my fork

Dependencies:   mbed PinDetect

Committer:
curtdog4189
Date:
Thu Dec 05 02:05:07 2019 +0000
Revision:
3:a9bd86f2dcba
Parent:
2:36abf8e18ade
idk

Who changed what in which revision?

UserRevisionLine numberNew contents of line
jmar7 0:e8167f37725c 1 /******************************************************************************
jmar7 0:e8167f37725c 2 SFE_LSM9DS1.cpp
jmar7 0:e8167f37725c 3 SFE_LSM9DS1 Library Source File
jmar7 0:e8167f37725c 4 Jim Lindblom @ SparkFun Electronics
jmar7 0:e8167f37725c 5 Original Creation Date: February 27, 2015
jmar7 0:e8167f37725c 6 https://github.com/sparkfun/LSM9DS1_Breakout
jmar7 0:e8167f37725c 7
jmar7 0:e8167f37725c 8 This file implements all functions of the LSM9DS1 class. Functions here range
jmar7 0:e8167f37725c 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
jmar7 0:e8167f37725c 10 hardware reads and writes. Both SPI and I2C handler functions can be found
jmar7 0:e8167f37725c 11 towards the bottom of this file.
jmar7 0:e8167f37725c 12
jmar7 0:e8167f37725c 13 Development environment specifics:
jmar7 0:e8167f37725c 14 IDE: Arduino 1.6
jmar7 0:e8167f37725c 15 Hardware Platform: Arduino Uno
jmar7 0:e8167f37725c 16 LSM9DS1 Breakout Version: 1.0
jmar7 0:e8167f37725c 17
jmar7 0:e8167f37725c 18 This code is beerware; if you see me (or any other SparkFun employee) at the
jmar7 0:e8167f37725c 19 local, and you've found our code helpful, please buy us a round!
jmar7 0:e8167f37725c 20
jmar7 0:e8167f37725c 21 Distributed as-is; no warranty is given.
jmar7 0:e8167f37725c 22 ******************************************************************************/
jmar7 0:e8167f37725c 23
jmar7 0:e8167f37725c 24 #include "LSM9DS1.h"
jmar7 0:e8167f37725c 25 #include "LSM9DS1_Registers.h"
jmar7 0:e8167f37725c 26 #include "LSM9DS1_Types.h"
jmar7 0:e8167f37725c 27 //#include <Wire.h> // Wire library is used for I2C
jmar7 0:e8167f37725c 28 //#include <SPI.h> // SPI library is used for...SPI.
jmar7 0:e8167f37725c 29
jmar7 0:e8167f37725c 30 //#if defined(ARDUINO) && ARDUINO >= 100
jmar7 0:e8167f37725c 31 // #include "Arduino.h"
jmar7 0:e8167f37725c 32 //#else
jmar7 0:e8167f37725c 33 // #include "WProgram.h"
jmar7 0:e8167f37725c 34 //#endif
jmar7 0:e8167f37725c 35
jmar7 0:e8167f37725c 36 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
curtdog4189 3:a9bd86f2dcba 37 DigitalOut startCal(LED4);
curtdog4189 3:a9bd86f2dcba 38 DigitalOut finishedCal(LED3);
jmar7 0:e8167f37725c 39
jmar7 0:e8167f37725c 40 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
jmar7 0:e8167f37725c 41 extern Serial pc;
jmar7 0:e8167f37725c 42
jmar7 0:e8167f37725c 43 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
jmar7 0:e8167f37725c 44 :i2c(sda, scl)
jmar7 0:e8167f37725c 45 {
jmar7 0:e8167f37725c 46 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
jmar7 0:e8167f37725c 47 }
jmar7 1:87d535bf8c53 48 /*
jmar7 0:e8167f37725c 49 LSM9DS1::LSM9DS1()
jmar7 0:e8167f37725c 50 {
jmar7 0:e8167f37725c 51 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
jmar7 0:e8167f37725c 52 }
jmar7 0:e8167f37725c 53
jmar7 0:e8167f37725c 54 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
jmar7 0:e8167f37725c 55 {
jmar7 0:e8167f37725c 56 init(interface, xgAddr, mAddr);
jmar7 0:e8167f37725c 57 }
jmar7 0:e8167f37725c 58 */
jmar7 0:e8167f37725c 59
jmar7 0:e8167f37725c 60 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
jmar7 0:e8167f37725c 61 {
jmar7 0:e8167f37725c 62 settings.device.commInterface = interface;
jmar7 0:e8167f37725c 63 settings.device.agAddress = xgAddr;
jmar7 0:e8167f37725c 64 settings.device.mAddress = mAddr;
jmar7 0:e8167f37725c 65
jmar7 0:e8167f37725c 66 settings.gyro.enabled = true;
jmar7 0:e8167f37725c 67 settings.gyro.enableX = true;
jmar7 0:e8167f37725c 68 settings.gyro.enableY = true;
jmar7 0:e8167f37725c 69 settings.gyro.enableZ = true;
jmar7 0:e8167f37725c 70 // gyro scale can be 245, 500, or 2000
jmar7 0:e8167f37725c 71 settings.gyro.scale = 245;
jmar7 0:e8167f37725c 72 // gyro sample rate: value between 1-6
jmar7 0:e8167f37725c 73 // 1 = 14.9 4 = 238
jmar7 0:e8167f37725c 74 // 2 = 59.5 5 = 476
jmar7 0:e8167f37725c 75 // 3 = 119 6 = 952
jmar7 0:e8167f37725c 76 settings.gyro.sampleRate = 6;
jmar7 0:e8167f37725c 77 // gyro cutoff frequency: value between 0-3
jmar7 0:e8167f37725c 78 // Actual value of cutoff frequency depends
jmar7 0:e8167f37725c 79 // on sample rate.
jmar7 0:e8167f37725c 80 settings.gyro.bandwidth = 0;
jmar7 0:e8167f37725c 81 settings.gyro.lowPowerEnable = false;
jmar7 0:e8167f37725c 82 settings.gyro.HPFEnable = false;
jmar7 0:e8167f37725c 83 // Gyro HPF cutoff frequency: value between 0-9
jmar7 0:e8167f37725c 84 // Actual value depends on sample rate. Only applies
jmar7 0:e8167f37725c 85 // if gyroHPFEnable is true.
jmar7 0:e8167f37725c 86 settings.gyro.HPFCutoff = 0;
jmar7 0:e8167f37725c 87 settings.gyro.flipX = false;
jmar7 0:e8167f37725c 88 settings.gyro.flipY = false;
jmar7 0:e8167f37725c 89 settings.gyro.flipZ = false;
jmar7 0:e8167f37725c 90 settings.gyro.orientation = 0;
jmar7 0:e8167f37725c 91 settings.gyro.latchInterrupt = true;
jmar7 0:e8167f37725c 92
jmar7 0:e8167f37725c 93 settings.accel.enabled = true;
jmar7 0:e8167f37725c 94 settings.accel.enableX = true;
jmar7 0:e8167f37725c 95 settings.accel.enableY = true;
jmar7 0:e8167f37725c 96 settings.accel.enableZ = true;
jmar7 0:e8167f37725c 97 // accel scale can be 2, 4, 8, or 16
jmar7 0:e8167f37725c 98 settings.accel.scale = 2;
jmar7 0:e8167f37725c 99 // accel sample rate can be 1-6
jmar7 0:e8167f37725c 100 // 1 = 10 Hz 4 = 238 Hz
jmar7 0:e8167f37725c 101 // 2 = 50 Hz 5 = 476 Hz
jmar7 0:e8167f37725c 102 // 3 = 119 Hz 6 = 952 Hz
jmar7 0:e8167f37725c 103 settings.accel.sampleRate = 6;
4180_1 2:36abf8e18ade 104 // Accel cutoff freqeuncy can be any value between -1 - 3.
jmar7 0:e8167f37725c 105 // -1 = bandwidth determined by sample rate
jmar7 0:e8167f37725c 106 // 0 = 408 Hz 2 = 105 Hz
jmar7 0:e8167f37725c 107 // 1 = 211 Hz 3 = 50 Hz
jmar7 0:e8167f37725c 108 settings.accel.bandwidth = -1;
jmar7 0:e8167f37725c 109 settings.accel.highResEnable = false;
jmar7 0:e8167f37725c 110 // accelHighResBandwidth can be any value between 0-3
jmar7 0:e8167f37725c 111 // LP cutoff is set to a factor of sample rate
jmar7 0:e8167f37725c 112 // 0 = ODR/50 2 = ODR/9
jmar7 0:e8167f37725c 113 // 1 = ODR/100 3 = ODR/400
jmar7 0:e8167f37725c 114 settings.accel.highResBandwidth = 0;
jmar7 0:e8167f37725c 115
jmar7 0:e8167f37725c 116 settings.mag.enabled = true;
jmar7 0:e8167f37725c 117 // mag scale can be 4, 8, 12, or 16
jmar7 0:e8167f37725c 118 settings.mag.scale = 4;
jmar7 0:e8167f37725c 119 // mag data rate can be 0-7
jmar7 0:e8167f37725c 120 // 0 = 0.625 Hz 4 = 10 Hz
jmar7 0:e8167f37725c 121 // 1 = 1.25 Hz 5 = 20 Hz
jmar7 0:e8167f37725c 122 // 2 = 2.5 Hz 6 = 40 Hz
jmar7 0:e8167f37725c 123 // 3 = 5 Hz 7 = 80 Hz
jmar7 0:e8167f37725c 124 settings.mag.sampleRate = 7;
jmar7 0:e8167f37725c 125 settings.mag.tempCompensationEnable = false;
jmar7 0:e8167f37725c 126 // magPerformance can be any value between 0-3
jmar7 0:e8167f37725c 127 // 0 = Low power mode 2 = high performance
jmar7 0:e8167f37725c 128 // 1 = medium performance 3 = ultra-high performance
jmar7 0:e8167f37725c 129 settings.mag.XYPerformance = 3;
jmar7 0:e8167f37725c 130 settings.mag.ZPerformance = 3;
jmar7 0:e8167f37725c 131 settings.mag.lowPowerEnable = false;
jmar7 0:e8167f37725c 132 // magOperatingMode can be 0-2
jmar7 0:e8167f37725c 133 // 0 = continuous conversion
jmar7 0:e8167f37725c 134 // 1 = single-conversion
jmar7 0:e8167f37725c 135 // 2 = power down
jmar7 0:e8167f37725c 136 settings.mag.operatingMode = 0;
jmar7 0:e8167f37725c 137
jmar7 0:e8167f37725c 138 settings.temp.enabled = true;
4180_1 2:36abf8e18ade 139 for (int i=0; i<3; i++) {
jmar7 0:e8167f37725c 140 gBias[i] = 0;
jmar7 0:e8167f37725c 141 aBias[i] = 0;
jmar7 0:e8167f37725c 142 mBias[i] = 0;
jmar7 0:e8167f37725c 143 gBiasRaw[i] = 0;
jmar7 0:e8167f37725c 144 aBiasRaw[i] = 0;
jmar7 0:e8167f37725c 145 mBiasRaw[i] = 0;
jmar7 0:e8167f37725c 146 }
jmar7 0:e8167f37725c 147 _autoCalc = false;
jmar7 0:e8167f37725c 148 }
jmar7 0:e8167f37725c 149
jmar7 0:e8167f37725c 150
jmar7 0:e8167f37725c 151 uint16_t LSM9DS1::begin()
jmar7 0:e8167f37725c 152 {
jmar7 0:e8167f37725c 153 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
jmar7 0:e8167f37725c 154 _xgAddress = settings.device.agAddress;
jmar7 0:e8167f37725c 155 _mAddress = settings.device.mAddress;
4180_1 2:36abf8e18ade 156
jmar7 0:e8167f37725c 157 constrainScales();
jmar7 0:e8167f37725c 158 // Once we have the scale values, we can calculate the resolution
jmar7 0:e8167f37725c 159 // of each sensor. That's what these functions are for. One for each sensor
jmar7 0:e8167f37725c 160 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
jmar7 0:e8167f37725c 161 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
jmar7 0:e8167f37725c 162 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
4180_1 2:36abf8e18ade 163
jmar7 0:e8167f37725c 164 // Now, initialize our hardware interface.
