fixed drive strength

Dependents:   capstone_i2c

Fork of mbed-dev by mbed official

Revision:
149:156823d33999
Child:
160:d5399cc887bb
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/TARGET_NORDIC/TARGET_MCU_NRF51822/us_ticker.c	Fri Oct 28 11:17:30 2016 +0100
@@ -0,0 +1,591 @@
+/* mbed Microcontroller Library
+ * Copyright (c) 2013 Nordic Semiconductor
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include <stddef.h>
+#include <stdbool.h>
+#include "us_ticker_api.h"
+#include "cmsis.h"
+#include "PeripheralNames.h"
+#include "nrf_delay.h"
+#include "toolchain.h"
+
+/*
+ * Note: The micro-second timer API on the nRF51 platform is implemented using
+ * the RTC counter run at 32kHz (sourced from an external oscillator). This is
+ * a trade-off between precision and power. Running a normal 32-bit MCU counter
+ * at high frequency causes the average power consumption to rise to a few
+ * hundred micro-amps, which is prohibitive for typical low-power BLE
+ * applications.
+ * A 32kHz clock doesn't offer the precision needed for keeping u-second time,
+ * but we're assuming that this will not be a problem for the average user.
+ */
+
+#define MAX_RTC_COUNTER_VAL     0x00FFFFFF               /**< Maximum value of the RTC counter. */
+#define RTC_CLOCK_FREQ          (uint32_t)(32768)
+#define RTC1_IRQ_PRI            3                        /**< Priority of the RTC1 interrupt (used
+                                                          *  for checking for timeouts and executing
+                                                          *  timeout handlers). This must be the same
+                                                          *  as APP_IRQ_PRIORITY_LOW; taken from the
+                                                          *  Nordic SDK. */
+#define MAX_RTC_TASKS_DELAY     47                       /**< Maximum delay until an RTC task is executed. */
+
+#define FUZZY_RTC_TICKS          2  /* RTC COMPARE occurs when a CC register is N and the RTC
+                                     * COUNTER value transitions from N-1 to N. If we're trying to
+                                     * setup a callback for a time which will arrive very shortly,
+                                     * there are limits to how short the callback interval may be for us
+                                     * to rely upon the RTC Compare trigger. If the COUNTER is N,
+                                     * writing N+2 to a CC register is guaranteed to trigger a COMPARE
+                                     * event at N+2. */
+
+#define RTC_UNITS_TO_MICROSECONDS(RTC_UNITS) (((RTC_UNITS) * (uint64_t)1000000) / RTC_CLOCK_FREQ)
+#define MICROSECONDS_TO_RTC_UNITS(MICROS)    ((((uint64_t)(MICROS) * RTC_CLOCK_FREQ) + 999999) / 1000000)
+
+static bool              us_ticker_inited = false;
+static volatile uint32_t overflowCount;                   /**< The number of times the 24-bit RTC counter has overflowed. */
+static volatile bool     us_ticker_callbackPending = false;
+static uint32_t          us_ticker_callbackTimestamp;
+static bool              os_tick_started = false;         /**< flag indicating if the os_tick has started */
+/**
+ * The value previously set in the capture compare register of channel 1
+ */
+static uint32_t          previous_tick_cc_value = 0;
+
+/*
+ RTX provide the following definitions which are used by the tick code:
+   * os_trv: The number (minus 1) of clock cycle between two tick.
+   * os_clockrate: Time duration between two ticks (in us).
+   * OS_Tick_Handler: The function which handle a tick event.
+     This function is special because it never returns.
+ Those definitions are used by the code which handle the os tick.
+ To allow compilation of us_ticker programs without RTOS, those symbols are
+ exported from this module as weak ones.
