Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of USBHost by
USBHost/USBHost.cpp
- Committer:
- mbed_official
- Date:
- 2013-10-07
- Revision:
- 15:6da3f071ee35
- Parent:
- 14:80c2d927b9b5
- Child:
- 16:ab8c9118524e
File content as of revision 15:6da3f071ee35:
/* mbed USBHost Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "USBHost.h" #include "USBHostHub.h" USBHost * USBHost::instHost = NULL; #define DEVICE_CONNECTED_EVENT (1 << 0) #define DEVICE_DISCONNECTED_EVENT (1 << 1) #define TD_PROCESSED_EVENT (1 << 2) #define MAX_TRY_ENUMERATE_HUB 3 #define MIN(a, b) ((a > b) ? b : a) DigitalOut l4(LED4); /** * How interrupts are processed: * - new device connected: * - a message is queued in queue_usb_event with the id DEVICE_CONNECTED_EVENT * - when the usb_thread receives the event, it: * - resets the device * - reads the device descriptor * - sets the address of the device * - if it is a hub, enumerates it * - device disconnected: * - a message is queued in queue_usb_event with the id DEVICE_DISCONNECTED_EVENT * - when the usb_thread receives the event, it: * - free the device and all its children (hub) * - td processed * - a message is queued in queue_usb_event with the id TD_PROCESSED_EVENT * - when the usb_thread receives the event, it: * - call the callback attached to the endpoint where the td is attached */ void USBHost::usb_process() { bool controlListState; bool bulkListState; bool interruptListState; USBEndpoint * ep; uint8_t i, j, res, timeout_set_addr = 10; uint8_t buf[8]; bool too_many_hub; int idx; #if DEBUG_TRANSFER uint8_t * buf_transfer; #endif #if MAX_HUB_NB uint8_t k; #endif while(1) { osEvent evt = mail_usb_event.get(); if (evt.status == osEventMail) { l4 = !l4; message_t * usb_msg = (message_t*)evt.value.p; switch (usb_msg->event_id) { // a new device has been connected case DEVICE_CONNECTED_EVENT: too_many_hub = false; buf[4] = 0; usb_mutex.lock(); for (i = 0; i < MAX_DEVICE_CONNECTED; i++) { if (!deviceInUse[i]) { USB_DBG_EVENT("new device connected: %p\r\n", &devices[i]); devices[i].init(usb_msg->hub, usb_msg->port, usb_msg->lowSpeed); deviceReset[i] = false; deviceInited[i] = true; break; } } if (i == MAX_DEVICE_CONNECTED) { USB_ERR("Too many device connected!!\r\n"); usb_mutex.unlock(); continue; } if (!controlEndpointAllocated) { control = newEndpoint(CONTROL_ENDPOINT, OUT, 0x08, 0x00); addEndpoint(NULL, 0, (USBEndpoint*)control); controlEndpointAllocated = true; } #if MAX_HUB_NB if (usb_msg->hub_parent) devices[i].setHubParent((USBHostHub *)(usb_msg->hub_parent)); #endif for (j = 0; j < timeout_set_addr; j++) { resetDevice(&devices[i]); // set size of control endpoint devices[i].setSizeControlEndpoint(8); devices[i].activeAddress(false); // get first 8 bit of device descriptor // and check if we deal with a hub USB_DBG("usb_thread read device descriptor on dev: %p\r\n", &devices[i]); res = getDeviceDescriptor(&devices[i], buf, 8); if (res != USB_TYPE_OK) { USB_ERR("usb_thread could not read dev descr"); continue; } // set size of control endpoint devices[i].setSizeControlEndpoint(buf[7]); // second step: set an address to the device res = setAddress(&devices[i], devices[i].getAddress()); if (res != USB_TYPE_OK) { USB_ERR("SET ADDR FAILED"); continue; } devices[i].activeAddress(true); USB_DBG("Address of %p: %d", &devices[i], devices[i].getAddress()); // try to read again the device descriptor to check if the device // answers to its new address res = getDeviceDescriptor(&devices[i], buf, 8); if (res == USB_TYPE_OK) { break; } Thread::wait(100); } USB_INFO("New device connected: %p [hub: %d - port: %d]", &devices[i], usb_msg->hub, usb_msg->port); #if MAX_HUB_NB if (buf[4] == HUB_CLASS) { for (k = 0; k < MAX_HUB_NB; k++) { if (hub_in_use[k] == false) { for (uint8_t j = 0; j < MAX_TRY_ENUMERATE_HUB; j++) { if (hubs[k].connect(&devices[i])) { devices[i].hub = &hubs[k]; hub_in_use[k] = true; break; } } if (hub_in_use[k] == true) break; } } if (k == MAX_HUB_NB) { USB_ERR("Too many hubs connected!!