jmar7 0:e8167f37725c 165 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
jmar7 0:e8167f37725c 166 initI2C(); // Initialize I2C
jmar7 0:e8167f37725c 167 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
jmar7 0:e8167f37725c 168 initSPI(); // Initialize SPI
4180_1 2:36abf8e18ade 169
jmar7 0:e8167f37725c 170 // To verify communication, we can read from the WHO_AM_I register of
jmar7 0:e8167f37725c 171 // each device. Store those in a variable so we can return them.
jmar7 0:e8167f37725c 172 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
jmar7 0:e8167f37725c 173 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
jmar7 0:e8167f37725c 174 pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
jmar7 0:e8167f37725c 175 uint16_t whoAmICombined = (xgTest << 8) | mTest;
4180_1 2:36abf8e18ade 176
jmar7 0:e8167f37725c 177 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
jmar7 0:e8167f37725c 178 return 0;
4180_1 2:36abf8e18ade 179
jmar7 0:e8167f37725c 180 // Gyro initialization stuff:
jmar7 0:e8167f37725c 181 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
4180_1 2:36abf8e18ade 182
jmar7 0:e8167f37725c 183 // Accelerometer initialization stuff:
jmar7 0:e8167f37725c 184 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
4180_1 2:36abf8e18ade 185
jmar7 0:e8167f37725c 186 // Magnetometer initialization stuff:
jmar7 0:e8167f37725c 187 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
jmar7 0:e8167f37725c 188
jmar7 0:e8167f37725c 189 // Once everything is initialized, return the WHO_AM_I registers we read:
jmar7 0:e8167f37725c 190 return whoAmICombined;
jmar7 0:e8167f37725c 191 }
jmar7 0:e8167f37725c 192
jmar7 0:e8167f37725c 193 void LSM9DS1::initGyro()
jmar7 0:e8167f37725c 194 {
jmar7 0:e8167f37725c 195 uint8_t tempRegValue = 0;
4180_1 2:36abf8e18ade 196
jmar7 0:e8167f37725c 197 // CTRL_REG1_G (Default value: 0x00)
jmar7 0:e8167f37725c 198 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
jmar7 0:e8167f37725c 199 // ODR_G[2:0] - Output data rate selection
jmar7 0:e8167f37725c 200 // FS_G[1:0] - Gyroscope full-scale selection
jmar7 0:e8167f37725c 201 // BW_G[1:0] - Gyroscope bandwidth selection
4180_1 2:36abf8e18ade 202
jmar7 0:e8167f37725c 203 // To disable gyro, set sample rate bits to 0. We'll only set sample
jmar7 0:e8167f37725c 204 // rate if the gyro is enabled.
4180_1 2:36abf8e18ade 205 if (settings.gyro.enabled) {
jmar7 0:e8167f37725c 206 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
jmar7 0:e8167f37725c 207 }
4180_1 2:36abf8e18ade 208 switch (settings.gyro.scale) {
jmar7 0:e8167f37725c 209 case 500:
jmar7 0:e8167f37725c 210 tempRegValue |= (0x1 << 3);
jmar7 0:e8167f37725c 211 break;
jmar7 0:e8167f37725c 212 case 2000:
jmar7 0:e8167f37725c 213 tempRegValue |= (0x3 << 3);
jmar7 0:e8167f37725c 214 break;
4180_1 2:36abf8e18ade 215 // Otherwise we'll set it to 245 dps (0x0 << 4)
jmar7 0:e8167f37725c 216 }
jmar7 0:e8167f37725c 217 tempRegValue |= (settings.gyro.bandwidth & 0x3);
jmar7 0:e8167f37725c 218 xgWriteByte(CTRL_REG1_G, tempRegValue);
4180_1 2:36abf8e18ade 219
jmar7 0:e8167f37725c 220 // CTRL_REG2_G (Default value: 0x00)
jmar7 0:e8167f37725c 221 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
jmar7 0:e8167f37725c 222 // INT_SEL[1:0] - INT selection configuration
jmar7 0:e8167f37725c 223 // OUT_SEL[1:0] - Out selection configuration
4180_1 2:36abf8e18ade 224 xgWriteByte(CTRL_REG2_G, 0x00);
4180_1 2:36abf8e18ade 225
jmar7 0:e8167f37725c 226 // CTRL_REG3_G (Default value: 0x00)
jmar7 0:e8167f37725c 227 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
jmar7 0:e8167f37725c 228 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
jmar7 0:e8167f37725c 229 // HP_EN - HPF enable (0:disabled, 1: enabled)
jmar7 0:e8167f37725c 230 // HPCF_G[3:0] - HPF cutoff frequency
jmar7 0:e8167f37725c 231 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
4180_1 2:36abf8e18ade 232 if (settings.gyro.HPFEnable) {
jmar7 0:e8167f37725c 233 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
jmar7 0:e8167f37725c 234 }
jmar7 0:e8167f37725c 235 xgWriteByte(CTRL_REG3_G, tempRegValue);
4180_1 2:36abf8e18ade 236
jmar7 0:e8167f37725c 237 // CTRL_REG4 (Default value: 0x38)
jmar7 0:e8167f37725c 238 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
jmar7 0:e8167f37725c 239 // Zen_G - Z-axis output enable (0:disable, 1:enable)
jmar7 0:e8167f37725c 240 // Yen_G - Y-axis output enable (0:disable, 1:enable)
jmar7 0:e8167f37725c 241 // Xen_G - X-axis output enable (0:disable, 1:enable)
jmar7 0:e8167f37725c 242 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
jmar7 0:e8167f37725c 243 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
jmar7 0:e8167f37725c 244 tempRegValue = 0;
jmar7 0:e8167f37725c 245 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
jmar7 0:e8167f37725c 246 if (settings.gyro.enableY) tempRegValue |= (1<<4);
jmar7 0:e8167f37725c 247 if (settings.gyro.enableX) tempRegValue |= (1<<3);
jmar7 0:e8167f37725c 248 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
jmar7 0:e8167f37725c 249 xgWriteByte(CTRL_REG4, tempRegValue);
4180_1 2:36abf8e18ade 250
jmar7 0:e8167f37725c 251 // ORIENT_CFG_G (Default value: 0x00)
jmar7 0:e8167f37725c 252 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
jmar7 0:e8167f37725c 253 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
jmar7 0:e8167f37725c 254 // Orient [2:0] - Directional user orientation selection
jmar7 0:e8167f37725c 255 tempRegValue = 0;
jmar7 0:e8167f37725c 256 if (settings.gyro.flipX) tempRegValue |= (1<<5);
jmar7 0:e8167f37725c 257 if (settings.gyro.flipY) tempRegValue |= (1<<4);
jmar7 0:e8167f37725c 258 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
jmar7 0:e8167f37725c 259 xgWriteByte(ORIENT_CFG_G, tempRegValue);
jmar7 0:e8167f37725c 260 }
jmar7 0:e8167f37725c 261
jmar7 0:e8167f37725c 262 void LSM9DS1::initAccel()
jmar7 0:e8167f37725c 263 {
jmar7 0:e8167f37725c 264 uint8_t tempRegValue = 0;
4180_1 2:36abf8e18ade 265
jmar7 0:e8167f37725c 266 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
jmar7 0:e8167f37725c 267 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
jmar7 0:e8167f37725c 268 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
jmar7 0:e8167f37725c 269 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
jmar7 0:e8167f37725c 270 // Zen_XL - Z-axis output enabled
jmar7 0:e8167f37725c 271 // Yen_XL - Y-axis output enabled
jmar7 0:e8167f37725c 272 // Xen_XL - X-axis output enabled
jmar7 0:e8167f37725c 273 if (settings.accel.enableZ) tempRegValue |= (1<<5);
jmar7 0:e8167f37725c 274 if (settings.accel.enableY) tempRegValue |= (1<<4);
jmar7 0:e8167f37725c 275 if (settings.accel.enableX) tempRegValue |= (1<<3);
4180_1 2:36abf8e18ade 276
jmar7 0:e8167f37725c 277 xgWriteByte(CTRL_REG5_XL, tempRegValue);
4180_1 2:36abf8e18ade 278
jmar7 0:e8167f37725c 279 // CTRL_REG6_XL (0x20) (Default value: 0x00)
jmar7 0:e8167f37725c 280 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
jmar7 0:e8167f37725c 281 // ODR_XL[2:0] - Output data rate & power mode selection
jmar7 0:e8167f37725c 282 // FS_XL[1:0] - Full-scale selection
jmar7 0:e8167f37725c 283 // BW_SCAL_ODR - Bandwidth selection
jmar7 0:e8167f37725c 284 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
jmar7 0:e8167f37725c 285 tempRegValue = 0;
jmar7 0:e8167f37725c 286 // To disable the accel, set the sampleRate bits to 0.