+ */
+MBED_WEAK uint32_t const os_trv;
+MBED_WEAK uint32_t const os_clockrate;
+MBED_WEAK void OS_Tick_Handler() { }
+
+static inline void rtc1_enableCompareInterrupt(void)
+{
+    NRF_RTC1->EVTENCLR = RTC_EVTEN_COMPARE0_Msk;
+    NRF_RTC1->INTENSET = RTC_INTENSET_COMPARE0_Msk;
+}
+
+static inline void rtc1_disableCompareInterrupt(void)
+{
+    NRF_RTC1->INTENCLR = RTC_INTENSET_COMPARE0_Msk;
+    NRF_RTC1->EVTENCLR = RTC_EVTEN_COMPARE0_Msk;
+}
+
+static inline void rtc1_enableOverflowInterrupt(void)
+{
+    NRF_RTC1->EVTENCLR = RTC_EVTEN_OVRFLW_Msk;
+    NRF_RTC1->INTENSET = RTC_INTENSET_OVRFLW_Msk;
+}
+
+static inline void rtc1_disableOverflowInterrupt(void)
+{
+    NRF_RTC1->INTENCLR = RTC_INTENSET_OVRFLW_Msk;
+    NRF_RTC1->EVTENCLR = RTC_EVTEN_OVRFLW_Msk;
+}
+
+static inline void invokeCallback(void)
+{
+    us_ticker_callbackPending = false;
+    rtc1_disableCompareInterrupt();
+    us_ticker_irq_handler();
+}
+
+/**
+ * @brief Function for starting the RTC1 timer. The RTC timer is expected to
+ * keep running--some interrupts may be disabled temporarily.
+ */
+static void rtc1_start()
+{
+    NRF_RTC1->PRESCALER = 0; /* for no pre-scaling. */
+
+    rtc1_enableOverflowInterrupt();
+
+    NVIC_SetPriority(RTC1_IRQn, RTC1_IRQ_PRI);
+    NVIC_ClearPendingIRQ(RTC1_IRQn);
+    NVIC_EnableIRQ(RTC1_IRQn);
+
+    NRF_RTC1->TASKS_START = 1;
+    nrf_delay_us(MAX_RTC_TASKS_DELAY);
+}
+
+/**
+ * @brief Function for stopping the RTC1 timer. We don't expect to call this.
+ */
+void rtc1_stop(void)
+{
+    // If the os tick has been started, RTC1 shouldn't be stopped
+    // In that case, us ticker and overflow interrupt are disabled.
+    if (os_tick_started) {
+        rtc1_disableCompareInterrupt();
+        rtc1_disableOverflowInterrupt();
+    } else {
+        NVIC_DisableIRQ(RTC1_IRQn);
+        rtc1_disableCompareInterrupt();
+        rtc1_disableOverflowInterrupt();
+
+        NRF_RTC1->TASKS_STOP = 1;
+        nrf_delay_us(MAX_RTC_TASKS_DELAY);
+
+        NRF_RTC1->TASKS_CLEAR = 1;
+        nrf_delay_us(MAX_RTC_TASKS_DELAY);
+    }
+}
+
+/**
+ * @brief Function for returning the current value of the RTC1 counter.
+ *
+ * @return Current RTC1 counter as a 64-bit value with 56-bit precision (even
+ *         though the underlying counter is 24-bit)
+ */
+static inline uint64_t rtc1_getCounter64(void)
+{
+    if (NRF_RTC1->EVENTS_OVRFLW) {
+        overflowCount++;
+        NRF_RTC1->EVENTS_OVRFLW = 0;
+        NRF_RTC1->EVTENCLR      = RTC_EVTEN_OVRFLW_Msk;
+    }
+    return ((uint64_t)overflowCount << 24) | NRF_RTC1->COUNTER;
+}
+
+/**
+ * @brief Function for returning the current value of the RTC1 counter.
+ *
+ * @return Current RTC1 counter as a 32-bit value (even though the underlying counter is 24-bit)
+ */
+static inline uint32_t rtc1_getCounter(void)
+{
+    return rtc1_getCounter64();
+}
+
+/**
+ * @brief Function for handling the RTC1 interrupt for us ticker (capture compare channel 0 and overflow).
+ *
+ * @details Checks for timeouts, and executes timeout handlers for expired timers.
