MPU6050 issues

Dependencies:   mbed

Fork of MPU6050 by Shundo Kishi

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers MPU6050.cpp Source File

MPU6050.cpp

00001 //ported from arduino library: https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
00002 //written by szymon gaertig (email: szymon@gaertig.com.pl)
00003 //
00004 //Changelog:
00005 //2013-01-08 - first beta release
00006 
00007 // I2Cdev library collection - MPU6050 I2C device class
00008 // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
00009 // 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
00010 // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
00011 //
00012 // Changelog:
00013 //     ... - ongoing debug release
00014 
00015 // NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
00016 // DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
00017 // YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
00018 
00019 /* ============================================
00020 I2Cdev device library code is placed under the MIT license
00021 Copyright (c) 2012 Jeff Rowberg
00022 
00023 Permission is hereby granted, free of charge, to any person obtaining a copy
00024 of this software and associated documentation files (the "Software"), to deal
00025 in the Software without restriction, including without limitation the rights
00026 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
00027 copies of the Software, and to permit persons to whom the Software is
00028 furnished to do so, subject to the following conditions:
00029 
00030 The above copyright notice and this permission notice shall be included in
00031 all copies or substantial portions of the Software.
00032 
00033 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
00034 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
00035 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
00036 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
00037 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00038 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
00039 THE SOFTWARE.
00040 ===============================================
00041 */
00042 
00043 #include "MPU6050.h"
00044 #include "shared.h"
00045 
00046 #define useDebugSerial
00047 
00048 
00049 //instead of using pgmspace.h
00050 typedef const unsigned char prog_uchar;
00051 #define pgm_read_byte_near(x) (*(prog_uchar*)(x))//<- I modified here
00052 #define pgm_read_byte(x) (*(prog_uchar*)(x))//<- I modified here
00053 
00054 /** Default constructor, uses default I2C address.
00055  * @see MPU6050_DEFAULT_ADDRESS
00056  */
00057 MPU6050::MPU6050()
00058 {
00059     devAddr = MPU6050_DEFAULT_ADDRESS;
00060 }
00061 
00062 /** Specific address constructor.
00063  * @param address I2C address
00064  * @see MPU6050_DEFAULT_ADDRESS
00065  * @see MPU6050_ADDRESS_AD0_LOW
00066  * @see MPU6050_ADDRESS_AD0_HIGH
00067  */
00068 MPU6050::MPU6050(uint8_t address)
00069 {
00070     devAddr = address;
00071 }
00072 
00073 /** Power on and prepare for general usage.
00074  * This will activate the device and take it out of sleep mode (which must be done
00075  * after start-up). This function also sets both the accelerometer and the gyroscope
00076  * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
00077  * the clock source to use the X Gyro for reference, which is slightly better than
00078  * the default internal clock source.
00079  */
00080 void MPU6050::initialize()
00081 {
00082 
00083 #ifdef useDebugSerial
00084     pc.printf("MPU6050::initialize start\r\n");
00085 #endif
00086 
00087     setClockSource(MPU6050_CLOCK_PLL_XGYRO);
00088     setFullScaleGyroRange(MPU6050_GYRO_FS_250);
00089     setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
00090     setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
00091 
00092 #ifdef useDebugSerial
00093     pc.printf("MPU6050::initialize end\r\n");
00094 #endif
00095 }
00096 
00097 /** Verify the I2C connection.
00098  * Make sure the device is connected and responds as expected.
00099  * @return True if connection is valid, false otherwise
00100  */
00101 bool MPU6050::testConnection()
00102 {
00103 #ifdef useDebugSerial
00104     pc.printf("MPU6050::testConnection start\r\n");
00105 #endif
00106     uint8_t deviceId = getDeviceID();
00107 #ifdef useDebugSerial
00108     pc.printf("DeviceId = %d\r\n",deviceId);
00109 #endif
00110     return deviceId == 0x34;
00111 }
00112 
00113 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
00114 
00115 /** Get the auxiliary I2C supply voltage level.
00116  * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
00117  * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
00118  * the MPU-6000, which does not have a VLOGIC pin.
00119  * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
00120  */
00121 uint8_t MPU6050::getAuxVDDIOLevel()
00122 {
00123     i2Cdev.readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
00124     return buffer[0];
00125 }
00126 /** Set the auxiliary I2C supply voltage level.
00127  * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
00128  * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
00129  * the MPU-6000, which does not have a VLOGIC pin.
00130  * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
00131  */
00132 void MPU6050::setAuxVDDIOLevel(uint8_t level)
00133 {
00134     i2Cdev.writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
00135 }
00136 
00137 // SMPLRT_DIV register
00138 
00139 /** Get gyroscope output rate divider.
00140  * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
00141  * Motion detection, and Free Fall detection are all based on the Sample Rate.
00142  * The Sample Rate is generated by dividing the gyroscope output rate by
00143  * SMPLRT_DIV:
00144  *
00145  * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
00146  *
00147  * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
00148  * 7), and 1kHz when the DLPF is enabled (see Register 26).
00149  *
00150  * Note: The accelerometer output rate is 1kHz. This means that for a Sample
00151  * Rate greater than 1kHz, the same accelerometer sample may be output to the
00152  * FIFO, DMP, and sensor registers more than once.
00153  *
00154  * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
00155  * of the MPU-6000/MPU-6050 Product Specification document.
00156  *
00157  * @return Current sample rate
00158  * @see MPU6050_RA_SMPLRT_DIV
00159  */
00160 uint8_t MPU6050::getRate()
00161 {
00162     i2Cdev.readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
00163     return buffer[0];
00164 }
00165 /** Set gyroscope sample rate divider.
00166  * @param rate New sample rate divider
00167  * @see getRate()
00168  * @see MPU6050_RA_SMPLRT_DIV
00169  */
00170 void MPU6050::setRate(uint8_t rate)
00171 {
00172     i2Cdev.writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
00173 }
00174 
00175 // CONFIG register
00176 
00177 /** Get external FSYNC configuration.
00178  * Configures the external Frame Synchronization (FSYNC) pin sampling. An
00179  * external signal connected to the FSYNC pin can be sampled by configuring
00180  * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
00181  * strobes may be captured. The latched FSYNC signal will be sampled at the
00182  * Sampling Rate, as defined in register 25. After sampling, the latch will
00183  * reset to the current FSYNC signal state.
00184  *
00185  * The sampled value will be reported in place of the least significant bit in
00186  * a sensor data register determined by the value of EXT_SYNC_SET according to
00187  * the following table.
00188  *
00189  * <pre>
00190  * EXT_SYNC_SET | FSYNC Bit Location
00191  * -------------+-------------------
00192  * 0            | Input disabled
00193  * 1            | TEMP_OUT_L[0]
00194  * 2            | GYRO_XOUT_L[0]
00195  * 3            | GYRO_YOUT_L[0]
00196  * 4            | GYRO_ZOUT_L[0]
00197  * 5            | ACCEL_XOUT_L[0]
00198  * 6            | ACCEL_YOUT_L[0]
00199  * 7            | ACCEL_ZOUT_L[0]
00200  * </pre>
00201  *
00202  * @return FSYNC configuration value
00203  */
00204 uint8_t MPU6050::getExternalFrameSync()
00205 {
00206     i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
00207     return buffer[0];
00208 }
00209 /** Set external FSYNC configuration.
00210  * @see getExternalFrameSync()
00211  * @see MPU6050_RA_CONFIG
00212  * @param sync New FSYNC configuration value
00213  */
00214 void MPU6050::setExternalFrameSync(uint8_t sync)
00215 {
00216     i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
00217 }
00218 /** Get digital low-pass filter configuration.
00219  * The DLPF_CFG parameter sets the digital low pass filter configuration. It
00220  * also determines the internal sampling rate used by the device as shown in
00221  * the table below.
00222  *
00223  * Note: The accelerometer output rate is 1kHz. This means that for a Sample
00224  * Rate greater than 1kHz, the same accelerometer sample may be output to the
00225  * FIFO, DMP, and sensor registers more than once.
00226  *
00227  * <pre>
00228  *          |   ACCELEROMETER    |           GYROSCOPE
00229  * DLPF_CFG | Bandwidth | Delay  | Bandwidth | Delay  | Sample Rate
00230  * ---------+-----------+--------+-----------+--------+-------------
00231  * 0        | 260Hz     | 0ms    | 256Hz     | 0.98ms | 8kHz
00232  * 1        | 184Hz     | 2.0ms  | 188Hz     | 1.9ms  | 1kHz
00233  * 2        | 94Hz      | 3.0ms  | 98Hz      | 2.8ms  | 1kHz
00234  * 3        | 44Hz      | 4.9ms  | 42Hz      | 4.8ms  | 1kHz
00235  * 4        | 21Hz      | 8.5ms  | 20Hz      | 8.3ms  | 1kHz
00236  * 5        | 10Hz      | 13.8ms | 10Hz      | 13.4ms | 1kHz
00237  * 6        | 5Hz       | 19.0ms | 5Hz       | 18.6ms | 1kHz
00238  * 7        |   -- Reserved --   |   -- Reserved --   | Reserved
00239  * </pre>
00240  *
00241  * @return DLFP configuration
00242  * @see MPU6050_RA_CONFIG
00243  * @see MPU6050_CFG_DLPF_CFG_BIT
00244  * @see MPU6050_CFG_DLPF_CFG_LENGTH
00245  */
00246 uint8_t MPU6050::getDLPFMode()
00247 {
00248     i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
00249     return buffer[0];
00250 }
00251 /** Set digital low-pass filter configuration.
00252  * @param mode New DLFP configuration setting
00253  * @see getDLPFBandwidth()
00254  * @see MPU6050_DLPF_BW_256
00255  * @see MPU6050_RA_CONFIG
00256  * @see MPU6050_CFG_DLPF_CFG_BIT
00257  * @see MPU6050_CFG_DLPF_CFG_LENGTH
00258  */
00259 void MPU6050::setDLPFMode(uint8_t mode)
00260 {
00261     i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
00262 }
00263 
00264 // GYRO_CONFIG register
00265 
00266 /** Get full-scale gyroscope range.
00267  * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
00268  * as described in the table below.
00269  *
00270  * <pre>
00271  * 0 = +/- 250 degrees/sec
00272  * 1 = +/- 500 degrees/sec
00273  * 2 = +/- 1000 degrees/sec
00274  * 3 = +/- 2000 degrees/sec
00275  * </pre>
00276  *
00277  * @return Current full-scale gyroscope range setting
00278  * @see MPU6050_GYRO_FS_250
00279  * @see MPU6050_RA_GYRO_CONFIG
00280  * @see MPU6050_GCONFIG_FS_SEL_BIT
00281  * @see MPU6050_GCONFIG_FS_SEL_LENGTH
00282  */
00283 uint8_t MPU6050::getFullScaleGyroRange()
00284 {
00285     i2Cdev.readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
00286     return buffer[0];
00287 }
00288 /** Set full-scale gyroscope range.
00289  * @param range New full-scale gyroscope range value
00290  * @see getFullScaleRange()
00291  * @see MPU6050_GYRO_FS_250
00292  * @see MPU6050_RA_GYRO_CONFIG
00293  * @see MPU6050_GCONFIG_FS_SEL_BIT
00294  * @see MPU6050_GCONFIG_FS_SEL_LENGTH
00295  */
00296 void MPU6050::setFullScaleGyroRange(uint8_t range)
00297 {
00298     i2Cdev.writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
00299 }
00300 
00301 // ACCEL_CONFIG register
00302 
00303 /** Get self-test enabled setting for accelerometer X axis.
00304  * @return Self-test enabled value
00305  * @see MPU6050_RA_ACCEL_CONFIG
00306  */
00307 bool MPU6050::getAccelXSelfTest()
00308 {
00309     i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
00310     return buffer[0];
00311 }
00312 /** Get self-test enabled setting for accelerometer X axis.
00313  * @param enabled Self-test enabled value
00314  * @see MPU6050_RA_ACCEL_CONFIG
00315  */
00316 void MPU6050::setAccelXSelfTest(bool enabled)
00317 {
00318     i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
00319 }
00320 /** Get self-test enabled value for accelerometer Y axis.
00321  * @return Self-test enabled value
00322  * @see MPU6050_RA_ACCEL_CONFIG
00323  */
00324 bool MPU6050::getAccelYSelfTest()
00325 {
00326     i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
00327     return buffer[0];
00328 }
00329 /** Get self-test enabled value for accelerometer Y axis.
00330  * @param enabled Self-test enabled value
00331  * @see MPU6050_RA_ACCEL_CONFIG
00332  */
00333 void MPU6050::setAccelYSelfTest(bool enabled)
00334 {
00335     i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
00336 }
00337 /** Get self-test enabled value for accelerometer Z axis.
00338  * @return Self-test enabled value
00339  * @see MPU6050_RA_ACCEL_CONFIG
00340  */
00341 bool MPU6050::getAccelZSelfTest()
00342 {
00343     i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
00344     return buffer[0];
00345 }
00346 /** Set self-test enabled value for accelerometer Z axis.
00347  * @param enabled Self-test enabled value
00348  * @see MPU6050_RA_ACCEL_CONFIG
00349  */
00350 void MPU6050::setAccelZSelfTest(bool enabled)
00351 {
00352     i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
00353 }
00354 /** Get full-scale accelerometer range.
00355  * The FS_SEL parameter allows setting the full-scale range of the accelerometer
00356  * sensors, as described in the table below.
00357  *
00358  * <pre>
00359  * 0 = +/- 2g
00360  * 1 = +/- 4g
00361  * 2 = +/- 8g
00362  * 3 = +/- 16g
00363  * </pre>
00364  *
00365  * @return Current full-scale accelerometer range setting
00366  * @see MPU6050_ACCEL_FS_2
00367  * @see MPU6050_RA_ACCEL_CONFIG
00368  * @see MPU6050_ACONFIG_AFS_SEL_BIT
00369  * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
00370  */
00371 uint8_t MPU6050::getFullScaleAccelRange()
00372 {
00373     i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
00374     return buffer[0];
00375 }
00376 /** Set full-scale accelerometer range.
00377  * @param range New full-scale accelerometer range setting
00378  * @see getFullScaleAccelRange()
00379  */
00380 void MPU6050::setFullScaleAccelRange(uint8_t range)
00381 {
00382     i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
00383 }
00384 /** Get the high-pass filter configuration.
00385  * The DHPF is a filter module in the path leading to motion detectors (Free
00386  * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
00387  * available to the data registers (see Figure in Section 8 of the MPU-6000/
00388  * MPU-6050 Product Specification document).
00389  *
00390  * The high pass filter has three modes:
00391  *
00392  * <pre>
00393  *    Reset: The filter output settles to zero within one sample. This
00394  *           effectively disables the high pass filter. This mode may be toggled
00395  *           to quickly settle the filter.
00396  *
00397  *    On:    The high pass filter will pass signals above the cut off frequency.
00398  *
00399  *    Hold:  When triggered, the filter holds the present sample. The filter
00400  *           output will be the difference between the input sample and the held
00401  *           sample.
00402  * </pre>
00403  *
00404  * <pre>
00405  * ACCEL_HPF | Filter Mode | Cut-off Frequency
00406  * ----------+-------------+------------------
00407  * 0         | Reset       | None
00408  * 1         | On          | 5Hz
00409  * 2         | On          | 2.5Hz
00410  * 3         | On          | 1.25Hz
00411  * 4         | On          | 0.63Hz
00412  * 7         | Hold        | None
00413  * </pre>
00414  *
00415  * @return Current high-pass filter configuration
00416  * @see MPU6050_DHPF_RESET
00417  * @see MPU6050_RA_ACCEL_CONFIG
00418  */
00419 uint8_t MPU6050::getDHPFMode()
00420 {
00421     i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
00422     return buffer[0];
00423 }
00424 /** Set the high-pass filter configuration.
