for frequency correction testing

Dependencies:   FreescaleIAP SimpleDMA mbed-rtos mbed

Fork of CDMS_CODE by shubham c

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers CDMS_HK.h Source File

CDMS_HK.h

00001 void FCTN_CDMS_HK_MAIN();
00002 void FCTN_CDMS_HK();
00003 void VERIFY_COMRX();
00004 void VERIFY_RTC();
00005 void CDMS_HK_SD();
00006 void HANDLE_HW_FAULTS();
00007 void HANDLE_HW_FAULT_SD();
00008 void HANDLE_HW_FAULT_BAE();
00009 void HANDLE_HW_FAULT_PL();
00010 void FUNC_CDMS_GPIO_STATUS();
00011 void minMaxHkData();
00012 void COLLECT_CDMS_RAM();
00013 
00014 extern uint8_t beacon_array[134];
00015 
00016 AnalogIn TempInput(PIN27);          // Input from Current Multiplexer
00017 AnalogIn CDMS_temp_sensor(PIN53);
00018 AnalogIn COMRX_RSSI_volatge(PIN70);
00019 AnalogIn EPS_BTRY_VOLT (PIN54);
00020 
00021 
00022 DigitalOut SelectLinec3 (PIN79); // MSB of Select Lines
00023 DigitalOut SelectLinec2 (PIN78);
00024 DigitalOut SelectLinec1 (PIN76);
00025 DigitalOut SelectLinec0 (PIN77); // LSB of Select Lines
00026 
00027 /*
00028 Before SBC. To be restored in FM model
00029 DigitalOut SelectLinec1 (PIN77);
00030 DigitalOut SelectLinec0 (PIN76); // LSB of Select Lines
00031 */
00032 
00033 Convolution CDMS_HEALTH;
00034 Convolution BAE_HEALTH;
00035 unsigned char CDMS_HK_FRAME[134] = {0};
00036 char BAE_HK[134] = {0};
00037 uint8_t convoluted_CDMS_HK[270];
00038 uint8_t interleave_CDMS_HK[288];
00039 uint8_t CDMS_HEALTH_FINAL[512] = {0};
00040 uint8_t convoluted_BAE_HK[270];
00041 uint8_t interleave_BAE_HK[288];
00042 uint8_t BAE_HEALTH_FINAL[512] = {0};
00043 unsigned char BAE_HK_FRAME[134] = {0};
00044 
00045 
00046 
00047 void FCTN_CDMS_HK_MAIN(void const *args)
00048 {
00049     uint8_t sd_stat = 0;
00050     uint8_t hk_count=0;
00051     while(1)
00052     {
00053     gHK_THREAD->signal_wait(HK_SIGNAL);
00054     gMutex.lock();
00055     if(hk_count == 1 || hk_count == 2)
00056     {
00057         FCTN_CDMS_PL_MAIN((void const *)NULL);
00058         hk_count--;
00059         gMutex.unlock();
00060         continue;       
00061     }
00062     else if(hk_count == 0)
00063     {
00064         FCTN_CDMS_PL_MAIN((void const *)NULL);
00065         hk_count = 2;
00066     }
00067   //  gPC.printf("\n\rEntering HK thread\n");
00068     gPC.printf("\n\r%d\n",CDMS_WR_SD_FAULT_COUNTER);
00069     if(EN_CDMS_HK == 0x00)
00070     continue;
00071     CDMS_HK_MAIN_STATUS = 0x01;
00072     CDMS_HK_MAIN_COUNTER++;
00073 
00074     FCTN_CDMS_HK();         //collects temperatures
00075     RSSI_volatge = COMRX_RSSI_volatge.read() * 3.3;//to be checked
00076     //gPC.printf("\n\rRSSI voltage  = %f",RSSI_volatge);
00077     VERIFY_COMRX();
00078     VERIFY_RTC();
00079     HANDLE_HW_FAULTS();
00080     FUNC_CDMS_GPIO_STATUS();
00081 
00082     uint8_t CDMS_quant[20];
00083     CDMS_quant[1]= (uint8_t)quant_data.CDMS_temp_quant;
00084     CDMS_quant[2]= (uint8_t)RSSI_volatge;
00085     CDMS_quant[3]= (uint8_t)(EPS_BTRY_VOLT*33*(62.0/11));
00086     for(int i=0; i<16; i++) {
00087         CDMS_quant[i+4]= (uint8_t)quant_data.temp_quant[i];
00088     }
00089     minMaxHkData();
00090 
00091     CDMS_HEALTH_DATA[1] = GPIO_STATUS;            //Reading GPIO Pins
00092     CDMS_HEALTH_DATA[0] = GPIO_STATUS >> 8;
00093     COLLECT_CDMS_RAM();
00094     for(int i = 0;i<84;i++)
00095         CDMS_HEALTH_DATA[2+i] = CDMS_RAM[i];                  //Reading RAM parameters
00096     for(int i = 0;i<20;i++)                                   //Collecting Data from Temp sensors
00097         CDMS_HEALTH_DATA[86+i] = CDMS_quant[i];
00098 
00099     // Here: Have to FIT flash data.