\r\n"); too_many_hub = true; } } if (usb_msg->hub_parent) ((USBHostHub *)(usb_msg->hub_parent))->deviceConnected(&devices[i]); #endif if ((i < MAX_DEVICE_CONNECTED) && !too_many_hub) { deviceInUse[i] = true; } usb_mutex.unlock(); break; // a device has been disconnected case DEVICE_DISCONNECTED_EVENT: usb_mutex.lock(); controlListState = disableList(CONTROL_ENDPOINT); bulkListState = disableList(BULK_ENDPOINT); interruptListState = disableList(INTERRUPT_ENDPOINT); idx = findDevice(usb_msg->hub, usb_msg->port, (USBHostHub *)(usb_msg->hub_parent)); if (idx != -1) { freeDevice((USBDeviceConnected*)&devices[idx]); } if (controlListState) enableList(CONTROL_ENDPOINT); if (bulkListState) enableList(BULK_ENDPOINT); if (interruptListState) enableList(INTERRUPT_ENDPOINT); usb_mutex.unlock(); break; // a td has been processed // call callback on the ed associated to the td // we are not in ISR -> users can use printf in their callback method case TD_PROCESSED_EVENT: ep = (USBEndpoint *) ((HCTD *)usb_msg->td_addr)->ep; if (usb_msg->td_state == USB_TYPE_IDLE) { USB_DBG_EVENT("call callback on td %p [ep: %p state: %s - dev: %p - %s]", usb_msg->td_addr, ep, ep->getStateString(), ep->dev, ep->dev->getName(ep->getIntfNb())); #if DEBUG_TRANSFER if (ep->getDir() == IN) { buf_transfer = ep->getBufStart(); printf("READ SUCCESS [%d bytes transferred - td: 0x%08X] on ep: [%p - addr: %02X]: ", ep->getLengthTransferred(), usb_msg->td_addr, ep, ep->getAddress()); for (int i = 0; i < ep->getLengthTransferred(); i++) printf("%02X ", buf_transfer[i]); printf("\r\n\r\n"); } #endif ep->call(); } else { idx = findDevice(ep->dev); if (idx != -1) { if (deviceInUse[idx]) { USB_WARN("td %p processed but not in idle state: %s [ep: %p - dev: %p - %s]", usb_msg->td_addr, ep->getStateString(), ep, ep->dev, ep->dev->getName(ep->getIntfNb())); ep->setState(USB_TYPE_IDLE); } } } break; } mail_usb_event.free(usb_msg); } } } /* static */void USBHost::usb_process_static(void const * arg) { ((USBHost *)arg)->usb_process(); } USBHost::USBHost() : usbThread(USBHost::usb_process_static, (void *)this, osPriorityNormal, USB_THREAD_STACK) { headControlEndpoint = NULL; headBulkEndpoint = NULL; headInterruptEndpoint = NULL; tailControlEndpoint = NULL; tailBulkEndpoint = NULL; tailInterruptEndpoint = NULL; lenReportDescr = 0; controlEndpointAllocated = false; for (uint8_t i = 0; i < MAX_DEVICE_CONNECTED; i++) { deviceInUse[i] = false; devices[i].setAddress(i + 1); deviceReset[i] = false; deviceInited[i] = false; for (uint8_t j = 0; j < MAX_INTF; j++) deviceAttachedDriver[i][j] = false; } #if MAX_HUB_NB for (uint8_t i = 0; i < MAX_HUB_NB; i++) { hubs[i].setHost(this); hub_in_use[i] = false; } #endif } void USBHost::transferCompleted(volatile uint32_t addr) { uint8_t state; if(addr == 0) return; volatile HCTD* tdList = NULL; //First we must reverse the list order and dequeue each TD do { volatile HCTD* td = (volatile HCTD*)addr; addr = (uint32_t)td->nextTD; //Dequeue from physical list td->nextTD = tdList; //Enqueue into reversed list tdList = td; } while(addr); while(tdList != NULL) { volatile HCTD* td = tdList; tdList = (volatile HCTD*)td->nextTD; //Dequeue element now as it could be modified below