00425  * @param bandwidth New high-pass filter configuration
00426  * @see setDHPFMode()
00427  * @see MPU6050_DHPF_RESET
00428  * @see MPU6050_RA_ACCEL_CONFIG
00429  */
00430 void MPU6050::setDHPFMode(uint8_t bandwidth)
00431 {
00432     i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
00433 }
00434 
00435 // FF_THR register
00436 
00437 /** Get free-fall event acceleration threshold.
00438  * This register configures the detection threshold for Free Fall event
00439  * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
00440  * absolute value of the accelerometer measurements for the three axes are each
00441  * less than the detection threshold. This condition increments the Free Fall
00442  * duration counter (Register 30). The Free Fall interrupt is triggered when the
00443  * Free Fall duration counter reaches the time specified in FF_DUR.
00444  *
00445  * For more details on the Free Fall detection interrupt, see Section 8.2 of the
00446  * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
00447  * 58 of this document.
00448  *
00449  * @return Current free-fall acceleration threshold value (LSB = 2mg)
00450  * @see MPU6050_RA_FF_THR
00451  */
00452 uint8_t MPU6050::getFreefallDetectionThreshold()
00453 {
00454     i2Cdev.readByte(devAddr, MPU6050_RA_FF_THR, buffer);
00455     return buffer[0];
00456 }
00457 /** Get free-fall event acceleration threshold.
00458  * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
00459  * @see getFreefallDetectionThreshold()
00460  * @see MPU6050_RA_FF_THR
00461  */
00462 void MPU6050::setFreefallDetectionThreshold(uint8_t threshold)
00463 {
00464     i2Cdev.writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
00465 }
00466 
00467 // FF_DUR register
00468 
00469 /** Get free-fall event duration threshold.
00470  * This register configures the duration counter threshold for Free Fall event
00471  * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
00472  * of 1 LSB = 1 ms.
00473  *
00474  * The Free Fall duration counter increments while the absolute value of the
00475  * accelerometer measurements are each less than the detection threshold
00476  * (Register 29). The Free Fall interrupt is triggered when the Free Fall
00477  * duration counter reaches the time specified in this register.
00478  *
00479  * For more details on the Free Fall detection interrupt, see Section 8.2 of
00480  * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
00481  * and 58 of this document.
00482  *
00483  * @return Current free-fall duration threshold value (LSB = 1ms)
00484  * @see MPU6050_RA_FF_DUR
00485  */
00486 uint8_t MPU6050::getFreefallDetectionDuration()
00487 {
00488     i2Cdev.readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
00489     return buffer[0];
00490 }
00491 /** Get free-fall event duration threshold.
00492  * @param duration New free-fall duration threshold value (LSB = 1ms)
00493  * @see getFreefallDetectionDuration()
00494  * @see MPU6050_RA_FF_DUR
00495  */
00496 void MPU6050::setFreefallDetectionDuration(uint8_t duration)
00497 {
00498     i2Cdev.writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
00499 }
00500 
00501 // MOT_THR register
00502 
00503 /** Get motion detection event acceleration threshold.
00504  * This register configures the detection threshold for Motion interrupt
00505  * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
00506  * absolute value of any of the accelerometer measurements exceeds this Motion
00507  * detection threshold. This condition increments the Motion detection duration
00508  * counter (Register 32). The Motion detection interrupt is triggered when the
00509  * Motion Detection counter reaches the time count specified in MOT_DUR
00510  * (Register 32).
00511  *
00512  * The Motion interrupt will indicate the axis and polarity of detected motion
00513  * in MOT_DETECT_STATUS (Register 97).
00514  *
00515  * For more details on the Motion detection interrupt, see Section 8.3 of the
00516  * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
00517  * 58 of this document.
00518  *
00519  * @return Current motion detection acceleration threshold value (LSB = 2mg)
00520  * @see MPU6050_RA_MOT_THR
00521  */
00522 uint8_t MPU6050::getMotionDetectionThreshold()
00523 {
00524     i2Cdev.readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
00525     return buffer[0];
00526 }
00527 /** Set free-fall event acceleration threshold.
00528  * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
00529  * @see getMotionDetectionThreshold()
00530  * @see MPU6050_RA_MOT_THR
00531  */
00532 void MPU6050::setMotionDetectionThreshold(uint8_t threshold)
00533 {
00534     i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
00535 }
00536 
00537 // MOT_DUR register
00538 
00539 /** Get motion detection event duration threshold.
00540  * This register configures the duration counter threshold for Motion interrupt
00541  * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
00542  * of 1LSB = 1ms. The Motion detection duration counter increments when the
00543  * absolute value of any of the accelerometer measurements exceeds the Motion
00544  * detection threshold (Register 31). The Motion detection interrupt is
00545  * triggered when the Motion detection counter reaches the time count specified
00546  * in this register.
00547  *
00548  * For more details on the Motion detection interrupt, see Section 8.3 of the
00549  * MPU-6000/MPU-6050 Product Specification document.
00550  *
00551  * @return Current motion detection duration threshold value (LSB = 1ms)
00552  * @see MPU6050_RA_MOT_DUR
00553  */
00554 uint8_t MPU6050::getMotionDetectionDuration()
00555 {
00556     i2Cdev.readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
00557     return buffer[0];
00558 }
00559 /** Set motion detection event duration threshold.
00560  * @param duration New motion detection duration threshold value (LSB = 1ms)
00561  * @see getMotionDetectionDuration()
00562  * @see MPU6050_RA_MOT_DUR
00563  */
00564 void MPU6050::setMotionDetectionDuration(uint8_t duration)
00565 {
00566     i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
00567 }
00568 
00569 // ZRMOT_THR register
00570 
00571 /** Get zero motion detection event acceleration threshold.
00572  * This register configures the detection threshold for Zero Motion interrupt
00573  * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
00574  * the absolute value of the accelerometer measurements for the 3 axes are each
00575  * less than the detection threshold. This condition increments the Zero Motion
00576  * duration counter (Register 34). The Zero Motion interrupt is triggered when
00577  * the Zero Motion duration counter reaches the time count specified in
00578  * ZRMOT_DUR (Register 34).
00579  *
00580  * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
00581  * interrupt both when Zero Motion is first detected and when Zero Motion is no
00582  * longer detected.
00583  *
00584  * When a zero motion event is detected, a Zero Motion Status will be indicated
00585  * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
00586  * condition is detected, the status bit is set to 1. When a zero-motion-to-
00587  * motion condition is detected, the status bit is set to 0.
00588  *
00589  * For more details on the Zero Motion detection interrupt, see Section 8.4 of
00590  * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
00591  * and 58 of this document.
00592  *
00593  * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
00594  * @see MPU6050_RA_ZRMOT_THR
00595  */
00596 uint8_t MPU6050::getZeroMotionDetectionThreshold()
00597 {
00598     i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
00599     return buffer[0];
00600 }
00601 /** Set zero motion detection event acceleration threshold.
00602  * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
00603  * @see getZeroMotionDetectionThreshold()
00604  * @see MPU6050_RA_ZRMOT_THR
00605  */
00606 void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold)
00607 {
00608     i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
00609 }
00610 
00611 // ZRMOT_DUR register
00612 
00613 /** Get zero motion detection event duration threshold.
00614  * This register configures the duration counter threshold for Zero Motion
00615  * interrupt generation. The duration counter ticks at 16 Hz, therefore
00616  * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
00617  * increments while the absolute value of the accelerometer measurements are
00618  * each less than the detection threshold (Register 33). The Zero Motion
00619  * interrupt is triggered when the Zero Motion duration counter reaches the time
00620  * count specified in this register.
00621  *
00622  * For more details on the Zero Motion detection interrupt, see Section 8.4 of
00623  * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
00624  * and 58 of this document.
00625  *
00626  * @return Current zero motion detection duration threshold value (LSB = 64ms)
00627  * @see MPU6050_RA_ZRMOT_DUR
00628  */
00629 uint8_t MPU6050::getZeroMotionDetectionDuration()
00630 {
00631     i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
00632     return buffer[0];
00633 }
00634 /** Set zero motion detection event duration threshold.
00635  * @param duration New zero motion detection duration threshold value (LSB = 1ms)
00636  * @see getZeroMotionDetectionDuration()
00637  * @see MPU6050_RA_ZRMOT_DUR
00638  */
00639 void MPU6050::setZeroMotionDetectionDuration(uint8_t duration)
00640 {
00641     i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
00642 }
00643 
00644 // FIFO_EN register
00645 
00646 /** Get temperature FIFO enabled value.
00647  * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
00648  * 66) to be written into the FIFO buffer.
00649  * @return Current temperature FIFO enabled value
00650  * @see MPU6050_RA_FIFO_EN
00651  */
00652 bool MPU6050::getTempFIFOEnabled()
00653 {
00654     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
00655     return buffer[0];
00656 }
00657 /** Set temperature FIFO enabled value.
00658  * @param enabled New temperature FIFO enabled value
00659  * @see getTempFIFOEnabled()
00660  * @see MPU6050_RA_FIFO_EN
00661  */
00662 void MPU6050::setTempFIFOEnabled(bool enabled)
00663 {
00664     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
00665 }
00666 /** Get gyroscope X-axis FIFO enabled value.
00667  * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
00668  * 68) to be written into the FIFO buffer.
00669  * @return Current gyroscope X-axis FIFO enabled value
00670  * @see MPU6050_RA_FIFO_EN
00671  */
00672 bool MPU6050::getXGyroFIFOEnabled()
00673 {
00674     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
00675     return buffer[0];
00676 }
00677 /** Set gyroscope X-axis FIFO enabled value.
00678  * @param enabled New gyroscope X-axis FIFO enabled value
00679  * @see getXGyroFIFOEnabled()
00680  * @see MPU6050_RA_FIFO_EN
00681  */
00682 void MPU6050::setXGyroFIFOEnabled(bool enabled)
00683 {
00684     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
00685 }
00686 /** Get gyroscope Y-axis FIFO enabled value.
00687  * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
00688  * 70) to be written into the FIFO buffer.
00689  * @return Current gyroscope Y-axis FIFO enabled value
00690  * @see MPU6050_RA_FIFO_EN
00691  */
00692 bool MPU6050::getYGyroFIFOEnabled()
00693 {
00694     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
00695     return buffer[0];
00696 }
00697 /** Set gyroscope Y-axis FIFO enabled value.
00698  * @param enabled New gyroscope Y-axis FIFO enabled value
00699  * @see getYGyroFIFOEnabled()
00700  * @see MPU6050_RA_FIFO_EN
00701  */
00702 void MPU6050::setYGyroFIFOEnabled(bool enabled)
00703 {
00704     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
00705 }
00706 /** Get gyroscope Z-axis FIFO enabled value.
00707  * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
00708  * 72) to be written into the FIFO buffer.
00709  * @return Current gyroscope Z-axis FIFO enabled value
00710  * @see MPU6050_RA_FIFO_EN
00711  */
00712 bool MPU6050::getZGyroFIFOEnabled()
00713 {
00714     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
00715     return buffer[0];
00716 }
00717 /** Set gyroscope Z-axis FIFO enabled value.
00718  * @param enabled New gyroscope Z-axis FIFO enabled value
00719  * @see getZGyroFIFOEnabled()
00720  * @see MPU6050_RA_FIFO_EN
00721  */
00722 void MPU6050::setZGyroFIFOEnabled(bool enabled)
00723 {
00724     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
00725 }
00726 /** Get accelerometer FIFO enabled value.
00727  * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
00728  * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
00729  * written into the FIFO buffer.
00730  * @return Current accelerometer FIFO enabled value
00731  * @see MPU6050_RA_FIFO_EN
00732  */
00733 bool MPU6050::getAccelFIFOEnabled()
00734 {
00735     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
00736     return buffer[0];
00737 }
00738 /** Set accelerometer FIFO enabled value.
00739  * @param enabled New accelerometer FIFO enabled value
00740  * @see getAccelFIFOEnabled()
00741  * @see MPU6050_RA_FIFO_EN
00742  */
00743 void MPU6050::setAccelFIFOEnabled(bool enabled)
00744 {
00745     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
00746 }
00747 /** Get Slave 2 FIFO enabled value.
00748  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00749  * associated with Slave 2 to be written into the FIFO buffer.
00750  * @return Current Slave 2 FIFO enabled value
00751  * @see MPU6050_RA_FIFO_EN
00752  */
00753 bool MPU6050::getSlave2FIFOEnabled()
00754 {
00755     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
00756     return buffer[0];
00757 }
00758 /** Set Slave 2 FIFO enabled value.
00759  * @param enabled New Slave 2 FIFO enabled value
00760  * @see getSlave2FIFOEnabled()
00761  * @see MPU6050_RA_FIFO_EN
00762  */
00763 void MPU6050::setSlave2FIFOEnabled(bool enabled)
00764 {
00765     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
00766 }
00767 /** Get Slave 1 FIFO enabled value.
00768  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00769  * associated with Slave 1 to be written into the FIFO buffer.
00770  * @return Current Slave 1 FIFO enabled value
00771  * @see MPU6050_RA_FIFO_EN
00772  */
00773 bool MPU6050::getSlave1FIFOEnabled()
00774 {
00775     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
00776     return buffer[0];
00777 }
00778 /** Set Slave 1 FIFO enabled value.
00779  * @param enabled New Slave 1 FIFO enabled value
00780  * @see getSlave1FIFOEnabled()
00781  * @see MPU6050_RA_FIFO_EN
00782  */
00783 void MPU6050::setSlave1FIFOEnabled(bool enabled)
00784 {
00785     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
00786 }
00787 /** Get Slave 0 FIFO enabled value.
00788  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00789  * associated with Slave 0 to be written into the FIFO buffer.
00790  * @return Current Slave 0 FIFO enabled value
00791  * @see MPU6050_RA_FIFO_EN
00792  */
00793 bool MPU6050::getSlave0FIFOEnabled()
00794 {
00795     i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
00796     return buffer[0];
00797 }
00798 /** Set Slave 0 FIFO enabled value.
00799  * @param enabled New Slave 0 FIFO enabled value
00800  * @see getSlave0FIFOEnabled()
00801  * @see MPU6050_RA_FIFO_EN
00802  */
00803 void MPU6050::setSlave0FIFOEnabled(bool enabled)
00804 {
00805     i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
00806 }
00807 
00808 // I2C_MST_CTRL register
00809 
00810 /** Get multi-master enabled value.
00811  * Multi-master capability allows multiple I2C masters to operate on the same
00812  * bus. In circuits where multi-master capability is required, set MULT_MST_EN
00813  * to 1. This will increase current drawn by approximately 30uA.
00814  *
00815  * In circuits where multi-master capability is required, the state of the I2C
00816  * bus must always be monitored by each separate I2C Master. Before an I2C
00817  * Master can assume arbitration of the bus, it must first confirm that no other
00818  * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
00819  * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
00820  * detect when the bus is available.
00821  *
00822  * @return Current multi-master enabled value
00823  * @see MPU6050_RA_I2C_MST_CTRL
00824  */
00825 bool MPU6050::getMultiMasterEnabled()
00826 {
00827     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
00828     return buffer[0];
00829 }
00830 /** Set multi-master enabled value.
00831  * @param enabled New multi-master enabled value
00832  * @see getMultiMasterEnabled()
00833  * @see MPU6050_RA_I2C_MST_CTRL
00834  */
00835 void MPU6050::setMultiMasterEnabled(bool enabled)
00836 {
00837     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
00838 }
00839 /** Get wait-for-external-sensor-data enabled value.
00840  * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
00841  * delayed until External Sensor data from the Slave Devices are loaded into the
00842  * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
00843  * data (i.e. from gyro and accel) and external sensor data have been loaded to
00844  * their respective data registers (i.e. the data is synced) when the Data Ready
00845  * interrupt is triggered.