+ */
+void us_ticker_handler(void)
+{
+    if (NRF_RTC1->EVENTS_OVRFLW) {
+        overflowCount++;
+        NRF_RTC1->EVENTS_OVRFLW = 0;
+        NRF_RTC1->EVTENCLR      = RTC_EVTEN_OVRFLW_Msk;
+    }
+    if (NRF_RTC1->EVENTS_COMPARE[0]) {
+        NRF_RTC1->EVENTS_COMPARE[0] = 0;
+        NRF_RTC1->EVTENCLR          = RTC_EVTEN_COMPARE0_Msk;
+        if (us_ticker_callbackPending && ((int)(us_ticker_callbackTimestamp - rtc1_getCounter()) <= 0))
+            invokeCallback();
+    }
+}
+
+void us_ticker_init(void)
+{
+    if (us_ticker_inited) {
+        return;
+    }
+
+    rtc1_start();
+    us_ticker_inited = true;
+}
+
+uint32_t us_ticker_read()
+{
+    if (!us_ticker_inited) {
+        us_ticker_init();
+    }
+
+    /* Return a pseudo microsecond counter value. This is only as precise as the
+     * 32khz low-freq clock source, but could be adequate.*/
+    return RTC_UNITS_TO_MICROSECONDS(rtc1_getCounter64());
+}
+
+/**
+ * Setup the us_ticker callback interrupt to go at the given timestamp.
+ *
+ * @Note: Only one callback is pending at any time.
+ *
+ * @Note: If a callback is pending, and this function is called again, the new
+ * callback-time overrides the existing callback setting. It is the caller's
+ * responsibility to ensure that this function is called to setup a callback for
+ * the earliest timeout.
+ *
+ * @Note: If this function is used to setup an interrupt which is immediately
+ * pending--such as for 'now' or a time in the past,--then the callback is
+ * invoked a few ticks later.
+ */
+void us_ticker_set_interrupt(timestamp_t timestamp)
+{
+    if (!us_ticker_inited) {
+        us_ticker_init();
+    }
+
+    /*
+     * The argument to this function is a 32-bit microsecond timestamp for when
+     * a callback should be invoked. On the nRF51, we use an RTC timer running
+     * at 32kHz to implement a low-power us-ticker. This results in a problem
+     * based on the fact that 1000000 is not a multiple of 32768.
+     *
+     * Going from a micro-second based timestamp to a 32kHz based RTC-time is a
+     * linear mapping; but this mapping doesn't preserve wraparounds--i.e. when
+     * the 32-bit micro-second timestamp wraps around unfortunately the
+     * underlying RTC counter doesn't. The result is that timestamp expiry
+     * checks on micro-second timestamps don't yield the same result when
+     * applied on the corresponding RTC timestamp values.
+     *
+     * One solution is to translate the incoming 32-bit timestamp into a virtual
+     * 64-bit timestamp based on the knowledge of system-uptime, and then use
+     * this wraparound-free 64-bit value to do a linear mapping to RTC time.
+     * System uptime on an nRF is maintained using the 24-bit RTC counter. We
+     * track the overflow count to extend the 24-bit hardware counter by an
+     * additional 32 bits. RTC_UNITS_TO_MICROSECONDS() converts this into
+     * microsecond units (in 64-bits).
+     */
+    const uint64_t currentTime64 = RTC_UNITS_TO_MICROSECONDS(rtc1_getCounter64());
+    uint64_t timestamp64 = (currentTime64 & ~(uint64_t)0xFFFFFFFFULL) + timestamp;
+    if (((uint32_t)currentTime64 > 0x80000000) && (timestamp < 0x80000000)) {
+        timestamp64 += (uint64_t)0x100000000ULL;
+    }
+    uint32_t newCallbackTime = MICROSECONDS_TO_RTC_UNITS(timestamp64);
+
+    /* Check for repeat setup of an existing callback. This is actually not
+     * important; the following code should work even without this check. */
+    if (us_ticker_callbackPending && (newCallbackTime == us_ticker_callbackTimestamp)) {
+        return;
+    }
+
+    /* Check for callbacks which are immediately (or will *very* shortly become) pending.