4180_1 2:36abf8e18ade 287 if (settings.accel.enabled) {
jmar7 0:e8167f37725c 288 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
jmar7 0:e8167f37725c 289 }
4180_1 2:36abf8e18ade 290 switch (settings.accel.scale) {
jmar7 0:e8167f37725c 291 case 4:
jmar7 0:e8167f37725c 292 tempRegValue |= (0x2 << 3);
jmar7 0:e8167f37725c 293 break;
jmar7 0:e8167f37725c 294 case 8:
jmar7 0:e8167f37725c 295 tempRegValue |= (0x3 << 3);
jmar7 0:e8167f37725c 296 break;
jmar7 0:e8167f37725c 297 case 16:
jmar7 0:e8167f37725c 298 tempRegValue |= (0x1 << 3);
jmar7 0:e8167f37725c 299 break;
4180_1 2:36abf8e18ade 300 // Otherwise it'll be set to 2g (0x0 << 3)
jmar7 0:e8167f37725c 301 }
4180_1 2:36abf8e18ade 302 if (settings.accel.bandwidth >= 0) {
jmar7 0:e8167f37725c 303 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
jmar7 0:e8167f37725c 304 tempRegValue |= (settings.accel.bandwidth & 0x03);
jmar7 0:e8167f37725c 305 }
jmar7 0:e8167f37725c 306 xgWriteByte(CTRL_REG6_XL, tempRegValue);
4180_1 2:36abf8e18ade 307
jmar7 0:e8167f37725c 308 // CTRL_REG7_XL (0x21) (Default value: 0x00)
jmar7 0:e8167f37725c 309 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
jmar7 0:e8167f37725c 310 // HR - High resolution mode (0: disable, 1: enable)
jmar7 0:e8167f37725c 311 // DCF[1:0] - Digital filter cutoff frequency
jmar7 0:e8167f37725c 312 // FDS - Filtered data selection
jmar7 0:e8167f37725c 313 // HPIS1 - HPF enabled for interrupt function
jmar7 0:e8167f37725c 314 tempRegValue = 0;
4180_1 2:36abf8e18ade 315 if (settings.accel.highResEnable) {
jmar7 0:e8167f37725c 316 tempRegValue |= (1<<7); // Set HR bit
jmar7 0:e8167f37725c 317 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
jmar7 0:e8167f37725c 318 }
jmar7 0:e8167f37725c 319 xgWriteByte(CTRL_REG7_XL, tempRegValue);
jmar7 0:e8167f37725c 320 }
jmar7 0:e8167f37725c 321
jmar7 0:e8167f37725c 322 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
jmar7 0:e8167f37725c 323 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
jmar7 0:e8167f37725c 324 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
jmar7 0:e8167f37725c 325 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
jmar7 0:e8167f37725c 326 // subtract the biases ourselves. This results in a more accurate measurement in general and can
jmar7 0:e8167f37725c 327 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
jmar7 0:e8167f37725c 328 // is good practice.
jmar7 0:e8167f37725c 329 void LSM9DS1::calibrate(bool autoCalc)
4180_1 2:36abf8e18ade 330 {
jmar7 0:e8167f37725c 331 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
jmar7 0:e8167f37725c 332 uint8_t samples = 0;
jmar7 0:e8167f37725c 333 int ii;
jmar7 0:e8167f37725c 334 int32_t aBiasRawTemp[3] = {0, 0, 0};
jmar7 0:e8167f37725c 335 int32_t gBiasRawTemp[3] = {0, 0, 0};
4180_1 2:36abf8e18ade 336 pc.printf("\n\rPlace IMU on level surface and do not move it for gyro and accel calibration.\n\r");
4180_1 2:36abf8e18ade 337 wait(1);
jmar7 0:e8167f37725c 338 // Turn on FIFO and set threshold to 32 samples
jmar7 0:e8167f37725c 339 enableFIFO(true);
jmar7 0:e8167f37725c 340 setFIFO(FIFO_THS, 0x1F);
4180_1 2:36abf8e18ade 341 while (samples < 0x1F) {
jmar7 0:e8167f37725c 342 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
jmar7 0:e8167f37725c 343 }
4180_1 2:36abf8e18ade 344 for(ii = 0; ii < samples ; ii++) {
4180_1 2:36abf8e18ade 345 // Read the gyro data stored in the FIFO
jmar7 0:e8167f37725c 346 readGyro();
jmar7 0:e8167f37725c 347 gBiasRawTemp[0] += gx;
jmar7 0:e8167f37725c 348 gBiasRawTemp[1] += gy;
jmar7 0:e8167f37725c 349 gBiasRawTemp[2] += gz;
jmar7 0:e8167f37725c 350 readAccel();
jmar7 0:e8167f37725c 351 aBiasRawTemp[0] += ax;
jmar7 0:e8167f37725c 352 aBiasRawTemp[1] += ay;
jmar7 0:e8167f37725c 353 aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
4180_1 2:36abf8e18ade 354 }
4180_1 2:36abf8e18ade 355 for (ii = 0; ii < 3; ii++) {
jmar7 0:e8167f37725c 356 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
jmar7 0:e8167f37725c 357 gBias[ii] = calcGyro(gBiasRaw[ii]);
jmar7 0:e8167f37725c 358 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
jmar7 0:e8167f37725c 359 aBias[ii] = calcAccel(aBiasRaw[ii]);
jmar7 0:e8167f37725c 360 }
4180_1 2:36abf8e18ade 361
jmar7 0:e8167f37725c 362 enableFIFO(false);
jmar7 0:e8167f37725c 363 setFIFO(FIFO_OFF, 0x00);
4180_1 2:36abf8e18ade 364
jmar7 0:e8167f37725c 365 if (autoCalc) _autoCalc = true;
jmar7 0:e8167f37725c 366 }
jmar7 0:e8167f37725c 367
jmar7 0:e8167f37725c 368 void LSM9DS1::calibrateMag(bool loadIn)
jmar7 0:e8167f37725c 369 {
jmar7 0:e8167f37725c 370 int i, j;
jmar7 0:e8167f37725c 371 int16_t magMin[3] = {0, 0, 0};
jmar7 0:e8167f37725c 372 int16_t magMax[3] = {0, 0, 0}; // The road warrior
curtdog4189 3:a9bd86f2dcba 373 startCal = 1;
curtdog4189 3:a9bd86f2dcba 374 //pc.printf("\n\n\r Rotate IMU device at least 360 in horizontal plane for magnetometer calibration\n\r");
4180_1 2:36abf8e18ade 375 wait(0.5);
4180_1 2:36abf8e18ade 376 for (i=0; i<1000; i++) {
4180_1 2:36abf8e18ade 377 while (!magAvailable(ALL_AXIS));
jmar7 0:e8167f37725c 378 readMag();
jmar7 0:e8167f37725c 379 int16_t magTemp[3] = {0, 0, 0};
4180_1 2:36abf8e18ade 380 magTemp[0] = mx;
jmar7 0:e8167f37725c 381 magTemp[1] = my;
jmar7 0:e8167f37725c 382 magTemp[2] = mz;
4180_1 2:36abf8e18ade 383 for (j = 0; j < 3; j++) {
jmar7 0:e8167f37725c 384 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
jmar7 0:e8167f37725c 385 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
jmar7 0:e8167f37725c 386 }
jmar7 0:e8167f37725c 387 }
4180_1 2:36abf8e18ade 388 for (j = 0; j < 3; j++) {
jmar7 0:e8167f37725c 389 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
jmar7 0:e8167f37725c 390 mBias[j] = calcMag(mBiasRaw[j]);
4180_1 2:36abf8e18ade 391 pc.printf("%f ",mBias[j]);
jmar7 0:e8167f37725c 392 if (loadIn)
jmar7 0:e8167f37725c 393 magOffset(j, mBiasRaw[j]);
jmar7 0:e8167f37725c 394 }
curtdog4189 3:a9bd86f2dcba 395 //pc.printf("\n\rMAG calibration done\n\r");
curtdog4189 3:a9bd86f2dcba 396 finishedCal = 1;
curtdog4189 3:a9bd86f2dcba 397 startCal = 0;
curtdog4189 3:a9bd86f2dcba 398 wait(.5);
curtdog4189 3:a9bd86f2dcba 399 finishedCal = 0;
jmar7 0:e8167f37725c 400 }
jmar7 0:e8167f37725c 401 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
jmar7 0:e8167f37725c 402 {
jmar7 0:e8167f37725c 403 if (axis > 2)
jmar7 0:e8167f37725c 404 return;
jmar7 0:e8167f37725c 405 uint8_t msb, lsb;
jmar7 0:e8167f37725c 406 msb = (offset & 0xFF00) >> 8;
jmar7 0:e8167f37725c 407 lsb = offset & 0x00FF;
jmar7 0:e8167f37725c 408 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
jmar7 0:e8167f37725c 409 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
jmar7 0:e8167f37725c 410 }
jmar7 0:e8167f37725c 411
jmar7 0:e8167f37725c 412 void LSM9DS1::initMag()
jmar7 0:e8167f37725c 413 {
jmar7 0:e8167f37725c 414 uint8_t tempRegValue = 0;
4180_1 2:36abf8e18ade 415
jmar7 0:e8167f37725c 416 // CTRL_REG1_M (Default value: 0x10)
jmar7 0:e8167f37725c 417 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
jmar7 0:e8167f37725c 418 // TEMP_COMP - Temperature compensation
jmar7 0:e8167f37725c 419 // OM[1:0] - X & Y axes op mode selection
jmar7 0:e8167f37725c 420 // 00:low-power, 01:medium performance
jmar7 0:e8167f37725c 421 // 10: high performance, 11:ultra-high performance
jmar7 0:e8167f37725c 422 // DO[2:0] - Output data rate selection
jmar7 0:e8167f37725c 423 // ST - Self-test enable
jmar7 0:e8167f37725c 424 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
jmar7 0:e8167f37725c 425 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
jmar7 0:e8167f37725c 426 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
jmar7 0:e8167f37725c 427 mWriteByte(CTRL_REG1_M, tempRegValue);
4180_1 2:36abf8e18ade 428
jmar7 0:e8167f37725c 429 // CTRL_REG2_M (Default value 0x00)
jmar7 0:e8167f37725c 430 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
jmar7 0:e8167f37725c 431 // FS[1:0] - Full-scale configuration
jmar7 0:e8167f37725c 432 // REBOOT - Reboot memory content (0:normal, 1:reboot)
jmar7 0:e8167f37725c 433 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
jmar7 0:e8167f37725c 434 tempRegValue = 0;
4180_1 2:36abf8e18ade 435 switch (settings.mag.scale) {
4180_1 2:36abf8e18ade 436 case 8:
4180_1 2:36abf8e18ade 437 tempRegValue |= (0x1 << 5);
4180_1 2:36abf8e18ade 438 break;