00846  *
00847  * @return Current wait-for-external-sensor-data enabled value
00848  * @see MPU6050_RA_I2C_MST_CTRL
00849  */
00850 bool MPU6050::getWaitForExternalSensorEnabled()
00851 {
00852     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
00853     return buffer[0];
00854 }
00855 /** Set wait-for-external-sensor-data enabled value.
00856  * @param enabled New wait-for-external-sensor-data enabled value
00857  * @see getWaitForExternalSensorEnabled()
00858  * @see MPU6050_RA_I2C_MST_CTRL
00859  */
00860 void MPU6050::setWaitForExternalSensorEnabled(bool enabled)
00861 {
00862     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
00863 }
00864 /** Get Slave 3 FIFO enabled value.
00865  * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
00866  * associated with Slave 3 to be written into the FIFO buffer.
00867  * @return Current Slave 3 FIFO enabled value
00868  * @see MPU6050_RA_MST_CTRL
00869  */
00870 bool MPU6050::getSlave3FIFOEnabled()
00871 {
00872     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
00873     return buffer[0];
00874 }
00875 /** Set Slave 3 FIFO enabled value.
00876  * @param enabled New Slave 3 FIFO enabled value
00877  * @see getSlave3FIFOEnabled()
00878  * @see MPU6050_RA_MST_CTRL
00879  */
00880 void MPU6050::setSlave3FIFOEnabled(bool enabled)
00881 {
00882     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
00883 }
00884 /** Get slave read/write transition enabled value.
00885  * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
00886  * read to the next slave read. If the bit equals 0, there will be a restart
00887  * between reads. If the bit equals 1, there will be a stop followed by a start
00888  * of the following read. When a write transaction follows a read transaction,
00889  * the stop followed by a start of the successive write will be always used.
00890  *
00891  * @return Current slave read/write transition enabled value
00892  * @see MPU6050_RA_I2C_MST_CTRL
00893  */
00894 bool MPU6050::getSlaveReadWriteTransitionEnabled()
00895 {
00896     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
00897     return buffer[0];
00898 }
00899 /** Set slave read/write transition enabled value.
00900  * @param enabled New slave read/write transition enabled value
00901  * @see getSlaveReadWriteTransitionEnabled()
00902  * @see MPU6050_RA_I2C_MST_CTRL
00903  */
00904 void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled)
00905 {
00906     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
00907 }
00908 /** Get I2C master clock speed.
00909  * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
00910  * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
00911  * the following table:
00912  *
00913  * <pre>
00914  * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
00915  * ------------+------------------------+-------------------
00916  * 0           | 348kHz                 | 23
00917  * 1           | 333kHz                 | 24
00918  * 2           | 320kHz                 | 25
00919  * 3           | 308kHz                 | 26
00920  * 4           | 296kHz                 | 27
00921  * 5           | 286kHz                 | 28
00922  * 6           | 276kHz                 | 29
00923  * 7           | 267kHz                 | 30
00924  * 8           | 258kHz                 | 31
00925  * 9           | 500kHz                 | 16
00926  * 10          | 471kHz                 | 17
00927  * 11          | 444kHz                 | 18
00928  * 12          | 421kHz                 | 19
00929  * 13          | 400kHz                 | 20
00930  * 14          | 381kHz                 | 21
00931  * 15          | 364kHz                 | 22
00932  * </pre>
00933  *
00934  * @return Current I2C master clock speed
00935  * @see MPU6050_RA_I2C_MST_CTRL
00936  */
00937 uint8_t MPU6050::getMasterClockSpeed()
00938 {
00939     i2Cdev.readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
00940     return buffer[0];
00941 }
00942 /** Set I2C master clock speed.
00943  * @reparam speed Current I2C master clock speed
00944  * @see MPU6050_RA_I2C_MST_CTRL
00945  */
00946 void MPU6050::setMasterClockSpeed(uint8_t speed)
00947 {
00948     i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
00949 }
00950 
00951 // I2C_SLV* registers (Slave 0-3)
00952 
00953 /** Get the I2C address of the specified slave (0-3).
00954  * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
00955  * operation, and if it is cleared, then it's a write operation. The remaining
00956  * bits (6-0) are the 7-bit device address of the slave device.
00957  *
00958  * In read mode, the result of the read is placed in the lowest available
00959  * EXT_SENS_DATA register. For further information regarding the allocation of
00960  * read results, please refer to the EXT_SENS_DATA register description
00961  * (Registers 73 - 96).
00962  *
00963  * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
00964  * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
00965  *
00966  * I2C data transactions are performed at the Sample Rate, as defined in
00967  * Register 25. The user is responsible for ensuring that I2C data transactions
00968  * to and from each enabled Slave can be completed within a single period of the
00969  * Sample Rate.
00970  *
00971  * The I2C slave access rate can be reduced relative to the Sample Rate. This
00972  * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
00973  * slave's access rate is reduced relative to the Sample Rate is determined by
00974  * I2C_MST_DELAY_CTRL (Register 103).
00975  *
00976  * The processing order for the slaves is fixed. The sequence followed for
00977  * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
00978  * particular Slave is disabled it will be skipped.
00979  *
00980  * Each slave can either be accessed at the sample rate or at a reduced sample
00981  * rate. In a case where some slaves are accessed at the Sample Rate and some
00982  * slaves are accessed at the reduced rate, the sequence of accessing the slaves
00983  * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
00984  * be skipped if their access rate dictates that they should not be accessed
00985  * during that particular cycle. For further information regarding the reduced
00986  * access rate, please refer to Register 52. Whether a slave is accessed at the
00987  * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
00988  * Register 103.
00989  *
00990  * @param num Slave number (0-3)
00991  * @return Current address for specified slave
00992  * @see MPU6050_RA_I2C_SLV0_ADDR
00993  */
00994 uint8_t MPU6050::getSlaveAddress(uint8_t num)
00995 {
00996     if (num > 3) return 0;
00997     i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
00998     return buffer[0];
00999 }
01000 /** Set the I2C address of the specified slave (0-3).
01001  * @param num Slave number (0-3)
01002  * @param address New address for specified slave
01003  * @see getSlaveAddress()
01004  * @see MPU6050_RA_I2C_SLV0_ADDR
01005  */
01006 void MPU6050::setSlaveAddress(uint8_t num, uint8_t address)
01007 {
01008     if (num > 3) return;
01009     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
01010 }
01011 /** Get the active internal register for the specified slave (0-3).
01012  * Read/write operations for this slave will be done to whatever internal
01013  * register address is stored in this MPU register.
01014  *
01015  * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
01016  * characteristics, and so it has its own functions.
01017  *
01018  * @param num Slave number (0-3)
01019  * @return Current active register for specified slave
01020  * @see MPU6050_RA_I2C_SLV0_REG
01021  */
01022 uint8_t MPU6050::getSlaveRegister(uint8_t num)
01023 {
01024     if (num > 3) return 0;
01025     i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
01026     return buffer[0];
01027 }
01028 /** Set the active internal register for the specified slave (0-3).
01029  * @param num Slave number (0-3)
01030  * @param reg New active register for specified slave
01031  * @see getSlaveRegister()
01032  * @see MPU6050_RA_I2C_SLV0_REG
01033  */
01034 void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg)
01035 {
01036     if (num > 3) return;
01037     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
01038 }
01039 /** Get the enabled value for the specified slave (0-3).
01040  * When set to 1, this bit enables Slave 0 for data transfer operations. When
01041  * cleared to 0, this bit disables Slave 0 from data transfer operations.
01042  * @param num Slave number (0-3)
01043  * @return Current enabled value for specified slave
01044  * @see MPU6050_RA_I2C_SLV0_CTRL
01045  */
01046 bool MPU6050::getSlaveEnabled(uint8_t num)
01047 {
01048     if (num > 3) return 0;
01049     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
01050     return buffer[0];
01051 }
01052 /** Set the enabled value for the specified slave (0-3).
01053  * @param num Slave number (0-3)
01054  * @param enabled New enabled value for specified slave 
01055  * @see getSlaveEnabled()
01056  * @see MPU6050_RA_I2C_SLV0_CTRL
01057  */
01058 void MPU6050::setSlaveEnabled(uint8_t num, bool enabled)
01059 {
01060     if (num > 3) return;
01061     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
01062 }
01063 /** Get word pair byte-swapping enabled for the specified slave (0-3).
01064  * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
01065  * the high and low bytes of a word pair are swapped. Please refer to
01066  * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
01067  * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
01068  * registers in the order they were transferred.
01069  *
01070  * @param num Slave number (0-3)
01071  * @return Current word pair byte-swapping enabled value for specified slave
01072  * @see MPU6050_RA_I2C_SLV0_CTRL
01073  */
01074 bool MPU6050::getSlaveWordByteSwap(uint8_t num)
01075 {
01076     if (num > 3) return 0;
01077     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
01078     return buffer[0];
01079 }
01080 /** Set word pair byte-swapping enabled for the specified slave (0-3).
01081  * @param num Slave number (0-3)
01082  * @param enabled New word pair byte-swapping enabled value for specified slave
01083  * @see getSlaveWordByteSwap()
01084  * @see MPU6050_RA_I2C_SLV0_CTRL
01085  */
01086 void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled)
01087 {
01088     if (num > 3) return;
01089     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
01090 }
01091 /** Get write mode for the specified slave (0-3).
01092  * When set to 1, the transaction will read or write data only. When cleared to
01093  * 0, the transaction will write a register address prior to reading or writing
01094  * data. This should equal 0 when specifying the register address within the
01095  * Slave device to/from which the ensuing data transaction will take place.
01096  *
01097  * @param num Slave number (0-3)
01098  * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
01099  * @see MPU6050_RA_I2C_SLV0_CTRL
01100  */
01101 bool MPU6050::getSlaveWriteMode(uint8_t num)
01102 {
01103     if (num > 3) return 0;
01104     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
01105     return buffer[0];
01106 }
01107 /** Set write mode for the specified slave (0-3).
01108  * @param num Slave number (0-3)
01109  * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
01110  * @see getSlaveWriteMode()
01111  * @see MPU6050_RA_I2C_SLV0_CTRL
01112  */
01113 void MPU6050::setSlaveWriteMode(uint8_t num, bool mode)
01114 {
01115     if (num > 3) return;
01116     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
01117 }
01118 /** Get word pair grouping order offset for the specified slave (0-3).
01119  * This sets specifies the grouping order of word pairs received from registers.
01120  * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
01121  * then odd register addresses) are paired to form a word. When set to 1, bytes
01122  * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
01123  * register addresses) are paired to form a word.
01124  *
01125  * @param num Slave number (0-3)
01126  * @return Current word pair grouping order offset for specified slave
01127  * @see MPU6050_RA_I2C_SLV0_CTRL
01128  */
01129 bool MPU6050::getSlaveWordGroupOffset(uint8_t num)
01130 {
01131     if (num > 3) return 0;
01132     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
01133     return buffer[0];
01134 }
01135 /** Set word pair grouping order offset for the specified slave (0-3).
01136  * @param num Slave number (0-3)
01137  * @param enabled New word pair grouping order offset for specified slave
01138  * @see getSlaveWordGroupOffset()
01139  * @see MPU6050_RA_I2C_SLV0_CTRL
01140  */
01141 void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled)
01142 {
01143     if (num > 3) return;
01144     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
01145 }
01146 /** Get number of bytes to read for the specified slave (0-3).
01147  * Specifies the number of bytes transferred to and from Slave 0. Clearing this
01148  * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
01149  * @param num Slave number (0-3)
01150  * @return Number of bytes to read for specified slave
01151  * @see MPU6050_RA_I2C_SLV0_CTRL
01152  */
01153 uint8_t MPU6050::getSlaveDataLength(uint8_t num)
01154 {
01155     if (num > 3) return 0;
01156     i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
01157     return buffer[0];
01158 }
01159 /** Set number of bytes to read for the specified slave (0-3).
01160  * @param num Slave number (0-3)
01161  * @param length Number of bytes to read for specified slave
01162  * @see getSlaveDataLength()
01163  * @see MPU6050_RA_I2C_SLV0_CTRL
01164  */
01165 void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length)
01166 {
01167     if (num > 3) return;
01168     i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
01169 }
01170 
01171 // I2C_SLV* registers (Slave 4)
01172 
01173 /** Get the I2C address of Slave 4.
01174  * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
01175  * operation, and if it is cleared, then it's a write operation. The remaining
01176  * bits (6-0) are the 7-bit device address of the slave device.
01177  *
01178  * @return Current address for Slave 4
01179  * @see getSlaveAddress()
01180  * @see MPU6050_RA_I2C_SLV4_ADDR
01181  */
01182 uint8_t MPU6050::getSlave4Address()
01183 {
01184     i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
01185     return buffer[0];
01186 }
01187 /** Set the I2C address of Slave 4.
01188  * @param address New address for Slave 4
01189  * @see getSlave4Address()
01190  * @see MPU6050_RA_I2C_SLV4_ADDR
01191  */
01192 void MPU6050::setSlave4Address(uint8_t address)
01193 {
01194     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
01195 }
01196 /** Get the active internal register for the Slave 4.
01197  * Read/write operations for this slave will be done to whatever internal
01198  * register address is stored in this MPU register.
01199  *
01200  * @return Current active register for Slave 4
01201  * @see MPU6050_RA_I2C_SLV4_REG
01202  */
01203 uint8_t MPU6050::getSlave4Register()
01204 {
01205     i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
01206     return buffer[0];
01207 }
01208 /** Set the active internal register for Slave 4.
01209  * @param reg New active register for Slave 4
01210  * @see getSlave4Register()
01211  * @see MPU6050_RA_I2C_SLV4_REG
01212  */
01213 void MPU6050::setSlave4Register(uint8_t reg)
01214 {
01215     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
01216 }
01217 /** Set new byte to write to Slave 4.
01218  * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
01219  * is set 1 (set to read), this register has no effect.
01220  * @param data New byte to write to Slave 4
01221  * @see MPU6050_RA_I2C_SLV4_DO
01222  */
01223 void MPU6050::setSlave4OutputByte(uint8_t data)
01224 {
01225     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
01226 }
01227 /** Get the enabled value for the Slave 4.
01228  * When set to 1, this bit enables Slave 4 for data transfer operations. When
01229  * cleared to 0, this bit disables Slave 4 from data transfer operations.
01230  * @return Current enabled value for Slave 4
01231  * @see MPU6050_RA_I2C_SLV4_CTRL
01232  */
01233 bool MPU6050::getSlave4Enabled()
01234 {
01235     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
01236     return buffer[0];
01237 }
01238 /** Set the enabled value for Slave 4.
01239  * @param enabled New enabled value for Slave 4
01240  * @see getSlave4Enabled()
01241  * @see MPU6050_RA_I2C_SLV4_CTRL
01242  */
01243 void MPU6050::setSlave4Enabled(bool enabled)
01244 {
01245     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
01246 }
01247 /** Get the enabled value for Slave 4 transaction interrupts.
01248  * When set to 1, this bit enables the generation of an interrupt signal upon
01249  * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
01250  * generation of an interrupt signal upon completion of a Slave 4 transaction.
01251  * The interrupt status can be observed in Register 54.
01252  *
01253  * @return Current enabled value for Slave 4 transaction interrupts.
01254  * @see MPU6050_RA_I2C_SLV4_CTRL
01255  */
01256 bool MPU6050::getSlave4InterruptEnabled()
01257 {
01258     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
01259     return buffer[0];
01260 }
01261 /** Set the enabled value for Slave 4 transaction interrupts.
01262  * @param enabled New enabled value for Slave 4 transaction interrupts.
01263  * @see getSlave4InterruptEnabled()
01264  * @see MPU6050_RA_I2C_SLV4_CTRL
01265  */
01266 void MPU6050::setSlave4InterruptEnabled(bool enabled)
01267 {
01268     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
01269 }
01270 /** Get write mode for Slave 4.