if (td->ep != NULL) { USBEndpoint * ep = (USBEndpoint *)(td->ep); if (((HCTD *)td)->control >> 28) { state = ((HCTD *)td)->control >> 28; } else { if (td->currBufPtr) ep->setLengthTransferred((uint32_t)td->currBufPtr - (uint32_t)ep->getBufStart()); state = 16 /*USB_TYPE_IDLE*/; } ep->unqueueTransfer(td); if (ep->getType() != CONTROL_ENDPOINT) { // callback on the processed td will be called from the usb_thread (not in ISR) message_t * usb_msg = mail_usb_event.alloc(); usb_msg->event_id = TD_PROCESSED_EVENT; usb_msg->td_addr = (void *)td; usb_msg->td_state = state; mail_usb_event.put(usb_msg); } ep->setState(state); ep->ep_queue.put((uint8_t*)1); } } } USBHost * USBHost::getHostInst() { if (instHost == NULL) { instHost = new USBHost(); instHost->init(); } return instHost; } /* * Called when a device has been connected * Called in ISR!!!! (no printf) */ /* virtual */ void USBHost::deviceConnected(int hub, int port, bool lowSpeed, USBHostHub * hub_parent) { // be sure that the new device connected is not already connected... int idx = findDevice(hub, port, hub_parent); if (idx != -1) { if (deviceInited[idx]) return; } message_t * usb_msg = mail_usb_event.alloc(); usb_msg->event_id = DEVICE_CONNECTED_EVENT; usb_msg->hub = hub; usb_msg->port = port; usb_msg->lowSpeed = lowSpeed; usb_msg->hub_parent = hub_parent; mail_usb_event.put(usb_msg); } /* * Called when a device has been disconnected * Called in ISR!!!! (no printf) */ /* virtual */ void USBHost::deviceDisconnected(int hub, int port, USBHostHub * hub_parent, volatile uint32_t addr) { // be sure that the device disconnected is connected... int idx = findDevice(hub, port, hub_parent); if (idx != -1) { if (!deviceInUse[idx]) return; } else { return; } message_t * usb_msg = mail_usb_event.alloc(); usb_msg->event_id = DEVICE_DISCONNECTED_EVENT; usb_msg->hub = hub; usb_msg->port = port; usb_msg->hub_parent = hub_parent; mail_usb_event.put(usb_msg); } void USBHost::freeDevice(USBDeviceConnected * dev) { USBEndpoint * ep = NULL; HCED * ed = NULL; #if MAX_HUB_NB if (dev->getClass() == HUB_CLASS) { if (dev->hub == NULL) { USB_ERR("HUB NULL!!!!!\r\n"); } else { dev->hub->hubDisconnected(); for (uint8_t i = 0; i < MAX_HUB_NB; i++) { if (dev->hub == &hubs[i]) { hub_in_use[i] = false; break; } } } } // notify hub parent that this device has been disconnected if (dev->getHubParent()) dev->getHubParent()->deviceDisconnected(dev); #endif int idx = findDevice(dev); if (idx != -1) { deviceInUse[idx] = false; deviceReset[idx] = false; for (uint8_t j = 0; j < MAX_INTF; j++) { deviceAttachedDriver[idx][j] = false; if (dev->getInterface(j) != NULL) { USB_DBG("FREE INTF %d on dev: %p, %p, nb_endpot: %d, %s", j, (void *)dev->getInterface(j), dev, dev->getInterface(j)->nb_endpoint, dev->getName(j)); for (int i = 0; i < dev->getInterface(j)->nb_endpoint; i++) { if ((ep = dev->getEndpoint(j, i)) != NULL) { ed = (HCED *)ep->getHCED(); ed->control |= (1 << 14); //sKip bit unqueueEndpoint(ep); freeTD((volatile uint8_t*)ep->getTDList()[0]); freeTD((volatile uint8_t*)ep->getTDList()[1]); freeED((uint8_t *)ep->getHCED()); } printList(BULK_ENDPOINT); printList(INTERRUPT_ENDPOINT); } USB_INFO("Device disconnected [%p - %s - hub: %d - port: %d]", dev, dev->getName(j), dev->getHub(), dev->getPort()); } } dev->disconnect(); } } void USBHost::unqueueEndpoint(USBEndpoint * ep) { USBEndpoint * prec = NULL; USBEndpoint * current = NULL; for (int i = 0; i < 2; i++) { current = (i == 0) ? (USBEndpoint*)headBulkEndpoint : (USBEndpoint*)headInterruptEndpoint; prec = current; while (current != NULL) { if (current == ep) { if (current->nextEndpoint() != NULL) { prec->queueEndpoint(current->nextEndpoint()); if (current == headBulkEndpoint) { updateBulkHeadED((uint32_t)current->nextEndpoint()->getHCED()); headBulkEndpoint = current->nextEndpoint(); } else if (current == headInterruptEndpoint) { updateInterruptHeadED((uint32_t)current->nextEndpoint()->getHCED()); headInterruptEndpoint = current->nextEndpoint(); } } // here we are dequeuing the queue of ed // we need to update the tail pointer else { prec->queueEndpoint(NULL); if (current == headBulkEndpoint) { updateBulkHeadED(0); headBulkEndpoint = current->nextEndpoint(); } else if (current == headInterruptEndpoint) { updateInterruptHeadED(0); headInterruptEndpoint = current->nextEndpoint(); } // modify tail switch (current->getType()) { case BULK_ENDPOINT: tailBulkEndpoint = prec; break; case INTERRUPT_ENDPOINT: tailInterruptEndpoint = prec; break; default: break; } } current->setState(USB_TYPE_FREE); return; } prec = current; current = current->nextEndpoint(); } } } USBDeviceConnected * USBHost::getDevice(uint8_t index) { if ((index >= MAX_DEVICE_CONNECTED) || (!deviceInUse[index])) { return NULL; } return (USBDeviceConnected*)&devices[index]; } // create an USBEndpoint descriptor. the USBEndpoint is not linked USBEndpoint * USBHost::newEndpoint(ENDPOINT_TYPE type, ENDPOINT_DIRECTION dir, uint32_t size, uint8_t addr) { int i = 0; HCED * ed = (HCED *)getED(); HCTD* td_list[2] = { (HCTD*)getTD(), (HCTD*)getTD() }; memset((void *)td_list[0], 0x00, sizeof(HCTD)); memset((void *)td_list[1], 0x00, sizeof(HCTD)); // search a free USBEndpoint for (i = 0; i < MAX_ENDPOINT; i++) { if (endpoints[i].getState() == USB_TYPE_FREE) { endpoints[i].init(ed, type, dir, size, addr, td_list); USB_DBG("USBEndpoint created (%p): type: %d, dir: %d, size: %d, addr: %d, state: %s", &endpoints[i], type, dir, size, addr, endpoints[i].getStateString()); return &endpoints[i]; } } USB_ERR("could not allocate more endpoints!!!!"); return NULL; } USB_TYPE USBHost::resetDevice(USBDeviceConnected * dev) { int index = findDevice(dev); if (index != -1) { USB_DBG("Resetting hub %d, port %d\n", dev->getHub(), dev->getPort()); Thread::wait(100); if (dev->getHub() == 0) { resetRootHub(); } #if MAX_HUB_NB else { dev->getHubParent()->portReset(dev->getPort()); } #endif Thread::wait(100); deviceReset[index] = true; return USB_TYPE_OK; } return USB_TYPE_ERROR; } // link the USBEndpoint to the linked list and attach an USBEndpoint to a device bool USBHost::addEndpoint(USBDeviceConnected * dev, uint8_t intf_nb, USBEndpoint * ep) { if (ep == NULL) { return false; } HCED * prevEd; // set device address in the USBEndpoint descriptor if (dev == NULL) { ep->setDeviceAddress(0); } else { ep->setDeviceAddress(dev->getAddress()); } if ((dev != NULL) && dev->getSpeed()) { ep->setSpeed(dev->getSpeed()); } ep->setIntfNb(intf_nb); // queue the new USBEndpoint on the ED list switch (ep->getType()) { case CONTROL_ENDPOINT: prevEd = ( HCED*) controlHeadED(); if (!prevEd) { updateControlHeadED((uint32_t) ep->getHCED()); USB_DBG_TRANSFER("First control USBEndpoint: %08X", (uint32_t) ep->getHCED()); headControlEndpoint = ep; tailControlEndpoint = ep; return true; } tailControlEndpoint->queueEndpoint(ep); tailControlEndpoint = ep; return true; case BULK_ENDPOINT: prevEd = ( HCED*) bulkHeadED(); if (!prevEd) { updateBulkHeadED((uint32_t) ep->getHCED()); USB_DBG_TRANSFER("First bulk USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED()); headBulkEndpoint = ep; tailBulkEndpoint = ep; break; } USB_DBG_TRANSFER("Queue BULK Ed %p after %p\r\n",ep->getHCED(), prevEd); tailBulkEndpoint->queueEndpoint(ep); tailBulkEndpoint = ep; break; case INTERRUPT_ENDPOINT: prevEd = ( HCED*) interruptHeadED(); if (!prevEd) { updateInterruptHeadED((uint32_t) ep->getHCED()); USB_DBG_TRANSFER("First interrupt USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED()); headInterruptEndpoint = ep; tailInterruptEndpoint = ep; break; } USB_DBG_TRANSFER("Queue INTERRUPT Ed %p after %p\r\n",ep->getHCED(), prevEd); tailInterruptEndpoint->queueEndpoint(ep); tailInterruptEndpoint = ep; break; default: return false; } ep->dev = dev; dev->addEndpoint(intf_nb, ep); return true; } int USBHost::findDevice(USBDeviceConnected * dev) { for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) { if (dev == &devices[i]) { return i; } } return -1; } int USBHost::findDevice(uint8_t hub, uint8_t port, USBHostHub * hub_parent) { for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) { if (devices[i].getHub() == hub && devices[i].getPort() == port) { if (hub_parent != NULL) { if (hub_parent == devices[i].getHubParent()) return i; } else { return i; } } } return -1; } void USBHost::printList(ENDPOINT_TYPE type) { #if DEBUG_EP_STATE volatile HCED * hced; switch(type) { case CONTROL_ENDPOINT: hced = (HCED *)controlHeadED(); break; case BULK_ENDPOINT: hced = (HCED *)bulkHeadED(); break; case INTERRUPT_ENDPOINT: hced = (HCED *)interruptHeadED(); break; } volatile HCTD * hctd = NULL; const char * type_str = (type == BULK_ENDPOINT) ? "BULK" : ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" : ((type == CONTROL_ENDPOINT) ? "CONTROL" : "ISOCHRONOUS")); printf("State of %s:\r\n", type_str); while (hced != NULL) { uint8_t dir = ((hced->control & (3 << 11)) >> 11); printf("hced: %p [ADDR: %d, DIR: %s, EP_NB: 0x%X]\r\n", hced, hced->control & 0x7f, (dir == 1) ? "OUT" : ((dir == 0) ? "FROM_TD":"IN"), (hced->control & (0xf << 7)) >> 7); hctd = (HCTD *)((uint32_t)(hced->headTD) & ~(0xf)); while (hctd != hced->tailTD) { printf("\thctd: %p [DIR: %s]\r\n", hctd, ((hctd->control & (3 << 19)) >> 19) == 1 ? "OUT" : "IN"); hctd = hctd->nextTD; } printf("\thctd: %p\r\n", hctd); hced = hced->nextED; } printf("\r\n\r\n"); #endif } // add a transfer on the TD linked list USB_TYPE USBHost::addTransfer(USBEndpoint * ed, uint8_t * buf, uint32_t len) { td_mutex.lock(); // allocate a TD which will be freed in TDcompletion volatile HCTD * td = ed->getNextTD(); if (td == NULL) { return USB_TYPE_ERROR; } uint32_t token = (ed->isSetup() ? TD_SETUP : ( (ed->getDir() == IN) ? TD_IN : TD_OUT )); uint32_t td_toggle; if (ed->getType() == CONTROL_ENDPOINT) { if (ed->isSetup()) { td_toggle = TD_TOGGLE_0; } else { td_toggle = TD_TOGGLE_1; } } else { td_toggle = 0; } td->control = (TD_ROUNDING | token | TD_DELAY_INT(0) | td_toggle | TD_CC); td->currBufPtr = buf; td->bufEnd = (buf + (len - 1)); ENDPOINT_TYPE type = ed->getType(); disableList(type); ed->queueTransfer(); printList(type); enableList(type); td_mutex.unlock(); return USB_TYPE_PROCESSING; } USB_TYPE USBHost::getDeviceDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_dev_descr) { USB_TYPE t = controlRead( dev, USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE, GET_DESCRIPTOR, (DEVICE_DESCRIPTOR << 8) | (0), 0, buf, MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf)); if (len_dev_descr) *len_dev_descr = MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf); return t; } USB_TYPE USBHost::getConfigurationDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_conf_descr) { USB_TYPE res; uint16_t total_conf_descr_length = 0; // fourth step: get the beginning of the configuration descriptor to have the