4180_1 2:36abf8e18ade 439 case 12:
4180_1 2:36abf8e18ade 440 tempRegValue |= (0x2 << 5);
4180_1 2:36abf8e18ade 441 break;
4180_1 2:36abf8e18ade 442 case 16:
4180_1 2:36abf8e18ade 443 tempRegValue |= (0x3 << 5);
4180_1 2:36abf8e18ade 444 break;
4180_1 2:36abf8e18ade 445 // Otherwise we'll default to 4 gauss (00)
jmar7 0:e8167f37725c 446 }
jmar7 0:e8167f37725c 447 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
4180_1 2:36abf8e18ade 448
jmar7 0:e8167f37725c 449 // CTRL_REG3_M (Default value: 0x03)
jmar7 0:e8167f37725c 450 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
jmar7 0:e8167f37725c 451 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
jmar7 0:e8167f37725c 452 // LP - Low-power mode cofiguration (1:enable)
jmar7 0:e8167f37725c 453 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
jmar7 0:e8167f37725c 454 // MD[1:0] - Operating mode
jmar7 0:e8167f37725c 455 // 00:continuous conversion, 01:single-conversion,
jmar7 0:e8167f37725c 456 // 10,11: Power-down
jmar7 0:e8167f37725c 457 tempRegValue = 0;
jmar7 0:e8167f37725c 458 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
jmar7 0:e8167f37725c 459 tempRegValue |= (settings.mag.operatingMode & 0x3);
jmar7 0:e8167f37725c 460 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
4180_1 2:36abf8e18ade 461
jmar7 0:e8167f37725c 462 // CTRL_REG4_M (Default value: 0x00)
jmar7 0:e8167f37725c 463 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
jmar7 0:e8167f37725c 464 // OMZ[1:0] - Z-axis operative mode selection
jmar7 0:e8167f37725c 465 // 00:low-power mode, 01:medium performance
jmar7 0:e8167f37725c 466 // 10:high performance, 10:ultra-high performance
jmar7 0:e8167f37725c 467 // BLE - Big/little endian data
jmar7 0:e8167f37725c 468 tempRegValue = 0;
jmar7 0:e8167f37725c 469 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
jmar7 0:e8167f37725c 470 mWriteByte(CTRL_REG4_M, tempRegValue);
4180_1 2:36abf8e18ade 471
jmar7 0:e8167f37725c 472 // CTRL_REG5_M (Default value: 0x00)
jmar7 0:e8167f37725c 473 // [0][BDU][0][0][0][0][0][0]
jmar7 0:e8167f37725c 474 // BDU - Block data update for magnetic data
jmar7 0:e8167f37725c 475 // 0:continuous, 1:not updated until MSB/LSB are read
jmar7 0:e8167f37725c 476 tempRegValue = 0;
jmar7 0:e8167f37725c 477 mWriteByte(CTRL_REG5_M, tempRegValue);
jmar7 0:e8167f37725c 478 }
jmar7 0:e8167f37725c 479
jmar7 0:e8167f37725c 480 uint8_t LSM9DS1::accelAvailable()
jmar7 0:e8167f37725c 481 {
jmar7 0:e8167f37725c 482 uint8_t status = xgReadByte(STATUS_REG_1);
4180_1 2:36abf8e18ade 483
jmar7 0:e8167f37725c 484 return (status & (1<<0));
jmar7 0:e8167f37725c 485 }
jmar7 0:e8167f37725c 486
jmar7 0:e8167f37725c 487 uint8_t LSM9DS1::gyroAvailable()
jmar7 0:e8167f37725c 488 {
jmar7 0:e8167f37725c 489 uint8_t status = xgReadByte(STATUS_REG_1);
4180_1 2:36abf8e18ade 490
jmar7 0:e8167f37725c 491 return ((status & (1<<1)) >> 1);
jmar7 0:e8167f37725c 492 }
jmar7 0:e8167f37725c 493
jmar7 0:e8167f37725c 494 uint8_t LSM9DS1::tempAvailable()
jmar7 0:e8167f37725c 495 {
jmar7 0:e8167f37725c 496 uint8_t status = xgReadByte(STATUS_REG_1);
4180_1 2:36abf8e18ade 497
jmar7 0:e8167f37725c 498 return ((status & (1<<2)) >> 2);
jmar7 0:e8167f37725c 499 }
jmar7 0:e8167f37725c 500
jmar7 0:e8167f37725c 501 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
jmar7 0:e8167f37725c 502 {
jmar7 0:e8167f37725c 503 uint8_t status;
jmar7 0:e8167f37725c 504 status = mReadByte(STATUS_REG_M);
4180_1 2:36abf8e18ade 505
jmar7 0:e8167f37725c 506 return ((status & (1<<axis)) >> axis);
jmar7 0:e8167f37725c 507 }
jmar7 0:e8167f37725c 508
jmar7 0:e8167f37725c 509 void LSM9DS1::readAccel()
jmar7 0:e8167f37725c 510 {
4180_1 2:36abf8e18ade 511 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
jmar7 0:e8167f37725c 512 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
jmar7 0:e8167f37725c 513 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
jmar7 0:e8167f37725c 514 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
jmar7 0:e8167f37725c 515 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
4180_1 2:36abf8e18ade 516 if (_autoCalc) {
jmar7 0:e8167f37725c 517 ax -= aBiasRaw[X_AXIS];
jmar7 0:e8167f37725c 518 ay -= aBiasRaw[Y_AXIS];
jmar7 0:e8167f37725c 519 az -= aBiasRaw[Z_AXIS];
jmar7 0:e8167f37725c 520 }
jmar7 0:e8167f37725c 521 }
jmar7 0:e8167f37725c 522
jmar7 0:e8167f37725c 523 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
jmar7 0:e8167f37725c 524 {
jmar7 0:e8167f37725c 525 uint8_t temp[2];
jmar7 0:e8167f37725c 526 int16_t value;
jmar7 0:e8167f37725c 527 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
jmar7 0:e8167f37725c 528 value = (temp[1] << 8) | temp[0];
4180_1 2:36abf8e18ade 529
jmar7 0:e8167f37725c 530 if (_autoCalc)
jmar7 0:e8167f37725c 531 value -= aBiasRaw[axis];
4180_1 2:36abf8e18ade 532
jmar7 0:e8167f37725c 533 return value;
jmar7 0:e8167f37725c 534 }
jmar7 0:e8167f37725c 535
jmar7 0:e8167f37725c 536 void LSM9DS1::readMag()
jmar7 0:e8167f37725c 537 {
4180_1 2:36abf8e18ade 538 uint8_t temp[6]; // We'll read six bytes from the mag into temp
jmar7 0:e8167f37725c 539 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
jmar7 0:e8167f37725c 540 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
jmar7 0:e8167f37725c 541 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
jmar7 0:e8167f37725c 542 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
4180_1 2:36abf8e18ade 543 mx = mx - mBiasRaw[0];
4180_1 2:36abf8e18ade 544 my = my - mBiasRaw[1];
4180_1 2:36abf8e18ade 545 mz = mz - mBiasRaw[2];
jmar7 0:e8167f37725c 546 }
jmar7 0:e8167f37725c 547
jmar7 0:e8167f37725c 548 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
jmar7 0:e8167f37725c 549 {
jmar7 0:e8167f37725c 550 uint8_t temp[2];
jmar7 0:e8167f37725c 551 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
jmar7 0:e8167f37725c 552 return (temp[1] << 8) | temp[0];
jmar7 0:e8167f37725c 553 }
jmar7 0:e8167f37725c 554
jmar7 0:e8167f37725c 555 void LSM9DS1::readTemp()
jmar7 0:e8167f37725c 556 {
4180_1 2:36abf8e18ade 557 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
jmar7 0:e8167f37725c 558 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
4180_1 2:36abf8e18ade 559 temperature = (int16_t)((temp[1] << 8) | temp[0]);
jmar7 0:e8167f37725c 560 }
jmar7 0:e8167f37725c 561
jmar7 0:e8167f37725c 562 void LSM9DS1::readGyro()
jmar7 0:e8167f37725c 563 {
jmar7 0:e8167f37725c 564 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
jmar7 0:e8167f37725c 565 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
jmar7 0:e8167f37725c 566 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
jmar7 0:e8167f37725c 567 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
jmar7 0:e8167f37725c 568 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
4180_1 2:36abf8e18ade 569 if (_autoCalc) {
jmar7 0:e8167f37725c 570 gx -= gBiasRaw[X_AXIS];
jmar7 0:e8167f37725c 571 gy -= gBiasRaw[Y_AXIS];
jmar7 0:e8167f37725c 572 gz -= gBiasRaw[Z_AXIS];
jmar7 0:e8167f37725c 573 }
jmar7 0:e8167f37725c 574 }
jmar7 0:e8167f37725c 575
jmar7 0:e8167f37725c 576 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
jmar7 0:e8167f37725c 577 {
jmar7 0:e8167f37725c 578 uint8_t temp[2];
jmar7 0:e8167f37725c 579 int16_t value;
4180_1 2:36abf8e18ade 580
jmar7 0:e8167f37725c 581 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
4180_1 2:36abf8e18ade 582
jmar7 0:e8167f37725c 583 value = (temp[1] << 8) | temp[0];
4180_1 2:36abf8e18ade 584
jmar7 0:e8167f37725c 585 if (_autoCalc)
jmar7 0:e8167f37725c 586 value -= gBiasRaw[axis];
4180_1 2:36abf8e18ade 587
jmar7 0:e8167f37725c 588 return value;
jmar7 0:e8167f37725c 589 }
jmar7 0:e8167f37725c 590
jmar7 0:e8167f37725c 591 float LSM9DS1::calcGyro(int16_t gyro)
jmar7 0:e8167f37725c 592 {
jmar7 0:e8167f37725c 593 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
4180_1 2:36abf8e18ade 594 return gRes * gyro;
jmar7 0:e8167f37725c 595 }
jmar7 0:e8167f37725c 596
jmar7 0:e8167f37725c 597 float LSM9DS1::calcAccel(int16_t accel)
jmar7 0:e8167f37725c 598 {
jmar7 0:e8167f37725c 599 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
jmar7 0:e8167f37725c 600 return aRes * accel;
jmar7 0:e8167f37725c 601 }
jmar7 0:e8167f37725c 602
jmar7 0:e8167f37725c 603 float LSM9DS1::calcMag(int16_t mag)
jmar7 0:e8167f37725c 604 {
jmar7 0:e8167f37725c 605 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