01271  * When set to 1, the transaction will read or write data only. When cleared to
01272  * 0, the transaction will write a register address prior to reading or writing
01273  * data. This should equal 0 when specifying the register address within the
01274  * Slave device to/from which the ensuing data transaction will take place.
01275  *
01276  * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
01277  * @see MPU6050_RA_I2C_SLV4_CTRL
01278  */
01279 bool MPU6050::getSlave4WriteMode()
01280 {
01281     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
01282     return buffer[0];
01283 }
01284 /** Set write mode for the Slave 4.
01285  * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
01286  * @see getSlave4WriteMode()
01287  * @see MPU6050_RA_I2C_SLV4_CTRL
01288  */
01289 void MPU6050::setSlave4WriteMode(bool mode)
01290 {
01291     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
01292 }
01293 /** Get Slave 4 master delay value.
01294  * This configures the reduced access rate of I2C slaves relative to the Sample
01295  * Rate. When a slave's access rate is decreased relative to the Sample Rate,
01296  * the slave is accessed every:
01297  *
01298  *     1 / (1 + I2C_MST_DLY) samples
01299  *
01300  * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
01301  * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
01302  * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
01303  * further information regarding the Sample Rate, please refer to register 25.
01304  *
01305  * @return Current Slave 4 master delay value
01306  * @see MPU6050_RA_I2C_SLV4_CTRL
01307  */
01308 uint8_t MPU6050::getSlave4MasterDelay()
01309 {
01310     i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
01311     return buffer[0];
01312 }
01313 /** Set Slave 4 master delay value.
01314  * @param delay New Slave 4 master delay value
01315  * @see getSlave4MasterDelay()
01316  * @see MPU6050_RA_I2C_SLV4_CTRL
01317  */
01318 void MPU6050::setSlave4MasterDelay(uint8_t delay)
01319 {
01320     i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
01321 }
01322 /** Get last available byte read from Slave 4.
01323  * This register stores the data read from Slave 4. This field is populated
01324  * after a read transaction.
01325  * @return Last available byte read from to Slave 4
01326  * @see MPU6050_RA_I2C_SLV4_DI
01327  */
01328 uint8_t MPU6050::getSlate4InputByte()
01329 {
01330     i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
01331     return buffer[0];
01332 }
01333 
01334 // I2C_MST_STATUS register
01335 
01336 /** Get FSYNC interrupt status.
01337  * This bit reflects the status of the FSYNC interrupt from an external device
01338  * into the MPU-60X0. This is used as a way to pass an external interrupt
01339  * through the MPU-60X0 to the host application processor. When set to 1, this
01340  * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
01341  * (Register 55).
01342  * @return FSYNC interrupt status
01343  * @see MPU6050_RA_I2C_MST_STATUS
01344  */
01345 bool MPU6050::getPassthroughStatus()
01346 {
01347     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
01348     return buffer[0];
01349 }
01350 /** Get Slave 4 transaction done status.
01351  * Automatically sets to 1 when a Slave 4 transaction has completed. This
01352  * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
01353  * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
01354  * I2C_SLV4_CTRL register (Register 52).
01355  * @return Slave 4 transaction done status
01356  * @see MPU6050_RA_I2C_MST_STATUS
01357  */
01358 bool MPU6050::getSlave4IsDone()
01359 {
01360     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
01361     return buffer[0];
01362 }
01363 /** Get master arbitration lost status.
01364  * This bit automatically sets to 1 when the I2C Master has lost arbitration of
01365  * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
01366  * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
01367  * @return Master arbitration lost status
01368  * @see MPU6050_RA_I2C_MST_STATUS
01369  */
01370 bool MPU6050::getLostArbitration()
01371 {
01372     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
01373     return buffer[0];
01374 }
01375 /** Get Slave 4 NACK status.
01376  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01377  * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
01378  * bit in the INT_ENABLE register (Register 56) is asserted.
01379  * @return Slave 4 NACK interrupt status
01380  * @see MPU6050_RA_I2C_MST_STATUS
01381  */
01382 bool MPU6050::getSlave4Nack()
01383 {
01384     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
01385     return buffer[0];
01386 }
01387 /** Get Slave 3 NACK status.
01388  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01389  * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
01390  * bit in the INT_ENABLE register (Register 56) is asserted.
01391  * @return Slave 3 NACK interrupt status
01392  * @see MPU6050_RA_I2C_MST_STATUS
01393  */
01394 bool MPU6050::getSlave3Nack()
01395 {
01396     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
01397     return buffer[0];
01398 }
01399 /** Get Slave 2 NACK status.
01400  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01401  * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
01402  * bit in the INT_ENABLE register (Register 56) is asserted.
01403  * @return Slave 2 NACK interrupt status
01404  * @see MPU6050_RA_I2C_MST_STATUS
01405  */
01406 bool MPU6050::getSlave2Nack()
01407 {
01408     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
01409     return buffer[0];
01410 }
01411 /** Get Slave 1 NACK status.
01412  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01413  * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
01414  * bit in the INT_ENABLE register (Register 56) is asserted.
01415  * @return Slave 1 NACK interrupt status
01416  * @see MPU6050_RA_I2C_MST_STATUS
01417  */
01418 bool MPU6050::getSlave1Nack()
01419 {
01420     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
01421     return buffer[0];
01422 }
01423 /** Get Slave 0 NACK status.
01424  * This bit automatically sets to 1 when the I2C Master receives a NACK in a
01425  * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
01426  * bit in the INT_ENABLE register (Register 56) is asserted.
01427  * @return Slave 0 NACK interrupt status
01428  * @see MPU6050_RA_I2C_MST_STATUS
01429  */
01430 bool MPU6050::getSlave0Nack()
01431 {
01432     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
01433     return buffer[0];
01434 }
01435 
01436 // INT_PIN_CFG register
01437 
01438 /** Get interrupt logic level mode.
01439  * Will be set 0 for active-high, 1 for active-low.
01440  * @return Current interrupt mode (0=active-high, 1=active-low)
01441  * @see MPU6050_RA_INT_PIN_CFG
01442  * @see MPU6050_INTCFG_INT_LEVEL_BIT
01443  */
01444 bool MPU6050::getInterruptMode()
01445 {
01446     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
01447     return buffer[0];
01448 }
01449 /** Set interrupt logic level mode.
01450  * @param mode New interrupt mode (0=active-high, 1=active-low)
01451  * @see getInterruptMode()
01452  * @see MPU6050_RA_INT_PIN_CFG
01453  * @see MPU6050_INTCFG_INT_LEVEL_BIT
01454  */
01455 void MPU6050::setInterruptMode(bool mode)
01456 {
01457     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
01458 }
01459 /** Get interrupt drive mode.
01460  * Will be set 0 for push-pull, 1 for open-drain.
01461  * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
01462  * @see MPU6050_RA_INT_PIN_CFG
01463  * @see MPU6050_INTCFG_INT_OPEN_BIT
01464  */
01465 bool MPU6050::getInterruptDrive()
01466 {
01467     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
01468     return buffer[0];
01469 }
01470 /** Set interrupt drive mode.
01471  * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
01472  * @see getInterruptDrive()
01473  * @see MPU6050_RA_INT_PIN_CFG
01474  * @see MPU6050_INTCFG_INT_OPEN_BIT
01475  */
01476 void MPU6050::setInterruptDrive(bool drive)
01477 {
01478     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
01479 }
01480 /** Get interrupt latch mode.
01481  * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
01482  * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
01483  * @see MPU6050_RA_INT_PIN_CFG
01484  * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
01485  */
01486 bool MPU6050::getInterruptLatch()
01487 {
01488     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
01489     return buffer[0];
01490 }
01491 /** Set interrupt latch mode.
01492  * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
01493  * @see getInterruptLatch()
01494  * @see MPU6050_RA_INT_PIN_CFG
01495  * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
01496  */
01497 void MPU6050::setInterruptLatch(bool latch)
01498 {
01499     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
01500 }
01501 /** Get interrupt latch clear mode.
01502  * Will be set 0 for status-read-only, 1 for any-register-read.
01503  * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
01504  * @see MPU6050_RA_INT_PIN_CFG
01505  * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
01506  */
01507 bool MPU6050::getInterruptLatchClear()
01508 {
01509     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
01510     return buffer[0];
01511 }
01512 /** Set interrupt latch clear mode.
01513  * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
01514  * @see getInterruptLatchClear()
01515  * @see MPU6050_RA_INT_PIN_CFG
01516  * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
01517  */
01518 void MPU6050::setInterruptLatchClear(bool clear)
01519 {
01520     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
01521 }
01522 /** Get FSYNC interrupt logic level mode.
01523  * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
01524  * @see getFSyncInterruptMode()
01525  * @see MPU6050_RA_INT_PIN_CFG
01526  * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
01527  */
01528 bool MPU6050::getFSyncInterruptLevel()
01529 {
01530     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
01531     return buffer[0];
01532 }
01533 /** Set FSYNC interrupt logic level mode.
01534  * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
01535  * @see getFSyncInterruptMode()
01536  * @see MPU6050_RA_INT_PIN_CFG
01537  * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
01538  */
01539 void MPU6050::setFSyncInterruptLevel(bool level)
01540 {
01541     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
01542 }
01543 /** Get FSYNC pin interrupt enabled setting.
01544  * Will be set 0 for disabled, 1 for enabled.
01545  * @return Current interrupt enabled setting
01546  * @see MPU6050_RA_INT_PIN_CFG
01547  * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
01548  */
01549 bool MPU6050::getFSyncInterruptEnabled()
01550 {
01551     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
01552     return buffer[0];
01553 }
01554 /** Set FSYNC pin interrupt enabled setting.
01555  * @param enabled New FSYNC pin interrupt enabled setting
01556  * @see getFSyncInterruptEnabled()
01557  * @see MPU6050_RA_INT_PIN_CFG
01558  * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
01559  */
01560 void MPU6050::setFSyncInterruptEnabled(bool enabled)
01561 {
01562     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
01563 }
01564 /** Get I2C bypass enabled status.
01565  * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
01566  * 0, the host application processor will be able to directly access the
01567  * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
01568  * application processor will not be able to directly access the auxiliary I2C
01569  * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
01570  * bit[5]).
01571  * @return Current I2C bypass enabled status
01572  * @see MPU6050_RA_INT_PIN_CFG
01573  * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
01574  */
01575 bool MPU6050::getI2CBypassEnabled()
01576 {
01577     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
01578     return buffer[0];
01579 }
01580 /** Set I2C bypass enabled status.
01581  * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
01582  * 0, the host application processor will be able to directly access the
01583  * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
01584  * application processor will not be able to directly access the auxiliary I2C
01585  * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
01586  * bit[5]).
01587  * @param enabled New I2C bypass enabled status
01588  * @see MPU6050_RA_INT_PIN_CFG
01589  * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
01590  */
01591 void MPU6050::setI2CBypassEnabled(bool enabled)
01592 {
01593     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
01594 }
01595 /** Get reference clock output enabled status.
01596  * When this bit is equal to 1, a reference clock output is provided at the
01597  * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
01598  * further information regarding CLKOUT, please refer to the MPU-60X0 Product
01599  * Specification document.
01600  * @return Current reference clock output enabled status
01601  * @see MPU6050_RA_INT_PIN_CFG
01602  * @see MPU6050_INTCFG_CLKOUT_EN_BIT
01603  */
01604 bool MPU6050::getClockOutputEnabled()
01605 {
01606     i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
01607     return buffer[0];
01608 }
01609 /** Set reference clock output enabled status.
01610  * When this bit is equal to 1, a reference clock output is provided at the
01611  * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
01612  * further information regarding CLKOUT, please refer to the MPU-60X0 Product
01613  * Specification document.
01614  * @param enabled New reference clock output enabled status
01615  * @see MPU6050_RA_INT_PIN_CFG
01616  * @see MPU6050_INTCFG_CLKOUT_EN_BIT
01617  */
01618 void MPU6050::setClockOutputEnabled(bool enabled)
01619 {
01620     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
01621 }
01622 
01623 // INT_ENABLE register
01624 
01625 /** Get full interrupt enabled status.
01626  * Full register byte for all interrupts, for quick reading. Each bit will be
01627  * set 0 for disabled, 1 for enabled.
01628  * @return Current interrupt enabled status
01629  * @see MPU6050_RA_INT_ENABLE
01630  * @see MPU6050_INTERRUPT_FF_BIT
01631  **/
01632 uint8_t MPU6050::getIntEnabled()
01633 {
01634     i2Cdev.readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
01635     return buffer[0];
01636 }
01637 /** Set full interrupt enabled status.
01638  * Full register byte for all interrupts, for quick reading. Each bit should be
01639  * set 0 for disabled, 1 for enabled.
01640  * @param enabled New interrupt enabled status
01641  * @see getIntFreefallEnabled()
01642  * @see MPU6050_RA_INT_ENABLE
01643  * @see MPU6050_INTERRUPT_FF_BIT
01644  **/
01645 void MPU6050::setIntEnabled(uint8_t enabled)
01646 {
01647     i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
01648 }
01649 /** Get Free Fall interrupt enabled status.
01650  * Will be set 0 for disabled, 1 for enabled.
01651  * @return Current interrupt enabled status
01652  * @see MPU6050_RA_INT_ENABLE
01653  * @see MPU6050_INTERRUPT_FF_BIT
01654  **/
01655 bool MPU6050::getIntFreefallEnabled()
01656 {
01657     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
01658     return buffer[0];
01659 }
01660 /** Set Free Fall interrupt enabled status.
01661  * @param enabled New interrupt enabled status
01662  * @see getIntFreefallEnabled()
01663  * @see MPU6050_RA_INT_ENABLE
01664  * @see MPU6050_INTERRUPT_FF_BIT
01665  **/
01666 void MPU6050::setIntFreefallEnabled(bool enabled)
01667 {
01668     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
01669 }
01670 /** Get Motion Detection interrupt enabled status.
01671  * Will be set 0 for disabled, 1 for enabled.
01672  * @return Current interrupt enabled status
01673  * @see MPU6050_RA_INT_ENABLE
01674  * @see MPU6050_INTERRUPT_MOT_BIT
01675  **/
01676 bool MPU6050::getIntMotionEnabled()
01677 {
01678     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
01679     return buffer[0];
01680 }
01681 /** Set Motion Detection interrupt enabled status.
01682  * @param enabled New interrupt enabled status
01683  * @see getIntMotionEnabled()
01684  * @see MPU6050_RA_INT_ENABLE
01685  * @see MPU6050_INTERRUPT_MOT_BIT
01686  **/
01687 void MPU6050::setIntMotionEnabled(bool enabled)
01688 {
01689     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
01690 }
01691 /** Get Zero Motion Detection interrupt enabled status.
01692  * Will be set 0 for disabled, 1 for enabled.
01693  * @return Current interrupt enabled status
01694  * @see MPU6050_RA_INT_ENABLE
01695  * @see MPU6050_INTERRUPT_ZMOT_BIT
01696  **/
01697 bool MPU6050::getIntZeroMotionEnabled()
01698 {
01699     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
01700     return buffer[0];
01701 }
01702 /** Set Zero Motion Detection interrupt enabled status.
01703  * @param enabled New interrupt enabled status
01704  * @see getIntZeroMotionEnabled()
01705  * @see MPU6050_RA_INT_ENABLE
01706  * @see MPU6050_INTERRUPT_ZMOT_BIT
01707  **/
01708 void MPU6050::setIntZeroMotionEnabled(bool enabled)
01709 {
01710     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
01711 }
01712 /** Get FIFO Buffer Overflow interrupt enabled status.
01713  * Will be set 0 for disabled, 1 for enabled.