total length of the conf descr res = controlRead( dev, USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE, GET_DESCRIPTOR, (CONFIGURATION_DESCRIPTOR << 8) | (0), 0, buf, CONFIGURATION_DESCRIPTOR_LENGTH); if (res != USB_TYPE_OK) { USB_ERR("GET CONF 1 DESCR FAILED"); return res; } total_conf_descr_length = buf[2] | (buf[3] << 8); total_conf_descr_length = MIN(max_len_buf, total_conf_descr_length); if (len_conf_descr) *len_conf_descr = total_conf_descr_length; USB_DBG("TOTAL_LENGTH: %d \t NUM_INTERF: %d", total_conf_descr_length, buf[4]); return controlRead( dev, USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE, GET_DESCRIPTOR, (CONFIGURATION_DESCRIPTOR << 8) | (0), 0, buf, total_conf_descr_length); } USB_TYPE USBHost::setAddress(USBDeviceConnected * dev, uint8_t address) { return controlWrite( dev, USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE, SET_ADDRESS, address, 0, NULL, 0); } USB_TYPE USBHost::setConfiguration(USBDeviceConnected * dev, uint8_t conf) { return controlWrite( dev, USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE, SET_CONFIGURATION, conf, 0, NULL, 0); } uint8_t USBHost::numberDriverAttached(USBDeviceConnected * dev) { int index = findDevice(dev); uint8_t cnt = 0; if (index == -1) return 0; for (uint8_t i = 0; i < MAX_INTF; i++) { if (deviceAttachedDriver[index][i]) cnt++; } return cnt; } // enumerate a device with the control USBEndpoint USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator) { uint16_t total_conf_descr_length = 0; USB_TYPE res; usb_mutex.lock(); // don't enumerate a device which all interfaces are registered to a specific driver int index = findDevice(dev); if (index == -1) { usb_mutex.unlock(); return USB_TYPE_ERROR; } uint8_t nb_intf_attached = numberDriverAttached(dev); USB_DBG("dev: %p nb_intf: %d", dev, dev->getNbIntf()); USB_DBG("dev: %p nb_intf_attached: %d", dev, nb_intf_attached); if ((nb_intf_attached != 0) && (dev->getNbIntf() == nb_intf_attached)) { USB_DBG("Don't enumerate dev: %p because all intf are registered with a driver", dev); usb_mutex.unlock(); return USB_TYPE_OK; } USB_DBG("Enumerate dev: %p", dev); // third step: get the whole device descriptor to see vid, pid res = getDeviceDescriptor(dev, data, DEVICE_DESCRIPTOR_LENGTH); if (res != USB_TYPE_OK) { USB_DBG("GET DEV DESCR FAILED"); usb_mutex.unlock(); return res; } dev->setClass(data[4]); dev->setSubClass(data[5]); dev->setProtocol(data[6]); dev->setVid(data[8] | (data[9] << 8)); dev->setPid(data[10] | (data[11] << 8)); USB_DBG("CLASS: %02X \t VID: %04X \t PID: %04X", data[4], data[8] | (data[9] << 8), data[10] | (data[11] << 8)); pEnumerator->setVidPid( data[8] | (data[9] << 8), data[10] | (data[11] << 8) ); res = getConfigurationDescriptor(dev, data, 300, &total_conf_descr_length); if (res != USB_TYPE_OK) { usb_mutex.unlock(); return res; } #if DEBUG USB_DBG("CONFIGURATION DESCRIPTOR:\r\n"); for (int i = 0; i < total_conf_descr_length; i++) printf("%02X ", data[i]); printf("\r\n\r\n"); #endif // Parse the configuration descriptor parseConfDescr(dev, data, total_conf_descr_length, pEnumerator); // only set configuration if not enumerated before if (!dev->isEnumerated()) { USB_DBG("Set configuration 1 on dev: %p", dev); // sixth step: set configuration (only 1 supported) res = setConfiguration(dev, 1); if (res != USB_TYPE_OK) { USB_DBG("SET CONF FAILED"); usb_mutex.unlock(); return res; } } dev->setEnumerated(); // Now the device is enumerated! USB_DBG("dev %p is enumerated\r\n", dev); usb_mutex.unlock(); // Some devices may require this delay wait_ms(100); return