00100     CDMS_HEALTH_DATA[106] = (EPS_V_A_EN_STATUS<<7) | ((BAE_STATUS<<5)&0x60) | ((SD_STATUS<<3)&0x18) | ((PL_STATUS<<1)&0x06) | (PL_EPS_LATCH_SW_EN & 0x01);
00101     CDMS_HEALTH_DATA[107] = (RTC_INIT_STATUS<<6) | ((CDMS_RTC_DISABLE<<5)&0x20);
00102     CDMS_HEALTH_DATA[108] = CDMS_RESET_COUNTER >>8;
00103     CDMS_HEALTH_DATA[109] = CDMS_RESET_COUNTER;
00104     CDMS_HEALTH_DATA[110] = TIME_LATEST_CDSMS_RESET >>24;
00105     CDMS_HEALTH_DATA[111] = TIME_LATEST_CDSMS_RESET >>16;
00106     CDMS_HEALTH_DATA[112] = TIME_LATEST_CDSMS_RESET >>8;
00107     CDMS_HEALTH_DATA[113] = TIME_LATEST_CDSMS_RESET;
00108     CDMS_HEALTH_DATA[114] = COM_TC_BYTES_LIMIT>>8;
00109     CDMS_HEALTH_DATA[115] = COM_TC_BYTES_LIMIT;
00110     CDMS_HEALTH_DATA[116] = COM_RX_CURRENT_MAX;
00111     CDMS_HEALTH_DATA[117] = COM_RX_DISABLE_TIMEOUT;
00112     CDMS_HEALTH_DATA[118] = COM_PA_TMP_HIGH;
00113     CDMS_HEALTH_DATA[119] = COM_PA_RECOVERY_TIMEOUT;
00114     CDMS_HEALTH_DATA[120] = COM_SESSION_TIMEOUT;
00115     CDMS_HEALTH_DATA[121] = COM_RSSI_MIN;
00116     CDMS_HEALTH_DATA[122] = SD_LIB_BLK_CURRENT>>8;
00117     CDMS_HEALTH_DATA[122] = SD_LIB_BLK_CURRENT;
00118     
00119     uint64_t time = FCTN_CDMS_RD_RTC() >> 7;             //Reading Time from RTC
00120     for(int i = 124; i<128; i++)
00121         CDMS_HEALTH_DATA[i] = time >> (i-124)*8;
00122     gPC.printf("0x%d\n",time);
00123     gPC.printf("HK ARCH TIME TAGGED");
00124     FCTN_SD_MNGR();                                 //Adding FSC & TMID to TM frame
00125     CDMS_HK_FRAME[0] = 0x20;
00126     CDMS_HK_FRAME[1] = FSC_CURRENT[4]+1;
00127     CDMS_HK_FRAME[2] = (FSC_CURRENT[4]+1) >> 8;
00128     CDMS_HK_FRAME[3] = (FSC_CURRENT[4]+1) >> 16;
00129    // gPC.printf("\n");
00130     for(int i = 0; i<128; i++){                       /*Adding actual CDMS Health data to TM frame*/
00131         CDMS_HK_FRAME[i+4] = CDMS_HEALTH_DATA[i];
00132         //gPC.printf("%02x",CDMS_HEALTH_DATA[i]);
00133     }
00134  //   gPC.printf("\n");
00135     uint16_t crc = crc16_gen(CDMS_HK_FRAME,132);      /*Adding CRC to TM frame*/
00136     CDMS_HK_FRAME[133] = crc;
00137     CDMS_HK_FRAME[132] = crc >> 8;
00138 
00139     exor(CDMS_HK_FRAME);
00140     CDMS_HEALTH.convolutionEncode(CDMS_HK_FRAME , convoluted_CDMS_HK);
00141     CDMS_HEALTH.convolutionEncode(CDMS_HK_FRAME + 67, convoluted_CDMS_HK + 135);
00142     //gPC.printf("\n\r reached here");
00143     interleave(convoluted_CDMS_HK ,  interleave_CDMS_HK);
00144     interleave(convoluted_CDMS_HK +135, interleave_CDMS_HK + 144);
00145     //gPC.printf("\n\r reached here");
00146     for(int i=0; i<288; i++)
00147         CDMS_HEALTH_FINAL[i] = interleave_CDMS_HK[i];
00148     //gPC.printf("\n\r reached here");
00149     sd_stat = SD_WRITE(CDMS_HEALTH_FINAL,FSC_CURRENT[4]+1,4);
00150     if(sd_stat)
00151     {
00152         gPC.puts("sd write failure $*&^@!~!");
00153        // break;
00154         }