01714  * @return Current interrupt enabled status
01715  * @see MPU6050_RA_INT_ENABLE
01716  * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
01717  **/
01718 bool MPU6050::getIntFIFOBufferOverflowEnabled()
01719 {
01720     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
01721     return buffer[0];
01722 }
01723 /** Set FIFO Buffer Overflow interrupt enabled status.
01724  * @param enabled New interrupt enabled status
01725  * @see getIntFIFOBufferOverflowEnabled()
01726  * @see MPU6050_RA_INT_ENABLE
01727  * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
01728  **/
01729 void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled)
01730 {
01731     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
01732 }
01733 /** Get I2C Master interrupt enabled status.
01734  * This enables any of the I2C Master interrupt sources to generate an
01735  * interrupt. Will be set 0 for disabled, 1 for enabled.
01736  * @return Current interrupt enabled status
01737  * @see MPU6050_RA_INT_ENABLE
01738  * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
01739  **/
01740 bool MPU6050::getIntI2CMasterEnabled()
01741 {
01742     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
01743     return buffer[0];
01744 }
01745 /** Set I2C Master interrupt enabled status.
01746  * @param enabled New interrupt enabled status
01747  * @see getIntI2CMasterEnabled()
01748  * @see MPU6050_RA_INT_ENABLE
01749  * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
01750  **/
01751 void MPU6050::setIntI2CMasterEnabled(bool enabled)
01752 {
01753     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
01754 }
01755 /** Get Data Ready interrupt enabled setting.
01756  * This event occurs each time a write operation to all of the sensor registers
01757  * has been completed. Will be set 0 for disabled, 1 for enabled.
01758  * @return Current interrupt enabled status
01759  * @see MPU6050_RA_INT_ENABLE
01760  * @see MPU6050_INTERRUPT_DATA_RDY_BIT
01761  */
01762 bool MPU6050::getIntDataReadyEnabled()
01763 {
01764     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
01765     return buffer[0];
01766 }
01767 /** Set Data Ready interrupt enabled status.
01768  * @param enabled New interrupt enabled status
01769  * @see getIntDataReadyEnabled()
01770  * @see MPU6050_RA_INT_CFG
01771  * @see MPU6050_INTERRUPT_DATA_RDY_BIT
01772  */
01773 void MPU6050::setIntDataReadyEnabled(bool enabled)
01774 {
01775     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
01776 }
01777 
01778 // INT_STATUS register
01779 
01780 /** Get full set of interrupt status bits.
01781  * These bits clear to 0 after the register has been read. Very useful
01782  * for getting multiple INT statuses, since each single bit read clears
01783  * all of them because it has to read the whole byte.
01784  * @return Current interrupt status
01785  * @see MPU6050_RA_INT_STATUS
01786  */
01787 uint8_t MPU6050::getIntStatus()
01788 {
01789     i2Cdev.readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
01790     return buffer[0];
01791 }
01792 /** Get Free Fall interrupt status.
01793  * This bit automatically sets to 1 when a Free Fall interrupt has been
01794  * generated. The bit clears to 0 after the register has been read.
01795  * @return Current interrupt status
01796  * @see MPU6050_RA_INT_STATUS
01797  * @see MPU6050_INTERRUPT_FF_BIT
01798  */
01799 bool MPU6050::getIntFreefallStatus()
01800 {
01801     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
01802     return buffer[0];
01803 }
01804 /** Get Motion Detection interrupt status.
01805  * This bit automatically sets to 1 when a Motion Detection interrupt has been
01806  * generated. The bit clears to 0 after the register has been read.
01807  * @return Current interrupt status
01808  * @see MPU6050_RA_INT_STATUS
01809  * @see MPU6050_INTERRUPT_MOT_BIT
01810  */
01811 bool MPU6050::getIntMotionStatus()
01812 {
01813     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
01814     return buffer[0];
01815 }
01816 /** Get Zero Motion Detection interrupt status.
01817  * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
01818  * been generated. The bit clears to 0 after the register has been read.
01819  * @return Current interrupt status
01820  * @see MPU6050_RA_INT_STATUS
01821  * @see MPU6050_INTERRUPT_ZMOT_BIT
01822  */
01823 bool MPU6050::getIntZeroMotionStatus()
01824 {
01825     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
01826     return buffer[0];
01827 }
01828 /** Get FIFO Buffer Overflow interrupt status.
01829  * This bit automatically sets to 1 when a Free Fall interrupt has been
01830  * generated. The bit clears to 0 after the register has been read.
01831  * @return Current interrupt status
01832  * @see MPU6050_RA_INT_STATUS
01833  * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
01834  */
01835 bool MPU6050::getIntFIFOBufferOverflowStatus()
01836 {
01837     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
01838     return buffer[0];
01839 }
01840 /** Get I2C Master interrupt status.
01841  * This bit automatically sets to 1 when an I2C Master interrupt has been
01842  * generated. For a list of I2C Master interrupts, please refer to Register 54.
01843  * The bit clears to 0 after the register has been read.
01844  * @return Current interrupt status
01845  * @see MPU6050_RA_INT_STATUS
01846  * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
01847  */
01848 bool MPU6050::getIntI2CMasterStatus()
01849 {
01850     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
01851     return buffer[0];
01852 }
01853 /** Get Data Ready interrupt status.
01854  * This bit automatically sets to 1 when a Data Ready interrupt has been
01855  * generated. The bit clears to 0 after the register has been read.
01856  * @return Current interrupt status
01857  * @see MPU6050_RA_INT_STATUS
01858  * @see MPU6050_INTERRUPT_DATA_RDY_BIT
01859  */
01860 bool MPU6050::getIntDataReadyStatus()
01861 {
01862     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
01863     return buffer[0];
01864 }
01865 
01866 // ACCEL_*OUT_* registers
01867 
01868 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
01869  * FUNCTION NOT FULLY IMPLEMENTED YET.
01870  * @param ax 16-bit signed integer container for accelerometer X-axis value
01871  * @param ay 16-bit signed integer container for accelerometer Y-axis value
01872  * @param az 16-bit signed integer container for accelerometer Z-axis value
01873  * @param gx 16-bit signed integer container for gyroscope X-axis value
01874  * @param gy 16-bit signed integer container for gyroscope Y-axis value
01875  * @param gz 16-bit signed integer container for gyroscope Z-axis value
01876  * @param mx 16-bit signed integer container for magnetometer X-axis value
01877  * @param my 16-bit signed integer container for magnetometer Y-axis value
01878  * @param mz 16-bit signed integer container for magnetometer Z-axis value
01879  * @see getMotion6()
01880  * @see getAcceleration()
01881  * @see getRotation()
01882  * @see MPU6050_RA_ACCEL_XOUT_H
01883  */
01884 void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz)
01885 {
01886     getMotion6(ax, ay, az, gx, gy, gz);
01887     
01888     // magnetometer reading
01889     i2Cdev.writeByte(devAddr, MPU6050_RA_INT_PIN_CFG, 0x02); //set i2c bypass enable pin to true to access magnetometer
01890     wait_ms(10); // necessary wait >=6ms
01891     i2Cdev.writeByte(MPU9150_RA_MAG_ADDRESS, 0x0A, 0x01); // enable the magnetometer
01892     wait_ms(10); // necessary wait >=6ms
01893     i2Cdev.readBytes(MPU9150_RA_MAG_ADDRESS, MPU9150_RA_MAG_XOUT_L, 6, buffer);
01894     *mx = (((int16_t)buffer[0]) << 8) | buffer[1];
01895     *my = (((int16_t)buffer[2]) << 8) | buffer[3];
01896     *mz = (((int16_t)buffer[4]) << 8) | buffer[5];
01897 }
01898 /** Get raw 6-axis motion sensor readings (accel/gyro).
01899  * Retrieves all currently available motion sensor values.
01900  * @param ax 16-bit signed integer container for accelerometer X-axis value
01901  * @param ay 16-bit signed integer container for accelerometer Y-axis value
01902  * @param az 16-bit signed integer container for accelerometer Z-axis value
01903  * @param gx 16-bit signed integer container for gyroscope X-axis value
01904  * @param gy 16-bit signed integer container for gyroscope Y-axis value
01905  * @param gz 16-bit signed integer container for gyroscope Z-axis value
01906  * @see getAcceleration()
01907  * @see getRotation()
01908  * @see MPU6050_RA_ACCEL_XOUT_H
01909  */
01910 void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz)
01911 {
01912     i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
01913     *ax = (((int16_t)buffer[0]) << 8) | buffer[1];
01914     *ay = (((int16_t)buffer[2]) << 8) | buffer[3];
01915     *az = (((int16_t)buffer[4]) << 8) | buffer[5];
01916     *gx = (((int16_t)buffer[8]) << 8) | buffer[9];
01917     *gy = (((int16_t)buffer[10]) << 8) | buffer[11];
01918     *gz = (((int16_t)buffer[12]) << 8) | buffer[13];
01919 }
01920 /** Get 3-axis accelerometer readings.
01921  * These registers store the most recent accelerometer measurements.
01922  * Accelerometer measurements are written to these registers at the Sample Rate
01923  * as defined in Register 25.
01924  *
01925  * The accelerometer measurement registers, along with the temperature
01926  * measurement registers, gyroscope measurement registers, and external sensor
01927  * data registers, are composed of two sets of registers: an internal register
01928  * set and a user-facing read register set.
01929  *
01930  * The data within the accelerometer sensors' internal register set is always
01931  * updated at the Sample Rate. Meanwhile, the user-facing read register set
01932  * duplicates the internal register set's data values whenever the serial
01933  * interface is idle. This guarantees that a burst read of sensor registers will
01934  * read measurements from the same sampling instant. Note that if burst reads
01935  * are not used, the user is responsible for ensuring a set of single byte reads
01936  * correspond to a single sampling instant by checking the Data Ready interrupt.
01937  *
01938  * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
01939  * (Register 28). For each full scale setting, the accelerometers' sensitivity
01940  * per LSB in ACCEL_xOUT is shown in the table below:
01941  *
01942  * <pre>
01943  * AFS_SEL | Full Scale Range | LSB Sensitivity
01944  * --------+------------------+----------------
01945  * 0       | +/- 2g           | 8192 LSB/mg
01946  * 1       | +/- 4g           | 4096 LSB/mg
01947  * 2       | +/- 8g           | 2048 LSB/mg
01948  * 3       | +/- 16g          | 1024 LSB/mg
01949  * </pre>
01950  *
01951  * @param x 16-bit signed integer container for X-axis acceleration
01952  * @param y 16-bit signed integer container for Y-axis acceleration
01953  * @param z 16-bit signed integer container for Z-axis acceleration
01954  * @see MPU6050_RA_GYRO_XOUT_H
01955  */
01956 void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z)
01957 {
01958     i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
01959     *x = (((int16_t)buffer[0]) << 8) | buffer[1];
01960     *y = (((int16_t)buffer[2]) << 8) | buffer[3];
01961     *z = (((int16_t)buffer[4]) << 8) | buffer[5];
01962 }
01963 /** Get X-axis accelerometer reading.
01964  * @return X-axis acceleration measurement in 16-bit 2's complement format
01965  * @see getMotion6()
01966  * @see MPU6050_RA_ACCEL_XOUT_H
01967  */
01968 int16_t MPU6050::getAccelerationX()
01969 {
01970     i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
01971     return (((int16_t)buffer[0]) << 8) | buffer[1];
01972 }
01973 /** Get Y-axis accelerometer reading.
01974  * @return Y-axis acceleration measurement in 16-bit 2's complement format
01975  * @see getMotion6()
01976  * @see MPU6050_RA_ACCEL_YOUT_H
01977  */
01978 int16_t MPU6050::getAccelerationY()
01979 {
01980     i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
01981     return (((int16_t)buffer[0]) << 8) | buffer[1];
01982 }
01983 /** Get Z-axis accelerometer reading.
01984  * @return Z-axis acceleration measurement in 16-bit 2's complement format
01985  * @see getMotion6()
01986  * @see MPU6050_RA_ACCEL_ZOUT_H
01987  */
01988 int16_t MPU6050::getAccelerationZ()
01989 {
01990     i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
01991     return (((int16_t)buffer[0]) << 8) | buffer[1];
01992 }
01993 
01994 // TEMP_OUT_* registers
01995 
01996 /** Get current internal temperature.
01997  * @return Temperature reading in 16-bit 2's complement format
01998  * @see MPU6050_RA_TEMP_OUT_H
01999  */
02000 int16_t MPU6050::getTemperature()
02001 {
02002     i2Cdev.readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
02003     return (((int16_t)buffer[0]) << 8) | buffer[1];
02004 }
02005 
02006 // GYRO_*OUT_* registers
02007 
02008 /** Get 3-axis gyroscope readings.
02009  * These gyroscope measurement registers, along with the accelerometer
02010  * measurement registers, temperature measurement registers, and external sensor
02011  * data registers, are composed of two sets of registers: an internal register
02012  * set and a user-facing read register set.
02013  * The data within the gyroscope sensors' internal register set is always
02014  * updated at the Sample Rate. Meanwhile, the user-facing read register set
02015  * duplicates the internal register set's data values whenever the serial
02016  * interface is idle. This guarantees that a burst read of sensor registers will
02017  * read measurements from the same sampling instant. Note that if burst reads
02018  * are not used, the user is responsible for ensuring a set of single byte reads
02019  * correspond to a single sampling instant by checking the Data Ready interrupt.
02020  *
02021  * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
02022  * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
02023  * LSB in GYRO_xOUT is shown in the table below:
02024  *
02025  * <pre>
02026  * FS_SEL | Full Scale Range   | LSB Sensitivity
02027  * -------+--------------------+----------------
02028  * 0      | +/- 250 degrees/s  | 131 LSB/deg/s
02029  * 1      | +/- 500 degrees/s  | 65.5 LSB/deg/s
02030  * 2      | +/- 1000 degrees/s | 32.8 LSB/deg/s
02031  * 3      | +/- 2000 degrees/s | 16.4 LSB/deg/s
02032  * </pre>
02033  *
02034  * @param x 16-bit signed integer container for X-axis rotation
02035  * @param y 16-bit signed integer container for Y-axis rotation
02036  * @param z 16-bit signed integer container for Z-axis rotation
02037  * @see getMotion6()
02038  * @see MPU6050_RA_GYRO_XOUT_H
02039  */
02040 void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z)
02041 {
02042     i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
02043     *x = (((int16_t)buffer[0]) << 8) | buffer[1];
02044     *y = (((int16_t)buffer[2]) << 8) | buffer[3];
02045     *z = (((int16_t)buffer[4]) << 8) | buffer[5];
02046 }
02047 /** Get X-axis gyroscope reading.
02048  * @return X-axis rotation measurement in 16-bit 2's complement format
02049  * @see getMotion6()
02050  * @see MPU6050_RA_GYRO_XOUT_H
02051  */
02052 int16_t MPU6050::getRotationX()
02053 {
02054     i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
02055     return (((int16_t)buffer[0]) << 8) | buffer[1];
02056 }
02057 /** Get Y-axis gyroscope reading.
02058  * @return Y-axis rotation measurement in 16-bit 2's complement format
02059  * @see getMotion6()
02060  * @see MPU6050_RA_GYRO_YOUT_H
02061  */
02062 int16_t MPU6050::getRotationY()
02063 {
02064     i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
02065     return (((int16_t)buffer[0]) << 8) | buffer[1];
02066 }
02067 /** Get Z-axis gyroscope reading.
02068  * @return Z-axis rotation measurement in 16-bit 2's complement format
02069  * @see getMotion6()
02070  * @see MPU6050_RA_GYRO_ZOUT_H
02071  */
02072 int16_t MPU6050::getRotationZ()
02073 {
02074     i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
02075     return (((int16_t)buffer[0]) << 8) | buffer[1];
02076 }
02077 
02078 // EXT_SENS_DATA_* registers
02079 
02080 /** Read single byte from external sensor data register.