USB_TYPE_OK; } // this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor. void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator) { uint32_t index = 0; uint32_t len_desc = 0; uint8_t id = 0; int nb_endpoints_used = 0; USBEndpoint * ep = NULL; uint8_t intf_nb = 0; bool parsing_intf = false; uint8_t current_intf = 0; while (index < len) { len_desc = conf_descr[index]; id = conf_descr[index+1]; switch (id) { case CONFIGURATION_DESCRIPTOR: USB_DBG("dev: %p has %d intf", dev, conf_descr[4]); dev->setNbIntf(conf_descr[4]); break; case INTERFACE_DESCRIPTOR: if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) { if (intf_nb++ <= MAX_INTF) { current_intf = conf_descr[index + 2]; dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]); nb_endpoints_used = 0; USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]); } else { USB_DBG("Drop intf..."); } parsing_intf = true; } else { parsing_intf = false; } break; case ENDPOINT_DESCRIPTOR: if (parsing_intf && (intf_nb <= MAX_INTF) ) { if (nb_endpoints_used < MAX_ENDPOINT_PER_INTERFACE) { if( pEnumerator->useEndpoint(current_intf, (ENDPOINT_TYPE)(conf_descr[index + 3] & 0x03), (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1)) ) { // if the USBEndpoint is isochronous -> skip it (TODO: fix this) if ((conf_descr[index + 3] & 0x03) != ISOCHRONOUS_ENDPOINT) { ep = newEndpoint((ENDPOINT_TYPE)(conf_descr[index+3] & 0x03), (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1), conf_descr[index + 4] | (conf_descr[index + 5] << 8), conf_descr[index + 2] & 0x0f); USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev); if (ep != NULL && dev != NULL) { addEndpoint(dev, current_intf, ep); } else { USB_DBG("EP NULL"); } nb_endpoints_used++; } else { USB_DBG("ISO USBEndpoint NOT SUPPORTED"); } } } } break; case HID_DESCRIPTOR: lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8); break; default: break; } index += len_desc; } } USB_TYPE USBHost::bulkWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) { return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, true); } USB_TYPE USBHost::bulkRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) { return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, false); } USB_TYPE USBHost::interruptWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) { return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, true); } USB_TYPE USBHost::interruptRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking) { return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, false); } USB_TYPE USBHost::generalTransfer(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking, ENDPOINT_TYPE type, bool write) { #if DEBUG_TRANSFER const char * type_str = (type == BULK_ENDPOINT) ? "BULK" : ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" : "ISOCHRONOUS"); USB_DBG_TRANSFER("----- %s %s [dev: %p - %s - hub: %d - port: %d - addr: %d - ep: %02X]------", type_str, (write) ? "WRITE" : "READ", dev, dev->getName(ep->getIntfNb()), dev->getHub(), dev->getPort(), dev->getAddress(), ep->getAddress()); #endif usb_mutex.lock(); USB_TYPE res; ENDPOINT_DIRECTION dir = (write) ? OUT : IN; if (dev == NULL) { USB_ERR("dev NULL"); usb_mutex.unlock(); return USB_TYPE_ERROR; } if (ep == NULL) { USB_ERR("ep NULL"); usb_mutex.unlock(); return USB_TYPE_ERROR; } if (ep->getState() != USB_TYPE_IDLE) { USB_WARN("[ep: %p - dev: %p - %s] NOT IDLE: %s", ep, ep->dev, ep->dev->getName(ep->getIntfNb()), ep->getStateString()); usb_mutex.unlock(); return ep->getState(); } if ((ep->getDir() != dir) || (ep->getType() != type)) { USB_ERR("[ep: %p - dev: %p] wrong dir or bad USBEndpoint