00155    // gPC.printf("Completed CDMS HK\t");
00156 
00157     /*---------------------------------- BAE HK --------------------------------------------*/
00158 
00159     BAE_HK_I2C = FCTN_I2C_READ(BAE_HK,134);
00160   //  gPC.printf("Entering BAE HK\t");
00161     if(BAE_HK_I2C == 0) {
00162         crc = crc16_gen((unsigned char *)BAE_HK,132);
00163         if(crc == ((uint16_t)BAE_HK[132] << 8) | (uint16_t)BAE_HK[133]){
00164             //gPC.printf("BAE HK data recieved through I2C\t");
00165             TIME_LATEST_I2C_BAE = FCTN_CDMS_RD_RTC() >> 7;
00166             /*for(int i = 0; i<15; i++)
00167                 gPC.printf("\r 0x%02X\n",BAE_HK[i]);*/
00168             for(int i = 0; i<4; i++)
00169             BAE_HK[i] = time >> i;
00170             BAE_HK_FRAME[0] = 0x28;
00171             BAE_HK_FRAME[1] = FSC_CURRENT[5]+1;
00172             BAE_HK_FRAME[2] = (FSC_CURRENT[5]+1) >> 8;
00173             BAE_HK_FRAME[3] = (FSC_CURRENT[5]+1) >> 16;
00174             for(int i = 0; i<128; i++)                       /*Adding actual CDMS Health data to TM frame*/
00175                 BAE_HK_FRAME[4+i] = BAE_HK[i];
00176             crc = crc16_gen(BAE_HK_FRAME,132);               /*Adding CRC to TM frame*/
00177             BAE_HK_FRAME[133] = crc;
00178             BAE_HK_FRAME[132] = crc >> 8;
00179             exor(BAE_HK_FRAME);
00180             BAE_HEALTH.convolutionEncode(BAE_HK_FRAME , convoluted_BAE_HK);
00181             BAE_HEALTH.convolutionEncode(BAE_HK_FRAME + 67, convoluted_BAE_HK + 135);
00182             interleave(convoluted_BAE_HK ,  interleave_BAE_HK);
00183             interleave(convoluted_BAE_HK +135, interleave_BAE_HK + 144);
00184             for(int i=0; i<288; i++)
00185                 BAE_HEALTH_FINAL[i] = interleave_BAE_HK[i];
00186             sd_stat = SD_WRITE(BAE_HEALTH_FINAL,FSC_CURRENT[5]+1,5);
00187             if(sd_stat)
00188     {
00189         gPC.puts("sd write failure");
00190         //break;
00191         }
00192         }
00193         
00194     } else {
00195         gPC.printf("BAE HK data not recieved through I2C\t");
00196         for(int i = 0; i<134; i++)
00197             BAE_HK[i] = 0;
00198     }
00199    // gPC.printf("Completed BAE HK\n");
00200 
00201     /*----------------------------------Beacon message--------------------------------------*/
00202     
00203     
00204     // Add HK bits
00205     beacon_array[0] = 0x00;
00206     beacon_array[1] = time >> 32;
00207     beacon_array[2] = time >> 24;
00208     beacon_array[3] = time >> 16;
00209     beacon_array[4] = time >> 8;
00210     beacon_array[5] = time;
00211     beacon_array[6] = SD_FAULTCOUNT >> 8;
00212     beacon_array[7] = SD_FAULTCOUNT;
00213     beacon_array[8] = RTC_FAULTCOUNT >> 8;
00214     beacon_array[9] = RTC_FAULTCOUNT;
00215     beacon_array[10] = (((SD_STATUS == DEVICE_DISABLED || SD_STATUS == DEVICE_OC_FAULT)?1:0)<<7)|(RTC_STATUS <<6)|(COM_RX_STATUS<<3)|(0<<2)|(COMRX_OC_FAULT<<1)|(COM_TX_OC_FAULT);