02081  * These registers store data read from external sensors by the Slave 0, 1, 2,
02082  * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
02083  * I2C_SLV4_DI (Register 53).
02084  *
02085  * External sensor data is written to these registers at the Sample Rate as
02086  * defined in Register 25. This access rate can be reduced by using the Slave
02087  * Delay Enable registers (Register 103).
02088  *
02089  * External sensor data registers, along with the gyroscope measurement
02090  * registers, accelerometer measurement registers, and temperature measurement
02091  * registers, are composed of two sets of registers: an internal register set
02092  * and a user-facing read register set.
02093  *
02094  * The data within the external sensors' internal register set is always updated
02095  * at the Sample Rate (or the reduced access rate) whenever the serial interface
02096  * is idle. This guarantees that a burst read of sensor registers will read
02097  * measurements from the same sampling instant. Note that if burst reads are not
02098  * used, the user is responsible for ensuring a set of single byte reads
02099  * correspond to a single sampling instant by checking the Data Ready interrupt.
02100  *
02101  * Data is placed in these external sensor data registers according to
02102  * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
02103  * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
02104  * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
02105  * defined in Register 25) or delayed rate (if specified in Register 52 and
02106  * 103). During each Sample cycle, slave reads are performed in order of Slave
02107  * number. If all slaves are enabled with more than zero bytes to be read, the
02108  * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
02109  *
02110  * Each enabled slave will have EXT_SENS_DATA registers associated with it by
02111  * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
02112  * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
02113  * change the higher numbered slaves' associated registers. Furthermore, if
02114  * fewer total bytes are being read from the external sensors as a result of
02115  * such a change, then the data remaining in the registers which no longer have
02116  * an associated slave device (i.e. high numbered registers) will remain in
02117  * these previously allocated registers unless reset.
02118  *
02119  * If the sum of the read lengths of all SLVx transactions exceed the number of
02120  * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
02121  * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
02122  * the slaves cannot be greater than 24 or some bytes will be lost.
02123  *
02124  * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
02125  * information regarding the characteristics of Slave 4, please refer to
02126  * Registers 49 to 53.
02127  *
02128  * EXAMPLE:
02129  * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
02130  * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
02131  * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
02132  * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
02133  * will be associated with Slave 1. If Slave 2 is enabled as well, registers
02134  * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
02135  *
02136  * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
02137  * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
02138  * instead.
02139  *
02140  * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
02141  * If a slave is disabled at any time, the space initially allocated to the
02142  * slave in the EXT_SENS_DATA register, will remain associated with that slave.
02143  * This is to avoid dynamic adjustment of the register allocation.
02144  *
02145  * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
02146  * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
02147  *
02148  * This above is also true if one of the slaves gets NACKed and stops
02149  * functioning.
02150  *
02151  * @param position Starting position (0-23)
02152  * @return Byte read from register
02153  */
02154 uint8_t MPU6050::getExternalSensorByte(int position)
02155 {
02156     i2Cdev.readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
02157     return buffer[0];
02158 }
02159 /** Read word (2 bytes) from external sensor data registers.
02160  * @param position Starting position (0-21)
02161  * @return Word read from register
02162  * @see getExternalSensorByte()
02163  */
02164 uint16_t MPU6050::getExternalSensorWord(int position)
02165 {
02166     i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
02167     return (((uint16_t)buffer[0]) << 8) | buffer[1];
02168 }
02169 /** Read double word (4 bytes) from external sensor data registers.
02170  * @param position Starting position (0-20)
02171  * @return Double word read from registers
02172  * @see getExternalSensorByte()
02173  */
02174 uint32_t MPU6050::getExternalSensorDWord(int position)
02175 {
02176     i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
02177     return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
02178 }
02179 
02180 // MOT_DETECT_STATUS register
02181 
02182 /** Get X-axis negative motion detection interrupt status.
02183  * @return Motion detection status
02184  * @see MPU6050_RA_MOT_DETECT_STATUS
02185  * @see MPU6050_MOTION_MOT_XNEG_BIT
02186  */
02187 bool MPU6050::getXNegMotionDetected()
02188 {
02189     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
02190     return buffer[0];
02191 }
02192 /** Get X-axis positive motion detection interrupt status.
02193  * @return Motion detection status
02194  * @see MPU6050_RA_MOT_DETECT_STATUS
02195  * @see MPU6050_MOTION_MOT_XPOS_BIT
02196  */
02197 bool MPU6050::getXPosMotionDetected()
02198 {
02199     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
02200     return buffer[0];
02201 }
02202 /** Get Y-axis negative motion detection interrupt status.
02203  * @return Motion detection status
02204  * @see MPU6050_RA_MOT_DETECT_STATUS
02205  * @see MPU6050_MOTION_MOT_YNEG_BIT
02206  */
02207 bool MPU6050::getYNegMotionDetected()
02208 {
02209     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
02210     return buffer[0];
02211 }
02212 /** Get Y-axis positive motion detection interrupt status.
02213  * @return Motion detection status
02214  * @see MPU6050_RA_MOT_DETECT_STATUS
02215  * @see MPU6050_MOTION_MOT_YPOS_BIT
02216  */
02217 bool MPU6050::getYPosMotionDetected()
02218 {
02219     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
02220     return buffer[0];
02221 }
02222 /** Get Z-axis negative motion detection interrupt status.
02223  * @return Motion detection status
02224  * @see MPU6050_RA_MOT_DETECT_STATUS
02225  * @see MPU6050_MOTION_MOT_ZNEG_BIT
02226  */
02227 bool MPU6050::getZNegMotionDetected()
02228 {
02229     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
02230     return buffer[0];
02231 }
02232 /** Get Z-axis positive motion detection interrupt status.
02233  * @return Motion detection status
02234  * @see MPU6050_RA_MOT_DETECT_STATUS
02235  * @see MPU6050_MOTION_MOT_ZPOS_BIT
02236  */
02237 bool MPU6050::getZPosMotionDetected()
02238 {
02239     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
02240     return buffer[0];
02241 }
02242 /** Get zero motion detection interrupt status.
02243  * @return Motion detection status
02244  * @see MPU6050_RA_MOT_DETECT_STATUS
02245  * @see MPU6050_MOTION_MOT_ZRMOT_BIT
02246  */
02247 bool MPU6050::getZeroMotionDetected()
02248 {
02249     i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
02250     return buffer[0];
02251 }
02252 
02253 // I2C_SLV*_DO register
02254 
02255 /** Write byte to Data Output container for specified slave.
02256  * This register holds the output data written into Slave when Slave is set to
02257  * write mode. For further information regarding Slave control, please
02258  * refer to Registers 37 to 39 and immediately following.
02259  * @param num Slave number (0-3)
02260  * @param data Byte to write
02261  * @see MPU6050_RA_I2C_SLV0_DO
02262  */
02263 void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data)
02264 {
02265     if (num > 3) return;
02266     i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
02267 }
02268 
02269 // I2C_MST_DELAY_CTRL register
02270 
02271 /** Get external data shadow delay enabled status.
02272  * This register is used to specify the timing of external sensor data
02273  * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
02274  * sensor data is delayed until all data has been received.
02275  * @return Current external data shadow delay enabled status.
02276  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02277  * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
02278  */
02279 bool MPU6050::getExternalShadowDelayEnabled()
02280 {
02281     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
02282     return buffer[0];
02283 }
02284 /** Set external data shadow delay enabled status.
02285  * @param enabled New external data shadow delay enabled status.
02286  * @see getExternalShadowDelayEnabled()
02287  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02288  * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
02289  */
02290 void MPU6050::setExternalShadowDelayEnabled(bool enabled)
02291 {
02292     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
02293 }
02294 /** Get slave delay enabled status.
02295  * When a particular slave delay is enabled, the rate of access for the that
02296  * slave device is reduced. When a slave's access rate is decreased relative to
02297  * the Sample Rate, the slave is accessed every:
02298  *
02299  *     1 / (1 + I2C_MST_DLY) Samples
02300  *
02301  * This base Sample Rate in turn is determined by SMPLRT_DIV (register  * 25)
02302  * and DLPF_CFG (register 26).
02303  *
02304  * For further information regarding I2C_MST_DLY, please refer to register 52.
02305  * For further information regarding the Sample Rate, please refer to register 25.
02306  *
02307  * @param num Slave number (0-4)
02308  * @return Current slave delay enabled status.
02309  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02310  * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
02311  */
02312 bool MPU6050::getSlaveDelayEnabled(uint8_t num)
02313 {
02314     // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
02315     if (num > 4) return 0;
02316     i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
02317     return buffer[0];
02318 }
02319 /** Set slave delay enabled status.
02320  * @param num Slave number (0-4)
02321  * @param enabled New slave delay enabled status.
02322  * @see MPU6050_RA_I2C_MST_DELAY_CTRL
02323  * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
02324  */
02325 void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled)
02326 {
02327     i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
02328 }
02329 
02330 // SIGNAL_PATH_RESET register
02331 
02332 /** Reset gyroscope signal path.
02333  * The reset will revert the signal path analog to digital converters and
02334  * filters to their power up configurations.
02335  * @see MPU6050_RA_SIGNAL_PATH_RESET
02336  * @see MPU6050_PATHRESET_GYRO_RESET_BIT
02337  */
02338 void MPU6050::resetGyroscopePath()
02339 {
02340     i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
02341 }
02342 /** Reset accelerometer signal path.
02343  * The reset will revert the signal path analog to digital converters and
02344  * filters to their power up configurations.
02345  * @see MPU6050_RA_SIGNAL_PATH_RESET
02346  * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
02347  */
02348 void MPU6050::resetAccelerometerPath()
02349 {
02350     i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
02351 }
02352 /** Reset temperature sensor signal path.
02353  * The reset will revert the signal path analog to digital converters and
02354  * filters to their power up configurations.
02355  * @see MPU6050_RA_SIGNAL_PATH_RESET
02356  * @see MPU6050_PATHRESET_TEMP_RESET_BIT
02357  */
02358 void MPU6050::resetTemperaturePath()
02359 {
02360     i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
02361 }
02362 
02363 // MOT_DETECT_CTRL register
02364 
02365 /** Get accelerometer power-on delay.
02366  * The accelerometer data path provides samples to the sensor registers, Motion
02367  * detection, Zero Motion detection, and Free Fall detection modules. The
02368  * signal path contains filters which must be flushed on wake-up with new
02369  * samples before the detection modules begin operations. The default wake-up
02370  * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
02371  * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
02372  * any value above zero unless instructed otherwise by InvenSense. Please refer
02373  * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
02374  * further information regarding the detection modules.
02375  * @return Current accelerometer power-on delay
02376  * @see MPU6050_RA_MOT_DETECT_CTRL
02377  * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
02378  */
02379 uint8_t MPU6050::getAccelerometerPowerOnDelay()
02380 {
02381     i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
02382     return buffer[0];
02383 }
02384 /** Set accelerometer power-on delay.
02385  * @param delay New accelerometer power-on delay (0-3)
02386  * @see getAccelerometerPowerOnDelay()
02387  * @see MPU6050_RA_MOT_DETECT_CTRL
02388  * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
02389  */
02390 void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay)
02391 {
02392     i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
02393 }
02394 /** Get Free Fall detection counter decrement configuration.
02395  * Detection is registered by the Free Fall detection module after accelerometer
02396  * measurements meet their respective threshold conditions over a specified
02397  * number of samples. When the threshold conditions are met, the corresponding
02398  * detection counter increments by 1. The user may control the rate at which the
02399  * detection counter decrements when the threshold condition is not met by
02400  * configuring FF_COUNT. The decrement rate can be set according to the
02401  * following table:
02402  *
02403  * <pre>
02404  * FF_COUNT | Counter Decrement
02405  * ---------+------------------
02406  * 0        | Reset
02407  * 1        | 1
02408  * 2        | 2
02409  * 3        | 4
02410  * </pre>
02411  *
02412  * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
02413  * reset the counter to 0. For further information on Free Fall detection,
02414  * please refer to Registers 29 to 32.
02415  *
02416  * @return Current decrement configuration
02417  * @see MPU6050_RA_MOT_DETECT_CTRL
02418  * @see MPU6050_DETECT_FF_COUNT_BIT
02419  */
02420 uint8_t MPU6050::getFreefallDetectionCounterDecrement()
02421 {
02422     i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
02423     return buffer[0];
02424 }
02425 /** Set Free Fall detection counter decrement configuration.
02426  * @param decrement New decrement configuration value
02427  * @see getFreefallDetectionCounterDecrement()
02428  * @see MPU6050_RA_MOT_DETECT_CTRL
02429  * @see MPU6050_DETECT_FF_COUNT_BIT
02430  */
02431 void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement)
02432 {
02433     i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
02434 }
02435 /** Get Motion detection counter decrement configuration.
02436  * Detection is registered by the Motion detection module after accelerometer
02437  * measurements meet their respective threshold conditions over a specified
02438  * number of samples. When the threshold conditions are met, the corresponding
02439  * detection counter increments by 1. The user may control the rate at which the
02440  * detection counter decrements when the threshold condition is not met by
02441  * configuring MOT_COUNT. The decrement rate can be set according to the
02442  * following table:
02443  *
02444  * <pre>
02445  * MOT_COUNT | Counter Decrement
02446  * ----------+------------------
02447  * 0         | Reset
02448  * 1         | 1
02449  * 2         | 2
02450  * 3         | 4
02451  * </pre>
02452  *
02453  * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
02454  * reset the counter to 0. For further information on Motion detection,
02455  * please refer to Registers 29 to 32.
02456  *
02457  */
02458 uint8_t MPU6050::getMotionDetectionCounterDecrement()
02459 {
02460     i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
02461     return buffer[0];
02462 }
02463 /** Set Motion detection counter decrement configuration.
02464  * @param decrement New decrement configuration value
02465  * @see getMotionDetectionCounterDecrement()
02466  * @see MPU6050_RA_MOT_DETECT_CTRL
02467  * @see MPU6050_DETECT_MOT_COUNT_BIT
02468  */
02469 void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement)
02470 {
02471     i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
02472 }
02473 
02474 // USER_CTRL register
02475 
02476 /** Get FIFO enabled status.
02477  * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
02478  * cannot be written to or read from while disabled. The FIFO buffer's state
02479  * does not change unless the MPU-60X0 is power cycled.
02480  * @return Current FIFO enabled status
02481  * @see MPU6050_RA_USER_CTRL
02482  * @see MPU6050_USERCTRL_FIFO_EN_BIT
02483  */
02484 bool MPU6050::getFIFOEnabled()
02485 {
02486     i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
02487     return buffer[0];
02488 }
02489 /** Set FIFO enabled status.
02490  * @param enabled New FIFO enabled status
02491  * @see getFIFOEnabled()
02492  * @see MPU6050_RA_USER_CTRL
02493  * @see MPU6050_USERCTRL_FIFO_EN_BIT
02494  */
02495 void MPU6050::setFIFOEnabled(bool enabled)
02496 {
02497     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
02498 }
02499 /** Get I2C Master Mode enabled status.
02500  * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
02501  * external sensor slave devices on the auxiliary I2C bus. When this bit is
02502  * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
02503  * driven by the primary I2C bus (SDA and SCL). This is a precondition to
02504  * enabling Bypass Mode. For further information regarding Bypass Mode, please
02505  * refer to Register 55.
02506  * @return Current I2C Master Mode enabled status
02507  * @see MPU6050_RA_USER_CTRL
02508  * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
02509  */
02510 bool MPU6050::getI2CMasterModeEnabled()
02511 {
02512     i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
02513     return buffer[0];
02514 }
02515 /** Set I2C Master Mode enabled status.