jmar7 0:e8167f37725c 606 return mRes * mag;
jmar7 0:e8167f37725c 607 }
jmar7 0:e8167f37725c 608
jmar7 0:e8167f37725c 609 void LSM9DS1::setGyroScale(uint16_t gScl)
jmar7 0:e8167f37725c 610 {
jmar7 0:e8167f37725c 611 // Read current value of CTRL_REG1_G:
jmar7 0:e8167f37725c 612 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
jmar7 0:e8167f37725c 613 // Mask out scale bits (3 & 4):
jmar7 0:e8167f37725c 614 ctrl1RegValue &= 0xE7;
4180_1 2:36abf8e18ade 615 switch (gScl) {
jmar7 0:e8167f37725c 616 case 500:
jmar7 0:e8167f37725c 617 ctrl1RegValue |= (0x1 << 3);
jmar7 0:e8167f37725c 618 settings.gyro.scale = 500;
jmar7 0:e8167f37725c 619 break;
jmar7 0:e8167f37725c 620 case 2000:
jmar7 0:e8167f37725c 621 ctrl1RegValue |= (0x3 << 3);
jmar7 0:e8167f37725c 622 settings.gyro.scale = 2000;
jmar7 0:e8167f37725c 623 break;
jmar7 0:e8167f37725c 624 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
jmar7 0:e8167f37725c 625 settings.gyro.scale = 245;
jmar7 0:e8167f37725c 626 break;
jmar7 0:e8167f37725c 627 }
jmar7 0:e8167f37725c 628 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
4180_1 2:36abf8e18ade 629
4180_1 2:36abf8e18ade 630 calcgRes();
jmar7 0:e8167f37725c 631 }
jmar7 0:e8167f37725c 632
jmar7 0:e8167f37725c 633 void LSM9DS1::setAccelScale(uint8_t aScl)
jmar7 0:e8167f37725c 634 {
jmar7 0:e8167f37725c 635 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
jmar7 0:e8167f37725c 636 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
jmar7 0:e8167f37725c 637 // Mask out accel scale bits:
jmar7 0:e8167f37725c 638 tempRegValue &= 0xE7;
4180_1 2:36abf8e18ade 639
4180_1 2:36abf8e18ade 640 switch (aScl) {
jmar7 0:e8167f37725c 641 case 4:
jmar7 0:e8167f37725c 642 tempRegValue |= (0x2 << 3);
jmar7 0:e8167f37725c 643 settings.accel.scale = 4;
jmar7 0:e8167f37725c 644 break;
jmar7 0:e8167f37725c 645 case 8:
jmar7 0:e8167f37725c 646 tempRegValue |= (0x3 << 3);
jmar7 0:e8167f37725c 647 settings.accel.scale = 8;
jmar7 0:e8167f37725c 648 break;
jmar7 0:e8167f37725c 649 case 16:
jmar7 0:e8167f37725c 650 tempRegValue |= (0x1 << 3);
jmar7 0:e8167f37725c 651 settings.accel.scale = 16;
jmar7 0:e8167f37725c 652 break;
jmar7 0:e8167f37725c 653 default: // Otherwise it'll be set to 2g (0x0 << 3)
jmar7 0:e8167f37725c 654 settings.accel.scale = 2;
jmar7 0:e8167f37725c 655 break;
jmar7 0:e8167f37725c 656 }
jmar7 0:e8167f37725c 657 xgWriteByte(CTRL_REG6_XL, tempRegValue);
4180_1 2:36abf8e18ade 658
jmar7 0:e8167f37725c 659 // Then calculate a new aRes, which relies on aScale being set correctly:
jmar7 0:e8167f37725c 660 calcaRes();
jmar7 0:e8167f37725c 661 }
jmar7 0:e8167f37725c 662
jmar7 0:e8167f37725c 663 void LSM9DS1::setMagScale(uint8_t mScl)
jmar7 0:e8167f37725c 664 {
jmar7 0:e8167f37725c 665 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
jmar7 0:e8167f37725c 666 uint8_t temp = mReadByte(CTRL_REG2_M);
jmar7 0:e8167f37725c 667 // Then mask out the mag scale bits:
jmar7 0:e8167f37725c 668 temp &= 0xFF^(0x3 << 5);
4180_1 2:36abf8e18ade 669
4180_1 2:36abf8e18ade 670 switch (mScl) {
4180_1 2:36abf8e18ade 671 case 8:
4180_1 2:36abf8e18ade 672 temp |= (0x1 << 5);
4180_1 2:36abf8e18ade 673 settings.mag.scale = 8;
4180_1 2:36abf8e18ade 674 break;
4180_1 2:36abf8e18ade 675 case 12:
4180_1 2:36abf8e18ade 676 temp |= (0x2 << 5);
4180_1 2:36abf8e18ade 677 settings.mag.scale = 12;
4180_1 2:36abf8e18ade 678 break;
4180_1 2:36abf8e18ade 679 case 16:
4180_1 2:36abf8e18ade 680 temp |= (0x3 << 5);
4180_1 2:36abf8e18ade 681 settings.mag.scale = 16;
4180_1 2:36abf8e18ade 682 break;
4180_1 2:36abf8e18ade 683 default: // Otherwise we'll default to 4 gauss (00)
4180_1 2:36abf8e18ade 684 settings.mag.scale = 4;
4180_1 2:36abf8e18ade 685 break;
4180_1 2:36abf8e18ade 686 }
4180_1 2:36abf8e18ade 687
jmar7 0:e8167f37725c 688 // And write the new register value back into CTRL_REG6_XM:
jmar7 0:e8167f37725c 689 mWriteByte(CTRL_REG2_M, temp);
4180_1 2:36abf8e18ade 690
jmar7 0:e8167f37725c 691 // We've updated the sensor, but we also need to update our class variables
jmar7 0:e8167f37725c 692 // First update mScale:
jmar7 0:e8167f37725c 693 //mScale = mScl;
jmar7 0:e8167f37725c 694 // Then calculate a new mRes, which relies on mScale being set correctly:
jmar7 0:e8167f37725c 695 calcmRes();
jmar7 0:e8167f37725c 696 }
jmar7 0:e8167f37725c 697
jmar7 0:e8167f37725c 698 void LSM9DS1::setGyroODR(uint8_t gRate)
jmar7 0:e8167f37725c 699 {
jmar7 0:e8167f37725c 700 // Only do this if gRate is not 0 (which would disable the gyro)
4180_1 2:36abf8e18ade 701 if ((gRate & 0x07) != 0) {
jmar7 0:e8167f37725c 702 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
jmar7 0:e8167f37725c 703 uint8_t temp = xgReadByte(CTRL_REG1_G);
jmar7 0:e8167f37725c 704 // Then mask out the gyro ODR bits:
jmar7 0:e8167f37725c 705 temp &= 0xFF^(0x7 << 5);
jmar7 0:e8167f37725c 706 temp |= (gRate & 0x07) << 5;
jmar7 0:e8167f37725c 707 // Update our settings struct
jmar7 0:e8167f37725c 708 settings.gyro.sampleRate = gRate & 0x07;
jmar7 0:e8167f37725c 709 // And write the new register value back into CTRL_REG1_G:
jmar7 0:e8167f37725c 710 xgWriteByte(CTRL_REG1_G, temp);
jmar7 0:e8167f37725c 711 }
jmar7 0:e8167f37725c 712 }
jmar7 0:e8167f37725c 713
jmar7 0:e8167f37725c 714 void LSM9DS1::setAccelODR(uint8_t aRate)
jmar7 0:e8167f37725c 715 {
jmar7 0:e8167f37725c 716 // Only do this if aRate is not 0 (which would disable the accel)
4180_1 2:36abf8e18ade 717 if ((aRate & 0x07) != 0) {
jmar7 0:e8167f37725c 718 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
jmar7 0:e8167f37725c 719 uint8_t temp = xgReadByte(CTRL_REG6_XL);
jmar7 0:e8167f37725c 720 // Then mask out the accel ODR bits:
jmar7 0:e8167f37725c 721 temp &= 0x1F;
jmar7 0:e8167f37725c 722 // Then shift in our new ODR bits:
jmar7 0:e8167f37725c 723 temp |= ((aRate & 0x07) << 5);
jmar7 0:e8167f37725c 724 settings.accel.sampleRate = aRate & 0x07;
jmar7 0:e8167f37725c 725 // And write the new register value back into CTRL_REG1_XM:
jmar7 0:e8167f37725c 726 xgWriteByte(CTRL_REG6_XL, temp);
jmar7 0:e8167f37725c 727 }
jmar7 0:e8167f37725c 728 }
jmar7 0:e8167f37725c 729
jmar7 0:e8167f37725c 730 void LSM9DS1::setMagODR(uint8_t mRate)
jmar7 0:e8167f37725c 731 {
jmar7 0:e8167f37725c 732 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
jmar7 0:e8167f37725c 733 uint8_t temp = mReadByte(CTRL_REG1_M);
jmar7 0:e8167f37725c 734 // Then mask out the mag ODR bits:
jmar7 0:e8167f37725c 735 temp &= 0xFF^(0x7 << 2);
jmar7 0:e8167f37725c 736 // Then shift in our new ODR bits:
jmar7 0:e8167f37725c 737 temp |= ((mRate & 0x07) << 2);
jmar7 0:e8167f37725c 738 settings.mag.sampleRate = mRate & 0x07;
jmar7 0:e8167f37725c 739 // And write the new register value back into CTRL_REG5_XM:
jmar7 0:e8167f37725c 740 mWriteByte(CTRL_REG1_M, temp);
jmar7 0:e8167f37725c 741 }
jmar7 0:e8167f37725c 742
jmar7 0:e8167f37725c 743 void LSM9DS1::calcgRes()
jmar7 0:e8167f37725c 744 {
jmar7 0:e8167f37725c 745 gRes = ((float) settings.gyro.scale) / 32768.0;
jmar7 0:e8167f37725c 746 }
jmar7 0:e8167f37725c 747
jmar7 0:e8167f37725c 748 void LSM9DS1::calcaRes()
jmar7 0:e8167f37725c 749 {
jmar7 0:e8167f37725c 750 aRes = ((float) settings.accel.scale) / 32768.0;
jmar7 0:e8167f37725c 751 }
jmar7 0:e8167f37725c 752
jmar7 0:e8167f37725c 753 void LSM9DS1::calcmRes()
jmar7 0:e8167f37725c 754 {
jmar7 0:e8167f37725c 755 //mRes = ((float) settings.mag.scale) / 32768.0;
4180_1 2:36abf8e18ade 756 switch (settings.mag.scale) {
4180_1 2:36abf8e18ade 757 case 4:
4180_1 2:36abf8e18ade 758 mRes = magSensitivity[0];
4180_1 2:36abf8e18ade 759 break;
4180_1 2:36abf8e18ade 760 case 8:
4180_1 2:36abf8e18ade 761 mRes = magSensitivity[1];
4180_1 2:36abf8e18ade 762 break;
4180_1 2:36abf8e18ade 763 case 12:
4180_1 2:36abf8e18ade 764 mRes = magSensitivity[2];
4180_1 2:36abf8e18ade 765 break;
4180_1 2:36abf8e18ade 766 case 16:
4180_1 2:36abf8e18ade 767 mRes = magSensitivity[3];
4180_1 2:36abf8e18ade 768 break;
jmar7 0:e8167f37725c 769 }
4180_1 2:36abf8e18ade 770
jmar7 0:e8167f37725c 771 }
jmar7 0:e8167f37725c 772
jmar7 0:e8167f37725c 773 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
4180_1 2:36abf8e18ade 774 h_lactive activeLow, pp_od pushPull)
jmar7 0:e8167f37725c 775 {
jmar7 0:e8167f37725c 776 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
jmar7 0:e8167f37725c 777 // those two values.