type", ep, ep->dev); usb_mutex.unlock(); return USB_TYPE_ERROR; } if (dev->getAddress() != ep->getDeviceAddress()) { USB_ERR("[ep: %p - dev: %p] USBEndpoint addr and device addr don't match", ep, ep->dev); usb_mutex.unlock(); return USB_TYPE_ERROR; } #if DEBUG_TRANSFER if (write) { USB_DBG_TRANSFER("%s WRITE buffer", type_str); for (int i = 0; i < ep->getLengthTransferred(); i++) printf("%02X ", buf[i]); printf("\r\n\r\n"); } #endif addTransfer(ep, buf, len); if (blocking) { ep->ep_queue.get(); res = ep->getState(); USB_DBG_TRANSFER("%s TRANSFER res: %s on ep: %p\r\n", type_str, ep->getStateString(), ep); if (res != USB_TYPE_IDLE) { usb_mutex.unlock(); return res; } usb_mutex.unlock(); return USB_TYPE_OK; } usb_mutex.unlock(); return USB_TYPE_PROCESSING; } USB_TYPE USBHost::controlRead(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { return controlTransfer(dev, requestType, request, value, index, buf, len, false); } USB_TYPE USBHost::controlWrite(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { return controlTransfer(dev, requestType, request, value, index, buf, len, true); } USB_TYPE USBHost::controlTransfer(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len, bool write) { usb_mutex.lock(); USB_DBG_TRANSFER("----- CONTROL %s [dev: %p - hub: %d - port: %d] ------", (write) ? "WRITE" : "READ", dev, dev->getHub(), dev->getPort()); int length_transfer = len; USB_TYPE res; uint32_t token; control->setSpeed(dev->getSpeed()); control->setSize(dev->getSizeControlEndpoint()); if (dev->isActiveAddress()) { control->setDeviceAddress(dev->getAddress()); } else { control->setDeviceAddress(0); } USB_DBG_TRANSFER("Control transfer on device: %d\r\n", control->getDeviceAddress()); fillControlBuf(requestType, request, value, index, len); #if DEBUG_TRANSFER USB_DBG_TRANSFER("SETUP PACKET: "); for (int i = 0; i < 8; i++) printf("%01X ", setupPacket[i]); printf("\r\n"); #endif control->setNextToken(TD_SETUP); addTransfer(control, (uint8_t*)setupPacket, 8); control->ep_queue.get(); res = control->getState(); USB_DBG_TRANSFER("CONTROL setup stage %s", control->getStateString()); if (res != USB_TYPE_IDLE) { usb_mutex.unlock(); return res; } if (length_transfer) { token = (write) ? TD_OUT : TD_IN; control->setNextToken(token); addTransfer(control, (uint8_t *)buf, length_transfer); control->ep_queue.get(); res = control->getState(); #if DEBUG_TRANSFER USB_DBG_TRANSFER("CONTROL %s stage %s", (write) ? "WRITE" : "READ", control->getStateString()); if (write) { USB_DBG_TRANSFER("CONTROL WRITE buffer"); for (int i = 0; i < control->getLengthTransferred(); i++) printf("%02X ", buf[i]); printf("\r\n\r\n"); } else { USB_DBG_TRANSFER("CONTROL READ SUCCESS [%d bytes transferred]", control->getLengthTransferred()); for (int i = 0; i < control->getLengthTransferred(); i++) printf("%02X ", buf[i]); printf("\r\n\r\n"); } #endif if (res != USB_TYPE_IDLE) { usb_mutex.unlock(); return res; } } token = (write) ? TD_IN : TD_OUT; control->setNextToken(token); addTransfer(control, NULL, 0); control->ep_queue.get(); res = control->getState(); USB_DBG_TRANSFER("CONTROL ack stage %s", control->getStateString()); usb_mutex.unlock(); if (res != USB_TYPE_IDLE) return res; return USB_TYPE_OK; } void USBHost::fillControlBuf(uint8_t requestType, uint8_t request, uint16_t value, uint16_t index, int len) { setupPacket[0] = requestType; setupPacket[1] = request; setupPacket[2] = (uint8_t) value; setupPacket[3] = (uint8_t) (value >> 8); setupPacket[4] = (uint8_t) index; setupPacket[5] = (uint8_t) (index >> 8); setupPacket[6] = (uint8_t) len; setupPacket[7] = (uint8_t) (len >> 8); }