+     * Even if they are immediately pending, they are scheduled to trigger a few
+     * ticks later. This keeps things simple by invoking the callback from an
+     * independent interrupt context. */
+    if ((int)(newCallbackTime - rtc1_getCounter()) <= (int)FUZZY_RTC_TICKS) {
+        newCallbackTime = rtc1_getCounter() + FUZZY_RTC_TICKS;
+    }
+
+    NRF_RTC1->CC[0]             = newCallbackTime & MAX_RTC_COUNTER_VAL;
+    us_ticker_callbackTimestamp = newCallbackTime;
+    if (!us_ticker_callbackPending) {
+        us_ticker_callbackPending = true;
+        rtc1_enableCompareInterrupt();
+    }
+}
+
+void us_ticker_disable_interrupt(void)
+{
+    if (us_ticker_callbackPending) {
+        rtc1_disableCompareInterrupt();
+        us_ticker_callbackPending = false;
+    }
+}
+
+void us_ticker_clear_interrupt(void)
+{
+    NRF_RTC1->EVENTS_OVRFLW     = 0;
+    NRF_RTC1->EVENTS_COMPARE[0] = 0;
+}
+
+
+#if defined (__CC_ARM)         /* ARMCC Compiler */
+
+__asm void RTC1_IRQHandler(void)
+{
+    IMPORT  OS_Tick_Handler
+    IMPORT  us_ticker_handler
+
+    /**
+     * Chanel 1 of RTC1 is used by RTX as a systick.
+     * If the compare event on channel 1 is set, then branch to OS_Tick_Handler.
+     * Otherwise, just execute us_ticker_handler.
+     * This function has to be written in assembly and tagged as naked because OS_Tick_Handler
+     * will never return.
+     * A c function would put lr on the stack before calling OS_Tick_Handler and this value
+     * would never been dequeued.
+     *
+     * \code
+     * void RTC1_IRQHandler(void) {
+         if(NRF_RTC1->EVENTS_COMPARE[1]) {
+             // never return...
+             OS_Tick_Handler();
+         } else {
+             us_ticker_handler();
+         }
+       }
+     * \endcode
+     */
+    ldr r0,=0x40011144
+    ldr r1, [r0, #0]
+    cmp r1, #0
+    beq US_TICKER_HANDLER
+    bl OS_Tick_Handler
+US_TICKER_HANDLER
+    push {r3, lr}
+    bl us_ticker_handler
+    pop {r3, pc}
+    nop /* padding */
+}
+
+#elif defined (__GNUC__)        /* GNU Compiler */
+
+__attribute__((naked)) void RTC1_IRQHandler(void)
+{
+    /**
+     * Chanel 1 of RTC1 is used by RTX as a systick.
+     * If the compare event on channel 1 is set, then branch to OS_Tick_Handler.
+     * Otherwise, just execute us_ticker_handler.
+     * This function has to be written in assembly and tagged as naked because OS_Tick_Handler
+     * will never return.
+     * A c function would put lr on the stack before calling OS_Tick_Handler and this value
+     * would never been dequeued.
+     *
+     * \code
+     * void RTC1_IRQHandler(void) {
+         if(NRF_RTC1->EVENTS_COMPARE[1]) {
+             // never return...
+             OS_Tick_Handler();
+         } else {
+             us_ticker_handler();
+         }
+       }
+     * \endcode
+     */
+    __asm__ (
+        "ldr r0,=0x40011144\n"
+    	"ldr r1, [r0, #0]\n"
+    	"cmp r1, #0\n"
+    	"beq US_TICKER_HANDLER\n"
+    	"bl OS_Tick_Handler\n"
+	"US_TICKER_HANDLER:\n"
+    	"push {r3, lr}\n"
+    	"bl us_ticker_handler\n"
+    	"pop {r3, pc}\n"
+        "nop"
+	);
+}
+
+#else
+
+#error Compiler not supported.
+#error Provide a definition of RTC1_IRQHandler.