jmar7 0:e8167f37725c 778 // [generator] should be an OR'd list of values from the interrupt_generators enum
jmar7 0:e8167f37725c 779 xgWriteByte(interrupt, generator);
4180_1 2:36abf8e18ade 780
jmar7 0:e8167f37725c 781 // Configure CTRL_REG8
jmar7 0:e8167f37725c 782 uint8_t temp;
jmar7 0:e8167f37725c 783 temp = xgReadByte(CTRL_REG8);
4180_1 2:36abf8e18ade 784
jmar7 0:e8167f37725c 785 if (activeLow) temp |= (1<<5);
jmar7 0:e8167f37725c 786 else temp &= ~(1<<5);
4180_1 2:36abf8e18ade 787
jmar7 0:e8167f37725c 788 if (pushPull) temp &= ~(1<<4);
jmar7 0:e8167f37725c 789 else temp |= (1<<4);
4180_1 2:36abf8e18ade 790
jmar7 0:e8167f37725c 791 xgWriteByte(CTRL_REG8, temp);
jmar7 0:e8167f37725c 792 }
jmar7 0:e8167f37725c 793
jmar7 0:e8167f37725c 794 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
jmar7 0:e8167f37725c 795 {
jmar7 0:e8167f37725c 796 uint8_t temp = 0;
4180_1 2:36abf8e18ade 797
jmar7 0:e8167f37725c 798 temp = threshold & 0x7F;
jmar7 0:e8167f37725c 799 if (sleepOn) temp |= (1<<7);
jmar7 0:e8167f37725c 800 xgWriteByte(ACT_THS, temp);
4180_1 2:36abf8e18ade 801
jmar7 0:e8167f37725c 802 xgWriteByte(ACT_DUR, duration);
jmar7 0:e8167f37725c 803 }
jmar7 0:e8167f37725c 804
jmar7 0:e8167f37725c 805 uint8_t LSM9DS1::getInactivity()
jmar7 0:e8167f37725c 806 {
jmar7 0:e8167f37725c 807 uint8_t temp = xgReadByte(STATUS_REG_0);
jmar7 0:e8167f37725c 808 temp &= (0x10);
jmar7 0:e8167f37725c 809 return temp;
jmar7 0:e8167f37725c 810 }
jmar7 0:e8167f37725c 811
jmar7 0:e8167f37725c 812 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
jmar7 0:e8167f37725c 813 {
jmar7 0:e8167f37725c 814 // Use variables from accel_interrupt_generator, OR'd together to create
jmar7 0:e8167f37725c 815 // the [generator]value.
jmar7 0:e8167f37725c 816 uint8_t temp = generator;
jmar7 0:e8167f37725c 817 if (andInterrupts) temp |= 0x80;
jmar7 0:e8167f37725c 818 xgWriteByte(INT_GEN_CFG_XL, temp);
jmar7 0:e8167f37725c 819 }
jmar7 0:e8167f37725c 820
jmar7 0:e8167f37725c 821 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
jmar7 0:e8167f37725c 822 {
jmar7 0:e8167f37725c 823 // Write threshold value to INT_GEN_THS_?_XL.
jmar7 0:e8167f37725c 824 // axis will be 0, 1, or 2 (x, y, z respectively)
jmar7 0:e8167f37725c 825 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
4180_1 2:36abf8e18ade 826
jmar7 0:e8167f37725c 827 // Write duration and wait to INT_GEN_DUR_XL
jmar7 0:e8167f37725c 828 uint8_t temp;
jmar7 0:e8167f37725c 829 temp = (duration & 0x7F);
jmar7 0:e8167f37725c 830 if (wait) temp |= 0x80;
jmar7 0:e8167f37725c 831 xgWriteByte(INT_GEN_DUR_XL, temp);
jmar7 0:e8167f37725c 832 }
jmar7 0:e8167f37725c 833
jmar7 0:e8167f37725c 834 uint8_t LSM9DS1::getAccelIntSrc()
jmar7 0:e8167f37725c 835 {
jmar7 0:e8167f37725c 836 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
4180_1 2:36abf8e18ade 837
jmar7 0:e8167f37725c 838 // Check if the IA_XL (interrupt active) bit is set
4180_1 2:36abf8e18ade 839 if (intSrc & (1<<6)) {
jmar7 0:e8167f37725c 840 return (intSrc & 0x3F);
jmar7 0:e8167f37725c 841 }
4180_1 2:36abf8e18ade 842
jmar7 0:e8167f37725c 843 return 0;
jmar7 0:e8167f37725c 844 }
jmar7 0:e8167f37725c 845
jmar7 0:e8167f37725c 846 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
jmar7 0:e8167f37725c 847 {
jmar7 0:e8167f37725c 848 // Use variables from accel_interrupt_generator, OR'd together to create
jmar7 0:e8167f37725c 849 // the [generator]value.
jmar7 0:e8167f37725c 850 uint8_t temp = generator;
jmar7 0:e8167f37725c 851 if (aoi) temp |= 0x80;
jmar7 0:e8167f37725c 852 if (latch) temp |= 0x40;
jmar7 0:e8167f37725c 853 xgWriteByte(INT_GEN_CFG_G, temp);
jmar7 0:e8167f37725c 854 }
jmar7 0:e8167f37725c 855
jmar7 0:e8167f37725c 856 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
jmar7 0:e8167f37725c 857 {
jmar7 0:e8167f37725c 858 uint8_t buffer[2];
jmar7 0:e8167f37725c 859 buffer[0] = (threshold & 0x7F00) >> 8;
jmar7 0:e8167f37725c 860 buffer[1] = (threshold & 0x00FF);
jmar7 0:e8167f37725c 861 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
jmar7 0:e8167f37725c 862 // axis will be 0, 1, or 2 (x, y, z respectively)
jmar7 0:e8167f37725c 863 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
jmar7 0:e8167f37725c 864 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
4180_1 2:36abf8e18ade 865
jmar7 0:e8167f37725c 866 // Write duration and wait to INT_GEN_DUR_XL
jmar7 0:e8167f37725c 867 uint8_t temp;
jmar7 0:e8167f37725c 868 temp = (duration & 0x7F);
jmar7 0:e8167f37725c 869 if (wait) temp |= 0x80;
jmar7 0:e8167f37725c 870 xgWriteByte(INT_GEN_DUR_G, temp);
jmar7 0:e8167f37725c 871 }
jmar7 0:e8167f37725c 872
jmar7 0:e8167f37725c 873 uint8_t LSM9DS1::getGyroIntSrc()
jmar7 0:e8167f37725c 874 {
jmar7 0:e8167f37725c 875 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
4180_1 2:36abf8e18ade 876
jmar7 0:e8167f37725c 877 // Check if the IA_G (interrupt active) bit is set
4180_1 2:36abf8e18ade 878 if (intSrc & (1<<6)) {
jmar7 0:e8167f37725c 879 return (intSrc & 0x3F);
jmar7 0:e8167f37725c 880 }
4180_1 2:36abf8e18ade 881
jmar7 0:e8167f37725c 882 return 0;
jmar7 0:e8167f37725c 883 }
jmar7 0:e8167f37725c 884
jmar7 0:e8167f37725c 885 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
jmar7 0:e8167f37725c 886 {
jmar7 0:e8167f37725c 887 // Mask out non-generator bits (0-4)
4180_1 2:36abf8e18ade 888 uint8_t config = (generator & 0xE0);
jmar7 0:e8167f37725c 889 // IEA bit is 0 for active-low, 1 for active-high.