02516  * @param enabled New I2C Master Mode enabled status
02517  * @see getI2CMasterModeEnabled()
02518  * @see MPU6050_RA_USER_CTRL
02519  * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
02520  */
02521 void MPU6050::setI2CMasterModeEnabled(bool enabled)
02522 {
02523     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
02524 }
02525 /** Switch from I2C to SPI mode (MPU-6000 only)
02526  * If this is set, the primary SPI interface will be enabled in place of the
02527  * disabled primary I2C interface.
02528  */
02529 void MPU6050::switchSPIEnabled(bool enabled)
02530 {
02531     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
02532 }
02533 /** Reset the FIFO.
02534  * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
02535  * bit automatically clears to 0 after the reset has been triggered.
02536  * @see MPU6050_RA_USER_CTRL
02537  * @see MPU6050_USERCTRL_FIFO_RESET_BIT
02538  */
02539 void MPU6050::resetFIFO()
02540 {
02541     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
02542 }
02543 /** Reset the I2C Master.
02544  * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
02545  * This bit automatically clears to 0 after the reset has been triggered.
02546  * @see MPU6050_RA_USER_CTRL
02547  * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
02548  */
02549 void MPU6050::resetI2CMaster()
02550 {
02551     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
02552 }
02553 /** Reset all sensor registers and signal paths.
02554  * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
02555  * accelerometers, and temperature sensor). This operation will also clear the
02556  * sensor registers. This bit automatically clears to 0 after the reset has been
02557  * triggered.
02558  *
02559  * When resetting only the signal path (and not the sensor registers), please
02560  * use Register 104, SIGNAL_PATH_RESET.
02561  *
02562  * @see MPU6050_RA_USER_CTRL
02563  * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
02564  */
02565 void MPU6050::resetSensors()
02566 {
02567     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
02568 }
02569 
02570 // PWR_MGMT_1 register
02571 
02572 /** Trigger a full device reset.
02573  * A small delay of ~50ms may be desirable after triggering a reset.
02574  * @see MPU6050_RA_PWR_MGMT_1
02575  * @see MPU6050_PWR1_DEVICE_RESET_BIT
02576  */
02577 void MPU6050::reset()
02578 {
02579     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
02580 }
02581 /** Get sleep mode status.
02582  * Setting the SLEEP bit in the register puts the device into very low power
02583  * sleep mode. In this mode, only the serial interface and internal registers
02584  * remain active, allowing for a very low standby current. Clearing this bit
02585  * puts the device back into normal mode. To save power, the individual standby
02586  * selections for each of the gyros should be used if any gyro axis is not used
02587  * by the application.
02588  * @return Current sleep mode enabled status
02589  * @see MPU6050_RA_PWR_MGMT_1
02590  * @see MPU6050_PWR1_SLEEP_BIT
02591  */
02592 bool MPU6050::getSleepEnabled()
02593 {
02594     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
02595     return buffer[0];
02596 }
02597 /** Set sleep mode status.
02598  * @param enabled New sleep mode enabled status
02599  * @see getSleepEnabled()
02600  * @see MPU6050_RA_PWR_MGMT_1
02601  * @see MPU6050_PWR1_SLEEP_BIT
02602  */
02603 void MPU6050::setSleepEnabled(bool enabled)
02604 {
02605     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
02606 }
02607 /** Get wake cycle enabled status.
02608  * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
02609  * between sleep mode and waking up to take a single sample of data from active
02610  * sensors at a rate determined by LP_WAKE_CTRL (register 108).
02611  * @return Current sleep mode enabled status
02612  * @see MPU6050_RA_PWR_MGMT_1
02613  * @see MPU6050_PWR1_CYCLE_BIT
02614  */
02615 bool MPU6050::getWakeCycleEnabled()
02616 {
02617     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
02618     return buffer[0];
02619 }
02620 /** Set wake cycle enabled status.
02621  * @param enabled New sleep mode enabled status
02622  * @see getWakeCycleEnabled()
02623  * @see MPU6050_RA_PWR_MGMT_1
02624  * @see MPU6050_PWR1_CYCLE_BIT
02625  */
02626 void MPU6050::setWakeCycleEnabled(bool enabled)
02627 {
02628     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
02629 }
02630 /** Get temperature sensor enabled status.
02631  * Control the usage of the internal temperature sensor.
02632  *
02633  * Note: this register stores the *disabled* value, but for consistency with the
02634  * rest of the code, the function is named and used with standard true/false
02635  * values to indicate whether the sensor is enabled or disabled, respectively.
02636  *
02637  * @return Current temperature sensor enabled status
02638  * @see MPU6050_RA_PWR_MGMT_1
02639  * @see MPU6050_PWR1_TEMP_DIS_BIT
02640  */
02641 bool MPU6050::getTempSensorEnabled()
02642 {
02643     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
02644     return buffer[0] == 0; // 1 is actually disabled here
02645 }
02646 /** Set temperature sensor enabled status.
02647  * Note: this register stores the *disabled* value, but for consistency with the
02648  * rest of the code, the function is named and used with standard true/false
02649  * values to indicate whether the sensor is enabled or disabled, respectively.
02650  *
02651  * @param enabled New temperature sensor enabled status
02652  * @see getTempSensorEnabled()
02653  * @see MPU6050_RA_PWR_MGMT_1
02654  * @see MPU6050_PWR1_TEMP_DIS_BIT
02655  */
02656 void MPU6050::setTempSensorEnabled(bool enabled)
02657 {
02658     // 1 is actually disabled here
02659     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
02660 }
02661 /** Get clock source setting.
02662  * @return Current clock source setting
02663  * @see MPU6050_RA_PWR_MGMT_1
02664  * @see MPU6050_PWR1_CLKSEL_BIT
02665  * @see MPU6050_PWR1_CLKSEL_LENGTH
02666  */
02667 uint8_t MPU6050::getClockSource()
02668 {
02669     i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
02670     return buffer[0];
02671 }
02672 /** Set clock source setting.
02673  * An internal 8MHz oscillator, gyroscope based clock, or external sources can
02674  * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
02675  * or an external source is chosen as the clock source, the MPU-60X0 can operate
02676  * in low power modes with the gyroscopes disabled.
02677  *
02678  * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
02679  * However, it is highly recommended that the device be configured to use one of
02680  * the gyroscopes (or an external clock source) as the clock reference for
02681  * improved stability. The clock source can be selected according to the following table:
02682  *
02683  * <pre>
02684  * CLK_SEL | Clock Source
02685  * --------+--------------------------------------
02686  * 0       | Internal oscillator
02687  * 1       | PLL with X Gyro reference
02688  * 2       | PLL with Y Gyro reference
02689  * 3       | PLL with Z Gyro reference
02690  * 4       | PLL with external 32.768kHz reference
02691  * 5       | PLL with external 19.2MHz reference
02692  * 6       | Reserved
02693  * 7       | Stops the clock and keeps the timing generator in reset
02694  * </pre>
02695  *
02696  * @param source New clock source setting
02697  * @see getClockSource()
02698  * @see MPU6050_RA_PWR_MGMT_1
02699  * @see MPU6050_PWR1_CLKSEL_BIT
02700  * @see MPU6050_PWR1_CLKSEL_LENGTH
02701  */
02702 void MPU6050::setClockSource(uint8_t source)
02703 {
02704     i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
02705 }
02706 
02707 // PWR_MGMT_2 register
02708 
02709 /** Get wake frequency in Accel-Only Low Power Mode.
02710  * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
02711  * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
02712  * the device will power off all devices except for the primary I2C interface,
02713  * waking only the accelerometer at fixed intervals to take a single
02714  * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
02715  * as shown below:
02716  *
02717  * <pre>
02718  * LP_WAKE_CTRL | Wake-up Frequency
02719  * -------------+------------------
02720  * 0            | 1.25 Hz
02721  * 1            | 2.5 Hz
02722  * 2            | 5 Hz
02723  * 3            | 10 Hz
02724  * <pre>
02725  *
02726  * For further information regarding the MPU-60X0's power modes, please refer to
02727  * Register 107.
02728  *
02729  * @return Current wake frequency
02730  * @see MPU6050_RA_PWR_MGMT_2
02731  */
02732 uint8_t MPU6050::getWakeFrequency()
02733 {
02734     i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
02735     return buffer[0];
02736 }
02737 /** Set wake frequency in Accel-Only Low Power Mode.
02738  * @param frequency New wake frequency
02739  * @see MPU6050_RA_PWR_MGMT_2
02740  */
02741 void MPU6050::setWakeFrequency(uint8_t frequency)
02742 {
02743     i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
02744 }
02745 
02746 /** Get X-axis accelerometer standby enabled status.
02747  * If enabled, the X-axis will not gather or report data (or use power).
02748  * @return Current X-axis standby enabled status
02749  * @see MPU6050_RA_PWR_MGMT_2
02750  * @see MPU6050_PWR2_STBY_XA_BIT
02751  */
02752 bool MPU6050::getStandbyXAccelEnabled()
02753 {
02754     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
02755     return buffer[0];
02756 }
02757 /** Set X-axis accelerometer standby enabled status.
02758  * @param New X-axis standby enabled status
02759  * @see getStandbyXAccelEnabled()
02760  * @see MPU6050_RA_PWR_MGMT_2
02761  * @see MPU6050_PWR2_STBY_XA_BIT
02762  */
02763 void MPU6050::setStandbyXAccelEnabled(bool enabled)
02764 {
02765     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
02766 }
02767 /** Get Y-axis accelerometer standby enabled status.
02768  * If enabled, the Y-axis will not gather or report data (or use power).
02769  * @return Current Y-axis standby enabled status
02770  * @see MPU6050_RA_PWR_MGMT_2
02771  * @see MPU6050_PWR2_STBY_YA_BIT
02772  */
02773 bool MPU6050::getStandbyYAccelEnabled()
02774 {
02775     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
02776     return buffer[0];
02777 }
02778 /** Set Y-axis accelerometer standby enabled status.
02779  * @param New Y-axis standby enabled status
02780  * @see getStandbyYAccelEnabled()
02781  * @see MPU6050_RA_PWR_MGMT_2
02782  * @see MPU6050_PWR2_STBY_YA_BIT
02783  */
02784 void MPU6050::setStandbyYAccelEnabled(bool enabled)
02785 {
02786     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
02787 }
02788 /** Get Z-axis accelerometer standby enabled status.
02789  * If enabled, the Z-axis will not gather or report data (or use power).
02790  * @return Current Z-axis standby enabled status
02791  * @see MPU6050_RA_PWR_MGMT_2
02792  * @see MPU6050_PWR2_STBY_ZA_BIT
02793  */
02794 bool MPU6050::getStandbyZAccelEnabled()
02795 {
02796     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
02797     return buffer[0];
02798 }
02799 /** Set Z-axis accelerometer standby enabled status.
02800  * @param New Z-axis standby enabled status
02801  * @see getStandbyZAccelEnabled()
02802  * @see MPU6050_RA_PWR_MGMT_2
02803  * @see MPU6050_PWR2_STBY_ZA_BIT
02804  */
02805 void MPU6050::setStandbyZAccelEnabled(bool enabled)
02806 {
02807     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
02808 }
02809 /** Get X-axis gyroscope standby enabled status.
02810  * If enabled, the X-axis will not gather or report data (or use power).
02811  * @return Current X-axis standby enabled status
02812  * @see MPU6050_RA_PWR_MGMT_2
02813  * @see MPU6050_PWR2_STBY_XG_BIT
02814  */
02815 bool MPU6050::getStandbyXGyroEnabled()
02816 {
02817     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
02818     return buffer[0];
02819 }
02820 /** Set X-axis gyroscope standby enabled status.
02821  * @param New X-axis standby enabled status
02822  * @see getStandbyXGyroEnabled()
02823  * @see MPU6050_RA_PWR_MGMT_2
02824  * @see MPU6050_PWR2_STBY_XG_BIT
02825  */
02826 void MPU6050::setStandbyXGyroEnabled(bool enabled)
02827 {
02828     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
02829 }
02830 /** Get Y-axis gyroscope standby enabled status.
02831  * If enabled, the Y-axis will not gather or report data (or use power).
02832  * @return Current Y-axis standby enabled status
02833  * @see MPU6050_RA_PWR_MGMT_2
02834  * @see MPU6050_PWR2_STBY_YG_BIT
02835  */
02836 bool MPU6050::getStandbyYGyroEnabled()
02837 {
02838     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
02839     return buffer[0];
02840 }
02841 /** Set Y-axis gyroscope standby enabled status.
02842  * @param New Y-axis standby enabled status
02843  * @see getStandbyYGyroEnabled()
02844  * @see MPU6050_RA_PWR_MGMT_2
02845  * @see MPU6050_PWR2_STBY_YG_BIT
02846  */
02847 void MPU6050::setStandbyYGyroEnabled(bool enabled)
02848 {
02849     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
02850 }
02851 /** Get Z-axis gyroscope standby enabled status.
02852  * If enabled, the Z-axis will not gather or report data (or use power).
02853  * @return Current Z-axis standby enabled status
02854  * @see MPU6050_RA_PWR_MGMT_2
02855  * @see MPU6050_PWR2_STBY_ZG_BIT
02856  */
02857 bool MPU6050::getStandbyZGyroEnabled()
02858 {
02859     i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
02860     return buffer[0];
02861 }
02862 /** Set Z-axis gyroscope standby enabled status.
02863  * @param New Z-axis standby enabled status
02864  * @see getStandbyZGyroEnabled()
02865  * @see MPU6050_RA_PWR_MGMT_2
02866  * @see MPU6050_PWR2_STBY_ZG_BIT
02867  */
02868 void MPU6050::setStandbyZGyroEnabled(bool enabled)
02869 {
02870     i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
02871 }
02872 
02873 // FIFO_COUNT* registers
02874 
02875 /** Get current FIFO buffer size.
02876  * This value indicates the number of bytes stored in the FIFO buffer. This
02877  * number is in turn the number of bytes that can be read from the FIFO buffer
02878  * and it is directly proportional to the number of samples available given the
02879  * set of sensor data bound to be stored in the FIFO (register 35 and 36).
02880  * @return Current FIFO buffer size
02881  */
02882 uint16_t MPU6050::getFIFOCount()
02883 {
02884     i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
02885     return (((uint16_t)buffer[0]) << 8) | buffer[1];
02886 }
02887 
02888 // FIFO_R_W register
02889 
02890 /** Get byte from FIFO buffer.
02891  * This register is used to read and write data from the FIFO buffer. Data is
02892  * written to the FIFO in order of register number (from lowest to highest). If
02893  * all the FIFO enable flags (see below) are enabled and all External Sensor
02894  * Data registers (Registers 73 to 96) are associated with a Slave device, the
02895  * contents of registers 59 through 96 will be written in order at the Sample
02896  * Rate.
02897  *
02898  * The contents of the sensor data registers (Registers 59 to 96) are written
02899  * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
02900  * in FIFO_EN (Register 35). An additional flag for the sensor data registers
02901  * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
02902  *
02903  * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
02904  * automatically set to 1. This bit is located in INT_STATUS (Register 58).
02905  * When the FIFO buffer has overflowed, the oldest data will be lost and new
02906  * data will be written to the FIFO.
02907  *
02908  * If the FIFO buffer is empty, reading this register will return the last byte
02909  * that was previously read from the FIFO until new data is available. The user
02910  * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
02911  * empty.
02912  *
02913  * @return Byte from FIFO buffer
02914  */
02915 uint8_t MPU6050::getFIFOByte()
02916 {
02917     i2Cdev.readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
02918     return buffer[0];
02919 }
02920 void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length)
02921 {
02922     i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
02923 }
02924 /** Write byte to FIFO buffer.
02925  * @see getFIFOByte()
02926  * @see MPU6050_RA_FIFO_R_W
02927  */
02928 void MPU6050::setFIFOByte(uint8_t data)
02929 {
02930     i2Cdev.writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
02931 }
02932 
02933 // WHO_AM_I register
02934 
02935 /** Get Device ID.