+
+/*
+ * Chanel 1 of RTC1 is used by RTX as a systick.
+ * If the compare event on channel 1 is set, then branch to OS_Tick_Handler.
+ * Otherwise, just execute us_ticker_handler.
+ * This function has to be written in assembly and tagged as naked because OS_Tick_Handler
+ * will never return.
+ * A c function would put lr on the stack before calling OS_Tick_Handler and this value
+ * will never been dequeued. After a certain time a stack overflow will happen.
+ *
+ * \code
+ * void RTC1_IRQHandler(void) {
+     if(NRF_RTC1->EVENTS_COMPARE[1]) {
+         // never return...
+         OS_Tick_Handler();
+     } else {
+         us_ticker_handler();
+     }
+   }
+ * \endcode
+ */
+
+#endif
+
+/**
+ * Return the next number of clock cycle needed for the next tick.
+ * @note This function has been carrefuly optimized for a systick occuring every 1000us.
+ */
+static uint32_t get_next_tick_cc_delta() {
+    uint32_t delta = 0;
+
+    if (os_clockrate != 1000) {
+        // In RTX, by default SYSTICK is is used.
+        // A tick event is generated  every os_trv + 1 clock cycles of the system timer.
+        delta = os_trv + 1;
+    } else {
+        // If the clockrate is set to 1000us then 1000 tick should happen every second.
+        // Unfortunatelly, when clockrate is set to 1000, os_trv is equal to 31.
+        // If (os_trv + 1) is used as the delta value between two ticks, 1000 ticks will be
+        // generated in 32000 clock cycle instead of 32768 clock cycles.
+        // As a result, if a user schedule an OS timer to start in 100s, the timer will start
+        // instead after 97.656s
+        // The code below fix this issue, a clock rate of 1000s will generate 1000 ticks in 32768
+        // clock cycles.
+        // The strategy is simple, for 1000 ticks:
+        //   * 768 ticks will occur 33 clock cycles after the previous tick
+        //   * 232 ticks will occur 32 clock cycles after the previous tick
+        // By default every delta is equal to 33.
+        // Every five ticks (20%, 200 delta in one second), the delta is equal to 32
+        // The remaining (32) deltas equal to 32 are distributed using primes numbers.
+        static uint32_t counter = 0;
+        if ((counter % 5) == 0 || (counter % 31) == 0 || (counter % 139) == 0 || (counter == 503)) {
+            delta = 32;
+        } else {
+            delta = 33;
+        }
+        ++counter;
+        if (counter == 1000) {
+            counter = 0;
+        }
+    }
+    return delta;
+}
+
+static inline void clear_tick_interrupt() {
+    NRF_RTC1->EVENTS_COMPARE[1] = 0;
+    NRF_RTC1->EVTENCLR = (1 << 17);
+}
+
+/**
+ * Indicate if a value is included in a range which can be wrapped.
+ * @param  begin start of the range
+ * @param  end   end of the range
+ * @param  val   value to check
+ * @return       true if the value is included in the range and false otherwise.
+ */
+static inline bool is_in_wrapped_range(uint32_t begin, uint32_t end, uint32_t val) {
+    // regular case, begin < end
+    // return true if  begin <= val < end
+    if (begin < end) {
+        if (begin <= val && val < end) {
+            return true;
+        } else {
+            return false;
+        }
+    } else {
+        // In this case end < begin because it has wrap around the limits
+        // return false if end < val < begin
+        if (end < val && val < begin)  {
+            return false;
+        } else {
+            return true;
+        }
+    }
+
+}
+
+/**
+ * Register the next tick.
+ */
+static void register_next_tick() {
+    previous_tick_cc_value = NRF_RTC1->CC[1];
+    uint32_t delta = get_next_tick_cc_delta();
+    uint32_t new_compare_value = (previous_tick_cc_value + delta) & MAX_RTC_COUNTER_VAL;
+
+    // Disable irq directly for few cycles,
+    // Validation of the new CC value against the COUNTER,
+    // Setting the new CC value and enabling CC IRQ should be an atomic operation
+    // Otherwise, there is a possibility to set an invalid CC value because
+    // the RTC1 keeps running.