jmar7 0:e8167f37725c 890 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
jmar7 0:e8167f37725c 891 // IEL bit is 0 for latched, 1 for not-latched
jmar7 0:e8167f37725c 892 if (!latch) config |= (1<<1);
jmar7 0:e8167f37725c 893 // As long as we have at least 1 generator, enable the interrupt
jmar7 0:e8167f37725c 894 if (generator != 0) config |= (1<<0);
4180_1 2:36abf8e18ade 895
jmar7 0:e8167f37725c 896 mWriteByte(INT_CFG_M, config);
jmar7 0:e8167f37725c 897 }
jmar7 0:e8167f37725c 898
jmar7 0:e8167f37725c 899 void LSM9DS1::configMagThs(uint16_t threshold)
jmar7 0:e8167f37725c 900 {
jmar7 0:e8167f37725c 901 // Write high eight bits of [threshold] to INT_THS_H_M
jmar7 0:e8167f37725c 902 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
jmar7 0:e8167f37725c 903 // Write low eight bits of [threshold] to INT_THS_L_M
jmar7 0:e8167f37725c 904 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
jmar7 0:e8167f37725c 905 }
jmar7 0:e8167f37725c 906
jmar7 0:e8167f37725c 907 uint8_t LSM9DS1::getMagIntSrc()
jmar7 0:e8167f37725c 908 {
jmar7 0:e8167f37725c 909 uint8_t intSrc = mReadByte(INT_SRC_M);
4180_1 2:36abf8e18ade 910
jmar7 0:e8167f37725c 911 // Check if the INT (interrupt active) bit is set
4180_1 2:36abf8e18ade 912 if (intSrc & (1<<0)) {
jmar7 0:e8167f37725c 913 return (intSrc & 0xFE);
jmar7 0:e8167f37725c 914 }
4180_1 2:36abf8e18ade 915
jmar7 0:e8167f37725c 916 return 0;
jmar7 0:e8167f37725c 917 }
jmar7 0:e8167f37725c 918
jmar7 0:e8167f37725c 919 void LSM9DS1::sleepGyro(bool enable)
jmar7 0:e8167f37725c 920 {
jmar7 0:e8167f37725c 921 uint8_t temp = xgReadByte(CTRL_REG9);
jmar7 0:e8167f37725c 922 if (enable) temp |= (1<<6);
jmar7 0:e8167f37725c 923 else temp &= ~(1<<6);
jmar7 0:e8167f37725c 924 xgWriteByte(CTRL_REG9, temp);
jmar7 0:e8167f37725c 925 }
jmar7 0:e8167f37725c 926
jmar7 0:e8167f37725c 927 void LSM9DS1::enableFIFO(bool enable)
jmar7 0:e8167f37725c 928 {
jmar7 0:e8167f37725c 929 uint8_t temp = xgReadByte(CTRL_REG9);
jmar7 0:e8167f37725c 930 if (enable) temp |= (1<<1);
jmar7 0:e8167f37725c 931 else temp &= ~(1<<1);
jmar7 0:e8167f37725c 932 xgWriteByte(CTRL_REG9, temp);
jmar7 0:e8167f37725c 933 }
jmar7 0:e8167f37725c 934
jmar7 0:e8167f37725c 935 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
jmar7 0:e8167f37725c 936 {
jmar7 0:e8167f37725c 937 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
jmar7 0:e8167f37725c 938 // limit it to the maximum.
jmar7 0:e8167f37725c 939 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
jmar7 0:e8167f37725c 940 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
jmar7 0:e8167f37725c 941 }
jmar7 0:e8167f37725c 942
jmar7 0:e8167f37725c 943 uint8_t LSM9DS1::getFIFOSamples()
jmar7 0:e8167f37725c 944 {
jmar7 0:e8167f37725c 945 return (xgReadByte(FIFO_SRC) & 0x3F);
jmar7 0:e8167f37725c 946 }
jmar7 0:e8167f37725c 947
jmar7 0:e8167f37725c 948 void LSM9DS1::constrainScales()
jmar7 0:e8167f37725c 949 {
4180_1 2:36abf8e18ade 950 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
4180_1 2:36abf8e18ade 951 (settings.gyro.scale != 2000)) {
jmar7 0:e8167f37725c 952 settings.gyro.scale = 245;
jmar7 0:e8167f37725c 953 }
4180_1 2:36abf8e18ade 954
jmar7 0:e8167f37725c 955 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
4180_1 2:36abf8e18ade 956 (settings.accel.scale != 8) && (settings.accel.scale != 16)) {
jmar7 0:e8167f37725c 957 settings.accel.scale = 2;
jmar7 0:e8167f37725c 958 }
4180_1 2:36abf8e18ade 959
jmar7 0:e8167f37725c 960 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
4180_1 2:36abf8e18ade 961 (settings.mag.scale != 12) && (settings.mag.scale != 16)) {
jmar7 0:e8167f37725c 962 settings.mag.scale = 4;
jmar7 0:e8167f37725c 963 }
jmar7 0:e8167f37725c 964 }
jmar7 0:e8167f37725c 965
jmar7 0:e8167f37725c 966 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
jmar7 0:e8167f37725c 967 {
jmar7 0:e8167f37725c 968 // Whether we're using I2C or SPI, write a byte using the
jmar7 0:e8167f37725c 969 // gyro-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 970 if (settings.device.commInterface == IMU_MODE_I2C) {
4180_1 2:36abf8e18ade 971 pc.printf("yo");
jmar7 0:e8167f37725c 972 I2CwriteByte(_xgAddress, subAddress, data);
jmar7 0:e8167f37725c 973 } else if (settings.device.commInterface == IMU_MODE_SPI) {
jmar7 0:e8167f37725c 974 SPIwriteByte(_xgAddress, subAddress, data);
jmar7 0:e8167f37725c 975 }
jmar7 0:e8167f37725c 976 }
jmar7 0:e8167f37725c 977
jmar7 0:e8167f37725c 978 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
jmar7 0:e8167f37725c 979 {
jmar7 0:e8167f37725c 980 // Whether we're using I2C or SPI, write a byte using the
jmar7 0:e8167f37725c 981 // accelerometer-specific I2C address or SPI CS pin.
4180_1 2:36abf8e18ade 982 if (settings.device.commInterface == IMU_MODE_I2C) {
4180_1 2:36abf8e18ade 983 pc.printf("mo");
jmar7 0:e8167f37725c 984 return I2CwriteByte(_mAddress, subAddress, data);
4180_1 2:36abf8e18ade 985 } else if (settings.device.commInterface == IMU_MODE_SPI)
jmar7 0:e8167f37725c 986 return SPIwriteByte(_mAddress, subAddress, data);
jmar7 0:e8167f37725c 987 }
jmar7 0:e8167f37725c 988
jmar7 0:e8167f37725c 989 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
jmar7 0:e8167f37725c 990 {
jmar7 0:e8167f37725c 991 // Whether we're using I2C or SPI, read a byte using the
jmar7 0:e8167f37725c 992 // gyro-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 993 if (settings.device.commInterface == IMU_MODE_I2C)
jmar7 0:e8167f37725c 994 return I2CreadByte(_xgAddress, subAddress);
jmar7 0:e8167f37725c 995 else if (settings.device.commInterface == IMU_MODE_SPI)
jmar7 0:e8167f37725c 996 return SPIreadByte(_xgAddress, subAddress);
jmar7 0:e8167f37725c 997 }
jmar7 0:e8167f37725c 998
jmar7 0:e8167f37725c 999 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
jmar7 0:e8167f37725c 1000 {
jmar7 0:e8167f37725c 1001 // Whether we're using I2C or SPI, read multiple bytes using the
jmar7 0:e8167f37725c 1002 // gyro-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 1003 if (settings.device.commInterface == IMU_MODE_I2C) {
jmar7 0:e8167f37725c 1004 I2CreadBytes(_xgAddress, subAddress, dest, count);
jmar7 0:e8167f37725c 1005 } else if (settings.device.commInterface == IMU_MODE_SPI) {
jmar7 0:e8167f37725c 1006 SPIreadBytes(_xgAddress, subAddress, dest, count);
jmar7 0:e8167f37725c 1007 }
jmar7 0:e8167f37725c 1008 }
jmar7 0:e8167f37725c 1009
jmar7 0:e8167f37725c 1010 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
jmar7 0:e8167f37725c 1011 {
jmar7 0:e8167f37725c 1012 // Whether we're using I2C or SPI, read a byte using the
jmar7 0:e8167f37725c 1013 // accelerometer-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 1014 if (settings.device.commInterface == IMU_MODE_I2C)
jmar7 0:e8167f37725c 1015 return I2CreadByte(_mAddress, subAddress);
jmar7 0:e8167f37725c 1016 else if (settings.device.commInterface == IMU_MODE_SPI)
jmar7 0:e8167f37725c 1017 return SPIreadByte(_mAddress, subAddress);
jmar7 0:e8167f37725c 1018 }
jmar7 0:e8167f37725c 1019
jmar7 0:e8167f37725c 1020 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
jmar7 0:e8167f37725c 1021 {
jmar7 0:e8167f37725c 1022 // Whether we're using I2C or SPI, read multiple bytes using the
jmar7 0:e8167f37725c 1023 // accelerometer-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 1024 if (settings.device.commInterface == IMU_MODE_I2C)
jmar7 0:e8167f37725c 1025 I2CreadBytes(_mAddress, subAddress, dest, count);
jmar7 0:e8167f37725c 1026 else if (settings.device.commInterface == IMU_MODE_SPI)
jmar7 0:e8167f37725c 1027 SPIreadBytes(_mAddress, subAddress, dest, count);
jmar7 0:e8167f37725c 1028 }
jmar7 0:e8167f37725c 1029
jmar7 0:e8167f37725c 1030 void LSM9DS1::initSPI()
jmar7 0:e8167f37725c 1031 {
4180_1 2:36abf8e18ade 1032 /*
jmar7 0:e8167f37725c 1033 pinMode(_xgAddress, OUTPUT);
jmar7 0:e8167f37725c 1034 digitalWrite(_xgAddress, HIGH);
jmar7 0:e8167f37725c 1035 pinMode(_mAddress, OUTPUT);
jmar7 0:e8167f37725c 1036 digitalWrite(_mAddress, HIGH);
4180_1 2:36abf8e18ade 1037
jmar7 0:e8167f37725c 1038 SPI.begin();
jmar7 0:e8167f37725c 1039 // Maximum SPI frequency is 10MHz, could divide by 2 here:
jmar7 0:e8167f37725c 1040 SPI.setClockDivider(SPI_CLOCK_DIV2);
jmar7 0:e8167f37725c 1041 // Data is read and written MSb first.