00216     beacon_array[11] = (COM_RX_CNTRL <<7)|(COM_TX_CNTRL);
00217     beacon_array[12] = CDMS_HK_MAIN_COUNTER >>8;
00218     beacon_array[13] = CDMS_HK_MAIN_COUNTER;
00219     beacon_array[14] = PL_MAIN_COUNTER >>8;
00220     beacon_array[15] = PL_MAIN_COUNTER;
00221     beacon_array[16] = PL_RCV_SC_DATA_COUNTER >>8;
00222     beacon_array[17] = PL_RCV_SC_DATA_COUNTER;
00223     beacon_array[18] = TIME_LATEST_SPI_SPEED >>24;
00224     beacon_array[19] = TIME_LATEST_SPI_SPEED >>16;
00225     beacon_array[20] = TIME_LATEST_SPI_SPEED >>8;
00226     beacon_array[21] = TIME_LATEST_SPI_SPEED;
00227     beacon_array[22] = (uint8_t)RSSI_volatge;
00228     
00229     // Add SC bits
00230     crc = crc16_gen(beacon_array,132);
00231     beacon_array[132] = crc;
00232     beacon_array[133] = crc >> 8;
00233     bool y;
00234     y = FCTN_I2C_WRITE((char *)beacon_array,134);
00235     if(y == 0)
00236        gPC.printf("long Bcn sent\n\r");
00237         else
00238         gPC.printf("long Bcn not sent\r\n");
00239     //gPC.printf("\rCompleted Beacon\n");
00240     gMutex.unlock();
00241     }
00242 }
00243 
00244 int quantiz(float start,float step,float x)
00245 {
00246     int y=(x-start)/step;
00247     if(y<=0)y=0;
00248     if(y>=255)y=255;
00249     return y;
00250 }
00251 
00252 char saveMin(char x,char y)
00253 {
00254     return (y<x)?y:x;
00255 }
00256 
00257 char saveMax(char x,char y)
00258 {
00259     return (y>x)?y:x;
00260 }
00261 
00262 void minMaxHkData()
00263 {
00264     if(firstCount==true) {
00265         for (int i = 4; i < 16; ++i) {
00266             min_max_data.temp_min[i] = quant_data.temp_quant[i];
00267             min_max_data.temp_max[i] = quant_data.temp_quant[i];
00268         }
00269 
00270         min_max_data.CDMS_temp_min=quant_data.CDMS_temp_quant;
00271         min_max_data.CDMS_temp_max=quant_data.CDMS_temp_quant;
00272     } else {
00273         for (int i = 4; i < 16; ++i) {
00274             min_max_data.temp_min[i] = saveMin(min_max_data.temp_min[i],quant_data.temp_quant[i]);
00275             min_max_data.temp_max[i] = saveMax(min_max_data.temp_max[i],quant_data.temp_quant[i]);
00276             //gPC.printf("\rMax reading, iteration = %d, %d \n",min_max_data.temp_max[i], i);
00277             //gPC.printf("\rMin reading, iteration = %d, %d \n",min_max_data.temp_min[i], i);
00278         }
00279 
00280         min_max_data.CDMS_temp_min = saveMin(min_max_data.CDMS_temp_min,quant_data.CDMS_temp_quant);
00281         min_max_data.CDMS_temp_max = saveMax(min_max_data.CDMS_temp_max,quant_data.CDMS_temp_quant);
00282     }
00283     firstCount=false;
00284 }
00285 
00286 void FCTN_CDMS_HK()
00287 {
00288 
00289     int Iteration=0;
00290     float resistance;
00291 
00292     SelectLinec0=0;
00293     SelectLinec1=0;
00294     SelectLinec2=0;
00295     SelectLinec3=0;
00296     wait_ms(1);