02936  * This register is used to verify the identity of the device (0b110100, 0x34).
02937  * @return Device ID (6 bits only! should be 0x34)
02938  * @see MPU6050_RA_WHO_AM_I
02939  * @see MPU6050_WHO_AM_I_BIT
02940  * @see MPU6050_WHO_AM_I_LENGTH
02941  */
02942 uint8_t MPU6050::getDeviceID()
02943 {
02944     i2Cdev.readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
02945     return buffer[0];
02946 }
02947 /** Set Device ID.
02948  * Write a new ID into the WHO_AM_I register (no idea why this should ever be
02949  * necessary though).
02950  * @param id New device ID to set.
02951  * @see getDeviceID()
02952  * @see MPU6050_RA_WHO_AM_I
02953  * @see MPU6050_WHO_AM_I_BIT
02954  * @see MPU6050_WHO_AM_I_LENGTH
02955  */
02956 void MPU6050::setDeviceID(uint8_t id)
02957 {
02958     i2Cdev.writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
02959 }
02960 
02961 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
02962 
02963 // XG_OFFS_TC register
02964 
02965 uint8_t MPU6050::getOTPBankValid()
02966 {
02967     i2Cdev.readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
02968     return buffer[0];
02969 }
02970 void MPU6050::setOTPBankValid(bool enabled)
02971 {
02972     i2Cdev.writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
02973 }
02974 int8_t MPU6050::getXGyroOffset()
02975 {
02976     i2Cdev.readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
02977     return buffer[0];
02978 }
02979 void MPU6050::setXGyroOffset(int8_t offset)
02980 {
02981     i2Cdev.writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
02982 }
02983 
02984 // YG_OFFS_TC register
02985 
02986 int8_t MPU6050::getYGyroOffset()
02987 {
02988     i2Cdev.readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
02989     return buffer[0];
02990 }
02991 void MPU6050::setYGyroOffset(int8_t offset)
02992 {
02993     i2Cdev.writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
02994 }
02995 
02996 // ZG_OFFS_TC register
02997 
02998 int8_t MPU6050::getZGyroOffset()
02999 {
03000     i2Cdev.readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
03001     return buffer[0];
03002 }
03003 void MPU6050::setZGyroOffset(int8_t offset)
03004 {
03005     i2Cdev.writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
03006 }
03007 
03008 // X_FINE_GAIN register
03009 
03010 int8_t MPU6050::getXFineGain()
03011 {
03012     i2Cdev.readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
03013     return buffer[0];
03014 }
03015 void MPU6050::setXFineGain(int8_t gain)
03016 {
03017     i2Cdev.writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
03018 }
03019 
03020 // Y_FINE_GAIN register
03021 
03022 int8_t MPU6050::getYFineGain()
03023 {
03024     i2Cdev.readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
03025     return buffer[0];
03026 }
03027 void MPU6050::setYFineGain(int8_t gain)
03028 {
03029     i2Cdev.writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
03030 }
03031 
03032 // Z_FINE_GAIN register
03033 
03034 int8_t MPU6050::getZFineGain()
03035 {
03036     i2Cdev.readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
03037     return buffer[0];
03038 }
03039 void MPU6050::setZFineGain(int8_t gain)
03040 {
03041     i2Cdev.writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
03042 }
03043 
03044 // XA_OFFS_* registers
03045 
03046 int16_t MPU6050::getXAccelOffset()
03047 {
03048     i2Cdev.readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
03049     return (((int16_t)buffer[0]) << 8) | buffer[1];
03050 }
03051 void MPU6050::setXAccelOffset(int16_t offset)
03052 {
03053     i2Cdev.writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
03054 }
03055 
03056 // YA_OFFS_* register
03057 
03058 int16_t MPU6050::getYAccelOffset()
03059 {
03060     i2Cdev.readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
03061     return (((int16_t)buffer[0]) << 8) | buffer[1];
03062 }
03063 void MPU6050::setYAccelOffset(int16_t offset)
03064 {
03065     i2Cdev.writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
03066 }
03067 
03068 // ZA_OFFS_* register
03069 
03070 int16_t MPU6050::getZAccelOffset()
03071 {
03072     i2Cdev.readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
03073     return (((int16_t)buffer[0]) << 8) | buffer[1];
03074 }
03075 void MPU6050::setZAccelOffset(int16_t offset)
03076 {
03077     i2Cdev.writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
03078 }
03079 
03080 // XG_OFFS_USR* registers
03081 
03082 int16_t MPU6050::getXGyroOffsetUser()
03083 {
03084     i2Cdev.readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
03085     return (((int16_t)buffer[0]) << 8) | buffer[1];
03086 }
03087 void MPU6050::setXGyroOffsetUser(int16_t offset)
03088 {
03089     i2Cdev.writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
03090 }
03091 
03092 // YG_OFFS_USR* register
03093 
03094 int16_t MPU6050::getYGyroOffsetUser()
03095 {
03096     i2Cdev.readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
03097     return (((int16_t)buffer[0]) << 8) | buffer[1];
03098 }
03099 void MPU6050::setYGyroOffsetUser(int16_t offset)
03100 {
03101     i2Cdev.writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
03102 }
03103 
03104 // ZG_OFFS_USR* register
03105 
03106 int16_t MPU6050::getZGyroOffsetUser()
03107 {
03108     i2Cdev.readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
03109     return (((int16_t)buffer[0]) << 8) | buffer[1];
03110 }
03111 void MPU6050::setZGyroOffsetUser(int16_t offset)
03112 {
03113     i2Cdev.writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
03114 }
03115 
03116 // INT_ENABLE register (DMP functions)
03117 
03118 bool MPU6050::getIntPLLReadyEnabled()
03119 {
03120     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
03121     return buffer[0];
03122 }
03123 void MPU6050::setIntPLLReadyEnabled(bool enabled)
03124 {
03125     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
03126 }
03127 bool MPU6050::getIntDMPEnabled()
03128 {
03129     i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
03130     return buffer[0];
03131 }
03132 void MPU6050::setIntDMPEnabled(bool enabled)
03133 {
03134     i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
03135 }
03136 
03137 // DMP_INT_STATUS
03138 
03139 bool MPU6050::getDMPInt5Status()
03140 {
03141     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
03142     return buffer[0];
03143 }
03144 bool MPU6050::getDMPInt4Status()
03145 {
03146     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
03147     return buffer[0];
03148 }
03149 bool MPU6050::getDMPInt3Status()
03150 {
03151     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
03152     return buffer[0];
03153 }
03154 bool MPU6050::getDMPInt2Status()
03155 {
03156     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
03157     return buffer[0];
03158 }
03159 bool MPU6050::getDMPInt1Status()
03160 {
03161     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
03162     return buffer[0];
03163 }
03164 bool MPU6050::getDMPInt0Status()
03165 {
03166     i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
03167     return buffer[0];
03168 }
03169 
03170 // INT_STATUS register (DMP functions)
03171 
03172 bool MPU6050::getIntPLLReadyStatus()
03173 {
03174     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
03175     return buffer[0];
03176 }
03177 bool MPU6050::getIntDMPStatus()
03178 {
03179     i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
03180     return buffer[0];
03181 }
03182 
03183 // USER_CTRL register (DMP functions)
03184 
03185 bool MPU6050::getDMPEnabled()
03186 {
03187     i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
03188     return buffer[0];
03189 }
03190 void MPU6050::setDMPEnabled(bool enabled)
03191 {
03192     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
03193 }
03194 void MPU6050::resetDMP()
03195 {
03196     i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
03197 }
03198 
03199 // BANK_SEL register
03200 
03201 void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank)
03202 {
03203     bank &= 0x1F;
03204     if (userBank) bank |= 0x20;
03205     if (prefetchEnabled) bank |= 0x40;
03206     i2Cdev.writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
03207 }
03208 
03209 // MEM_START_ADDR register
03210 
03211 void MPU6050::setMemoryStartAddress(uint8_t address)
03212 {
03213     i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
03214 }
03215 
03216 // MEM_R_W register
03217 
03218 uint8_t MPU6050::readMemoryByte()
03219 {
03220     i2Cdev.readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
03221     return buffer[0];
03222 }
03223 void MPU6050::writeMemoryByte(uint8_t data)
03224 {
03225     i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
03226 }
03227 void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address)
03228 {
03229     setMemoryBank(bank);
03230     setMemoryStartAddress(address);
03231     uint8_t chunkSize;
03232     for (uint16_t i = 0; i < dataSize;) {
03233         // determine correct chunk size according to bank position and data size
03234         chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
03235 
03236         // make sure we don't go past the data size
03237         if (i + chunkSize > dataSize) chunkSize = dataSize - i;
03238 
03239         // make sure this chunk doesn't go past the bank boundary (256 bytes)
03240         if (chunkSize > 256 - address) chunkSize = 256 - address;
03241 
03242         // read the chunk of data as specified
03243         i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
03244 
03245         // increase byte index by [chunkSize]
03246         i += chunkSize;
03247 
03248         // uint8_t automatically wraps to 0 at 256
03249         address += chunkSize;
03250 
03251         // if we aren't done, update bank (if necessary) and address
03252         if (i < dataSize) {
03253             if (address == 0) bank++;
03254             setMemoryBank(bank);
03255             setMemoryStartAddress(address);
03256         }
03257     }
03258 }
03259 bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem)
03260 {
03261     setMemoryBank(bank);
03262     setMemoryStartAddress(address);
03263     uint8_t chunkSize;
03264     uint8_t *verifyBuffer = NULL;
03265     uint8_t *progBuffer = NULL;
03266     uint16_t i;
03267     uint8_t j;
03268     
03269     if (verify)
03270     {
03271         verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
03272         pc.printf("Verify\r\n");
03273     }
03274     
03275     if (useProgMem)
03276     {
03277         progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
03278         pc.printf("Prog mem\r\n");
03279     }
03280     
03281     for (i = 0; i < dataSize;)
03282     {
03283         // determine correct chunk size according to bank position and data size
03284         chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
03285 
03286         // make sure we don't go past the data size
03287         if (i + chunkSize > dataSize)
03288         {
03289             chunkSize = dataSize - i;
03290         }
03291 
03292         // make sure this chunk doesn't go past the bank boundary (256 bytes)
03293         if (chunkSize > 256 - address)
03294         {
03295             chunkSize = 256 - address;
03296         }
03297         
03298         pc.printf("Chunksize: %d\r\n", chunkSize);
03299 
03300         if (useProgMem)
03301         {
03302             // write the chunk of data as specified
03303             for (j = 0; j < chunkSize; j++)
03304             {
03305                 progBuffer[j] = pgm_read_byte(data + i + j);
03306                 pc.printf("%d, ", progBuffer[j]);
03307             }
03308         }
03309         else
03310         {
03311             // write the chunk of data as specified
03312             progBuffer = (uint8_t *)data + i;
03313         }
03314 
03315         i2Cdev.writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
03316 
03317         // verify data if needed
03318         if (verify && verifyBuffer)
03319         {
03320             setMemoryBank(bank);
03321             setMemoryStartAddress(address);
03322             i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
03323             
03324             if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0)
03325             {
03326                 /*Serial.print("Block write verification error, bank ");
03327                 Serial.print(bank, DEC);
03328                 Serial.print(", address ");
03329                 Serial.print(address, DEC);
03330                 Serial.print("!\nExpected:");
03331                 for (j = 0; j < chunkSize; j++) {
03332                     Serial.print(" 0x");
03333                     if (progBuffer[j] < 16) Serial.print("0");
03334                     Serial.print(progBuffer[j], HEX);
03335                 }
03336                 Serial.print("\nReceived:");
03337                 for (uint8_t j = 0; j < chunkSize; j++) {
03338                     Serial.print(" 0x");
03339                     if (verifyBuffer[i + j] < 16) Serial.print("0");
03340                     Serial.print(verifyBuffer[i + j], HEX);
03341                 }
03342                 Serial.print("\n");*/
03343                 free(verifyBuffer);
03344                 if (useProgMem) free(progBuffer);
03345                 return false; // uh oh.
03346             }
03347         }
03348 
03349         // increase byte index by [chunkSize]
03350         i += chunkSize;
03351 
03352         // uint8_t automatically wraps to 0 at 256
03353         address += chunkSize;
03354 
03355         // if we aren't done, update bank (if necessary) and address
03356         if (i < dataSize) {
03357             if (address == 0) bank++;
03358             setMemoryBank(bank);
03359             setMemoryStartAddress(address);
03360         }
03361     }
03362     if (verify) free(verifyBuffer);
03363     if (useProgMem) free(progBuffer);
03364     return true;
03365 }
03366 bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify)
03367 {
03368     return writeMemoryBlock(data, dataSize, bank, address, verify, true);
03369 }
03370 bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem)
03371 {
03372     uint8_t success, special;
03373     uint8_t *progBuffer = NULL;
03374     uint16_t i, j;
03375     
03376     if (useProgMem)
03377     {
03378         progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
03379     }
03380 
03381     // config set data is a long string of blocks with the following structure:
03382     // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
03383     uint8_t bank, offset, length;
03384     for (i = 0; i < dataSize;) {
03385         if (useProgMem) {
03386             bank = pgm_read_byte(data + i++);
03387             offset = pgm_read_byte(data + i++);
03388             length = pgm_read_byte(data + i++);
03389         } else {
03390             bank = data[i++];
03391             offset = data[i++];
03392             length = data[i++];
03393         }
03394 
03395         // write data or perform special action
03396         if (length > 0) {
03397             // regular block of data to write
03398             /*Serial.print("Writing config block to bank ");
03399             Serial.print(bank);
03400             Serial.print(", offset ");
03401             Serial.print(offset);
03402             Serial.print(", length=");
03403             Serial.println(length);*/
03404             if (useProgMem) {
03405                 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
03406                 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
03407             } else {
03408                 progBuffer = (uint8_t *)data + i;
03409             }
03410             success = writeMemoryBlock(progBuffer, length, bank, offset, true);
03411             i += length;
03412         } else {
03413             // special instruction
03414             // NOTE: this kind of behavior (what and when to do certain things)
03415             // is totally undocumented. This code is in here based on observed
03416             // behavior only, and exactly why (or even whether) it has to be here
03417             // is anybody's guess for now.
03418             if (useProgMem) {
03419                 special = pgm_read_byte(data + i++);
03420             } else {
03421                 special = data[i++];
03422             }
03423             /*Serial.print("Special command code ");
03424             Serial.print(special, HEX);
03425             Serial.println(" found...");*/
03426             if (special == 0x01) {
03427                 // enable DMP-related interrupts
03428 
03429                 //setIntZeroMotionEnabled(true);
03430                 //setIntFIFOBufferOverflowEnabled(true);
03431                 //setIntDMPEnabled(true);
03432                 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32);  // single operation
03433 
03434                 success = true;
03435             } else {
03436                 // unknown special command
03437                 success = false;
03438             }
03439         }
03440 
03441         if (!success) {
03442             if (useProgMem) free(progBuffer);
03443             return false; // uh oh
03444         }
03445     }
03446     if (useProgMem) free(progBuffer);
03447     return true;
03448 }
03449 bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize)
03450 {
03451     return writeDMPConfigurationSet(data, dataSize, false);
03452 }
03453 
03454 // DMP_CFG_1 register
03455 
03456 uint8_t MPU6050::getDMPConfig1()
03457 {
03458     i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
03459     return buffer[0];
03460 }
03461 void MPU6050::setDMPConfig1(uint8_t config)
03462 {
03463     i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
03464 }
03465 
03466 // DMP_CFG_2 register
03467 
03468 uint8_t MPU6050::getDMPConfig2()
03469 {
03470     i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
03471     return buffer[0];
03472 }
03473 void MPU6050::setDMPConfig2(uint8_t config)
03474 {
03475     i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
03476 }