+    // This code is very short 20-38 cycles in the worst case, it shouldn't
+    // disturb softdevice.
+    __disable_irq();
+    uint32_t current_counter = NRF_RTC1->COUNTER;
+
+    // If an overflow occur, set the next tick in COUNTER + delta clock cycles
+    if (is_in_wrapped_range(previous_tick_cc_value, new_compare_value, current_counter) == false) {
+        new_compare_value = current_counter + delta;
+    }
+    NRF_RTC1->CC[1] = new_compare_value;
+
+    // set the interrupt of CC channel 1 and reenable IRQs
+    NRF_RTC1->INTENSET = RTC_INTENSET_COMPARE1_Msk;
+    __enable_irq();
+}
+
+/**
+ * Initialize alternative hardware timer as RTX kernel timer
+ * This function is directly called by RTX.
+ * @note this function shouldn't be called directly.
+ * @return  IRQ number of the alternative hardware timer
+ */
+int os_tick_init (void)
+{
+    // their is no need to start the LF clock, it is already started by SystemInit.
+    NVIC_SetPriority(RTC1_IRQn, RTC1_IRQ_PRI);
+    NVIC_ClearPendingIRQ(RTC1_IRQn);
+    NVIC_EnableIRQ(RTC1_IRQn);
+
+    NRF_RTC1->TASKS_START = 1;
+    nrf_delay_us(MAX_RTC_TASKS_DELAY);
+
+    NRF_RTC1->CC[1] = 0;
+    clear_tick_interrupt();
+    register_next_tick();
+
+    os_tick_started = true;
+
+    return RTC1_IRQn;
+}
+
+/**
+ * Acknowledge the tick interrupt.
+ * This function is called by the function OS_Tick_Handler of RTX.
+ * @note this function shouldn't be called directly.
+ */
+void os_tick_irqack(void)
+{
+    clear_tick_interrupt();
+    register_next_tick();
+}
+
+/**
+ * Returns the overflow flag of the alternative hardware timer.
+ * @note This function is exposed by RTX kernel.
+ * @return 1 if the timer has overflowed and 0 otherwise.
+ */
+uint32_t os_tick_ovf(void) {
+    uint32_t current_counter = NRF_RTC1->COUNTER;
+    uint32_t next_tick_cc_value = NRF_RTC1->CC[1];
+
+    return is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter) ? 0 : 1;
+}
+
+/**
+ * Return the value of the alternative hardware timer.
+ * @note The documentation is not very clear about what is expected as a result,
+ * is it an ascending counter, a descending one ?
+ * None of this is specified.
+ * The default systick is a descending counter and this function return values in
+ * descending order, even if the internal counter used is an ascending one.
+ * @return the value of the alternative hardware timer.
+ */
+uint32_t os_tick_val(void) {
+    uint32_t current_counter = NRF_RTC1->COUNTER;
+    uint32_t next_tick_cc_value = NRF_RTC1->CC[1];
+
+    // do not use os_tick_ovf because its counter value can be different
+    if(is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter)) {
+        if (next_tick_cc_value > previous_tick_cc_value) {
+            return next_tick_cc_value - current_counter;
+        } else if(current_counter <= next_tick_cc_value) {
+            return next_tick_cc_value - current_counter;
+        } else {
+            return next_tick_cc_value + (MAX_RTC_COUNTER_VAL - current_counter);
+        }
+    } else {
+        // use (os_trv + 1) has the base step, can be totally inacurate ...
+        uint32_t clock_cycles_by_tick = os_trv + 1;
+
+        // if current counter has wrap arround, add the limit to it.
+        if (current_counter < next_tick_cc_value) {
+            current_counter = current_counter + MAX_RTC_COUNTER_VAL;
+        }
+
+        return clock_cycles_by_tick - ((current_counter - next_tick_cc_value) % clock_cycles_by_tick);
+    }
+}