin.
01024     if (settings.device.commInterface == IMU_MODE_I2C)
01025         I2CreadBytes(_mAddress, subAddress, dest, count);
01026     else if (settings.device.commInterface == IMU_MODE_SPI)
01027         SPIreadBytes(_mAddress, subAddress, dest, count);
01028 }
01029 
01030 void LSM9DS1::initSPI()
01031 {
01032     /*
01033     pinMode(_xgAddress, OUTPUT);
01034     digitalWrite(_xgAddress, HIGH);
01035     pinMode(_mAddress, OUTPUT);
01036     digitalWrite(_mAddress, HIGH);
01037 
01038     SPI.begin();
01039     // Maximum SPI frequency is 10MHz, could divide by 2 here:
01040     SPI.setClockDivider(SPI_CLOCK_DIV2);
01041     // Data is read and written MSb first.
01042     SPI.setBitOrder(MSBFIRST);
01043     // Data is captured on rising edge of clock (CPHA = 0)
01044     // Base value of the clock is HIGH (CPOL = 1)
01045     SPI.setDataMode(SPI_MODE0);
01046     */
01047 }
01048 
01049 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
01050 {
01051     /*
01052     digitalWrite(csPin, LOW); // Initiate communication
01053 
01054     // If write, bit 0 (MSB) should be 0
01055     // If single write, bit 1 should be 0
01056     SPI.transfer(subAddress & 0x3F); // Send Address
01057     SPI.transfer(data); // Send data
01058 
01059     digitalWrite(csPin, HIGH); // Close communication
01060     */
01061 }
01062 
01063 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
01064 {
01065     uint8_t temp;
01066     // Use the multiple read function to read 1 byte.
01067     // Value is returned to `temp`.
01068     SPIreadBytes(csPin, subAddress, &temp, 1);
01069     return temp;
01070 }
01071 
01072 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
01073                            uint8_t * dest, uint8_t count)
01074 {
01075     // To indicate a read, set bit 0 (msb) of first byte to 1
01076     uint8_t rAddress = 0x80 | (subAddress & 0x3F);
01077     // Mag SPI port is different. If we're reading multiple bytes,
01078     // set bit 1 to 1. The remaining six bytes are the address to be read
01079     if ((csPin == _mAddress) && count > 1)
01080         rAddress |= 0x40;
01081 
01082     /*
01083     digitalWrite(csPin, LOW); // Initiate communication
01084     SPI.transfer(rAddress);
01085     for (int i=0; i<count; i++)
01086     {
01087         dest[i] = SPI.transfer(0x00); // Read into destination array
01088     }
01089     digitalWrite(csPin, HIGH); // Close communication
01090     */
01091 }
01092 
01093 void LSM9DS1::initI2C()
01094 {
01095     /*
01096     Wire.begin();   // Initialize I2C library
01097     */
01098 
01099     //already initialized in constructor!
01100 }
01101 
01102 // Wire.h read and write protocols
01103 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
01104 {
01105     /*
01106     Wire.beginTransmission(address);  // Initialize the Tx buffer
01107     Wire.write(subAddress);           // Put slave register address in Tx buffer
01108     Wire.write(data);                 // Put data in Tx buffer
01109     Wire.endTransmission();           // Send the Tx buffer
01110     */
01111     char temp_data[2] = {subAddress, data};
01112     i2c.write(address, temp_data, 2);
01113 }
01114 
01115 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
01116 {
01117     /*
01118     int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
01119     uint8_t data; // `data` will store the register data
01120 
01121     Wire.beginTransmission(address);         // Initialize the Tx buffer
01122     Wire.write(subAddress);                  // Put slave register address in Tx buffer
01123     Wire.endTransmission(true);             // Send the Tx buffer, but send a restart to keep connection alive
01124     Wire.requestFrom(address, (uint8_t) 1);  // Read one byte from slave register address
01125     while ((Wire.available() < 1) && (timeout-- > 0))
01126         delay(1);
01127 
01128     if (timeout <= 0)
01129         return 255; //! Bad! 255 will be misinterpreted as a good value.
01130 
01131     data = Wire.read();                      // Fill Rx buffer with result
01132     return data;                             // Return data read from slave register
01133     */
01134     char data;
01135     char temp[2] = {subAddress};
01136 
01137     i2c.write(address, temp, 1);
01138     //i2c.write(address & 0xFE);
01139     temp[1] = 0x00;
01140     i2c.write(address, temp, 1);
01141     //i2c.write( address | 0x01);
01142     int a = i2c.read(address, &data, 1);
01143     return data;
01144 }
01145 
01146 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
01147 {
01148     /*
01149     int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
01150     Wire.beginTransmission(address);   // Initialize the Tx buffer
01151     // Next send the register to be read. OR with 0x80 to indicate multi-read.
01152     Wire.write(subAddress | 0x80);     // Put slave register address in Tx buffer
01153 
01154     Wire.endTransmission(true);             // Send the Tx buffer, but send a restart to keep connection alive
01155     uint8_t i = 0;
01156     Wire.requestFrom(address, count);  // Read bytes from slave register address
01157     while ((Wire.available() < count) && (timeout-- > 0))
01158         delay(1);
01159     if (timeout <= 0)
01160         return -1;
01161 
01162     for (int i=0; i<count;)
01163     {
01164         if (Wire.available())
01165         {
01166             dest[i++] = Wire.read();
01167         }
01168     }
01169     return count;
01170     */
01171     int i;
01172     char temp_dest[count];
01173     char temp[1] = {subAddress};
01174     i2c.write(address, temp, 1);
01175     i2c.read(address, temp_dest, count);
01176 
01177     //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
01178     for (i=0; i < count; i++) {
01179         dest[i] = temp_dest[i];
01180     }
01181     return count;
01182 }