jmar7 0:e8167f37725c 1042 SPI.setBitOrder(MSBFIRST);
jmar7 0:e8167f37725c 1043 // Data is captured on rising edge of clock (CPHA = 0)
jmar7 0:e8167f37725c 1044 // Base value of the clock is HIGH (CPOL = 1)
jmar7 0:e8167f37725c 1045 SPI.setDataMode(SPI_MODE0);
jmar7 0:e8167f37725c 1046 */
jmar7 0:e8167f37725c 1047 }
jmar7 0:e8167f37725c 1048
jmar7 0:e8167f37725c 1049 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
jmar7 0:e8167f37725c 1050 {
jmar7 1:87d535bf8c53 1051 /*
jmar7 0:e8167f37725c 1052 digitalWrite(csPin, LOW); // Initiate communication
4180_1 2:36abf8e18ade 1053
jmar7 0:e8167f37725c 1054 // If write, bit 0 (MSB) should be 0
jmar7 0:e8167f37725c 1055 // If single write, bit 1 should be 0
jmar7 0:e8167f37725c 1056 SPI.transfer(subAddress & 0x3F); // Send Address
jmar7 0:e8167f37725c 1057 SPI.transfer(data); // Send data
4180_1 2:36abf8e18ade 1058
jmar7 0:e8167f37725c 1059 digitalWrite(csPin, HIGH); // Close communication
jmar7 0:e8167f37725c 1060 */
jmar7 0:e8167f37725c 1061 }
jmar7 0:e8167f37725c 1062
jmar7 0:e8167f37725c 1063 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
jmar7 0:e8167f37725c 1064 {
jmar7 0:e8167f37725c 1065 uint8_t temp;
4180_1 2:36abf8e18ade 1066 // Use the multiple read function to read 1 byte.
jmar7 0:e8167f37725c 1067 // Value is returned to `temp`.
jmar7 0:e8167f37725c 1068 SPIreadBytes(csPin, subAddress, &temp, 1);
jmar7 0:e8167f37725c 1069 return temp;
jmar7 0:e8167f37725c 1070 }
jmar7 0:e8167f37725c 1071
jmar7 0:e8167f37725c 1072 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
4180_1 2:36abf8e18ade 1073 uint8_t * dest, uint8_t count)
jmar7 0:e8167f37725c 1074 {
jmar7 0:e8167f37725c 1075 // To indicate a read, set bit 0 (msb) of first byte to 1
jmar7 0:e8167f37725c 1076 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
4180_1 2:36abf8e18ade 1077 // Mag SPI port is different. If we're reading multiple bytes,
jmar7 0:e8167f37725c 1078 // set bit 1 to 1. The remaining six bytes are the address to be read
jmar7 0:e8167f37725c 1079 if ((csPin == _mAddress) && count > 1)
jmar7 0:e8167f37725c 1080 rAddress |= 0x40;
4180_1 2:36abf8e18ade 1081
4180_1 2:36abf8e18ade 1082 /*
jmar7 0:e8167f37725c 1083 digitalWrite(csPin, LOW); // Initiate communication
jmar7 0:e8167f37725c 1084 SPI.transfer(rAddress);
jmar7 0:e8167f37725c 1085 for (int i=0; i<count; i++)
jmar7 0:e8167f37725c 1086 {
jmar7 0:e8167f37725c 1087 dest[i] = SPI.transfer(0x00); // Read into destination array
jmar7 0:e8167f37725c 1088 }
jmar7 0:e8167f37725c 1089 digitalWrite(csPin, HIGH); // Close communication
jmar7 0:e8167f37725c 1090 */
jmar7 0:e8167f37725c 1091 }
jmar7 0:e8167f37725c 1092
jmar7 0:e8167f37725c 1093 void LSM9DS1::initI2C()
jmar7 0:e8167f37725c 1094 {
4180_1 2:36abf8e18ade 1095 /*
jmar7 0:e8167f37725c 1096 Wire.begin(); // Initialize I2C library
jmar7 0:e8167f37725c 1097 */
4180_1 2:36abf8e18ade 1098
jmar7 0:e8167f37725c 1099 //already initialized in constructor!
jmar7 0:e8167f37725c 1100 }
jmar7 0:e8167f37725c 1101
jmar7 0:e8167f37725c 1102 // Wire.h read and write protocols
jmar7 0:e8167f37725c 1103 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
jmar7 0:e8167f37725c 1104 {
4180_1 2:36abf8e18ade 1105 /*
jmar7 0:e8167f37725c 1106 Wire.beginTransmission(address); // Initialize the Tx buffer
jmar7 0:e8167f37725c 1107 Wire.write(subAddress); // Put slave register address in Tx buffer
jmar7 0:e8167f37725c 1108 Wire.write(data); // Put data in Tx buffer
jmar7 0:e8167f37725c 1109 Wire.endTransmission(); // Send the Tx buffer
jmar7 0:e8167f37725c 1110 */
jmar7 0:e8167f37725c 1111 char temp_data[2] = {subAddress, data};
jmar7 0:e8167f37725c 1112 i2c.write(address, temp_data, 2);
jmar7 0:e8167f37725c 1113 }
jmar7 0:e8167f37725c 1114
jmar7 0:e8167f37725c 1115 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
jmar7 0:e8167f37725c 1116 {
4180_1 2:36abf8e18ade 1117 /*
jmar7 0:e8167f37725c 1118 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
4180_1 2:36abf8e18ade 1119 uint8_t data; // `data` will store the register data
4180_1 2:36abf8e18ade 1120
jmar7 0:e8167f37725c 1121 Wire.beginTransmission(address); // Initialize the Tx buffer
jmar7 0:e8167f37725c 1122 Wire.write(subAddress); // Put slave register address in Tx buffer
jmar7 0:e8167f37725c 1123 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
4180_1 2:36abf8e18ade 1124 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
jmar7 0:e8167f37725c 1125 while ((Wire.available() < 1) && (timeout-- > 0))
jmar7 0:e8167f37725c 1126 delay(1);
4180_1 2:36abf8e18ade 1127
jmar7 0:e8167f37725c 1128 if (timeout <= 0)
jmar7 0:e8167f37725c 1129 return 255; //! Bad! 255 will be misinterpreted as a good value.
4180_1 2:36abf8e18ade 1130
jmar7 0:e8167f37725c 1131 data = Wire.read(); // Fill Rx buffer with result
jmar7 0:e8167f37725c 1132 return data; // Return data read from slave register
jmar7 0:e8167f37725c 1133 */
jmar7 0:e8167f37725c 1134 char data;
4180_1 2:36abf8e18ade 1135 char temp[2] = {subAddress};
4180_1 2:36abf8e18ade 1136
jmar7 0:e8167f37725c 1137 i2c.write(address, temp, 1);
jmar7 0:e8167f37725c 1138 //i2c.write(address & 0xFE);
jmar7 0:e8167f37725c 1139 temp[1] = 0x00;
jmar7 0:e8167f37725c 1140 i2c.write(address, temp, 1);
jmar7 0:e8167f37725c 1141 //i2c.write( address | 0x01);
jmar7 0:e8167f37725c 1142 int a = i2c.read(address, &data, 1);
jmar7 0:e8167f37725c 1143 return data;
jmar7 0:e8167f37725c 1144 }
jmar7 0:e8167f37725c 1145
jmar7 0:e8167f37725c 1146 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
4180_1 2:36abf8e18ade 1147 {
4180_1 2:36abf8e18ade 1148 /*
jmar7 0:e8167f37725c 1149 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
jmar7 0:e8167f37725c 1150 Wire.beginTransmission(address); // Initialize the Tx buffer
jmar7 0:e8167f37725c 1151 // Next send the register to be read. OR with 0x80 to indicate multi-read.
jmar7 0:e8167f37725c 1152 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
jmar7 0:e8167f37725c 1153
jmar7 0:e8167f37725c 1154 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
jmar7 0:e8167f37725c 1155 uint8_t i = 0;
4180_1 2:36abf8e18ade 1156 Wire.requestFrom(address, count); // Read bytes from slave register address
jmar7 0:e8167f37725c 1157 while ((Wire.available() < count) && (timeout-- > 0))
jmar7 0:e8167f37725c 1158 delay(1);
jmar7 0:e8167f37725c 1159 if (timeout <= 0)
jmar7 0:e8167f37725c 1160 return -1;
4180_1 2:36abf8e18ade 1161
jmar7 0:e8167f37725c 1162 for (int i=0; i<count;)
jmar7 0:e8167f37725c 1163 {
jmar7 0:e8167f37725c 1164 if (Wire.available())
jmar7 0:e8167f37725c 1165 {
jmar7 0:e8167f37725c 1166 dest[i++] = Wire.read();
jmar7 0:e8167f37725c 1167 }
jmar7 0:e8167f37725c 1168 }
jmar7 0:e8167f37725c 1169 return count;
jmar7 0:e8167f37725c 1170 */
jmar7 0:e8167f37725c 1171 int i;
jmar7 0:e8167f37725c 1172 char temp_dest[count];
jmar7 0:e8167f37725c 1173 char temp[1] = {subAddress};
jmar7 0:e8167f37725c 1174 i2c.write(address, temp, 1);
jmar7 0:e8167f37725c 1175 i2c.read(address, temp_dest, count);
4180_1 2:36abf8e18ade 1176
jmar7 0:e8167f37725c 1177 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
jmar7 0:e8167f37725c 1178 for (i=0; i < count; i++) {
4180_1 2:36abf8e18ade 1179 dest[i] = temp_dest[i];
jmar7 0:e8167f37725c 1180 }
jmar7 0:e8167f37725c 1181 return count;
jmar7 0:e8167f37725c 1182 }