00297     //gPC.printf("\r%d %d %d %d\n",SelectLinec3.read(),SelectLinec2.read(),SelectLinec1.read(),SelectLinec0.read());
00298     for(Iteration=0; Iteration<16; Iteration++) {
00299 
00300         actual_data.temp_actual[Iteration]=TempInput.read();
00301 
00302         SelectLinec0=!(SelectLinec0);
00303         if(Iteration%2==1)
00304             SelectLinec1=!(SelectLinec1);
00305         if(Iteration%4==3)
00306             SelectLinec2=!(SelectLinec2);
00307         if(Iteration%8==7)
00308             SelectLinec3=!(SelectLinec3);
00309             wait_ms(1);
00310      //  gPC.printf("\r%d %d %d %d\n",SelectLinec3.read(),SelectLinec2.read(),SelectLinec1.read(),SelectLinec0.read());
00311     }
00312 
00313     actual_data.CDMS_temp_actual=(-90.7*3.3*CDMS_temp_sensor.read())+190.1543;
00314     
00315 
00316     
00317     for(Iteration=0; Iteration<16; Iteration++) {
00318 
00319         if(Iteration<4)
00320         {
00321             actual_data.temp_actual[Iteration]=actual_data.temp_actual[Iteration]*3.3*2*10;
00322         }
00323         else if(Iteration<14)
00324         {
00325             resistance=24000*actual_data.temp_actual[Iteration]*3.3/(3.3-actual_data.temp_actual[Iteration]*3.3);
00326            
00327             if(actual_data.temp_actual[Iteration]*3.3<1.47)      //Document says 1.378 .Pls Check
00328                 
00329                 actual_data.temp_actual[Iteration]=(3694/log(24.032242*resistance))-273;  
00330             else
00331                 
00332                 actual_data.temp_actual[Iteration]=(3365.4/log(7.60573*resistance))-273;
00333                  
00334         }
00335         else
00336             actual_data.temp_actual[Iteration]=(-90.7*3.3*actual_data.temp_actual[Iteration])+190.1543;
00337     }
00338     for(Iteration=0; Iteration<16; Iteration++) {
00339 
00340         if(Iteration<4)
00341             quant_data.temp_quant[Iteration]=actual_data.temp_actual[Iteration] * 10;
00342         else if(Iteration<14)
00343             quant_data.temp_quant[Iteration]=quantiz(tstart_thermistor,tstep_thermistor,actual_data.temp_actual[Iteration]);
00344           // quant_data.temp_quant[Iteration]=quantiz(0,1,actual_data.temp_actual[Iteration]);
00345         else
00346            // quant_data.temp_quant[Iteration]=quantiz(tstart,tstep,actual_data.temp_actual[Iteration]);
00347            quant_data.temp_quant[Iteration]=quantiz(tstart,tstep,actual_data.temp_actual[Iteration]);
00348     }
00349     quant_data.CDMS_temp_quant=quantiz(tstart,tstep,actual_data.CDMS_temp_actual);
00350 
00351     minMaxHkData();
00352 }
00353 
00354 void FUNC_CDMS_GPIO_STATUS()       //Polls the status of Input GPIO PINS
00355 {
00356     /*
00357     //V_A_PGOOD //TRZ EN
00358     GPIO_STATUS=(V_A_PGOOD)?(GPIO_STATUS)|((uint16_t)(0x1<<15)):(GPIO_STATUS)&(~((uint16_t)(0x1<<15)));
00359     //V_B_PGOOD_1 //3V3BPGOOD //$
00360     GPIO_STATUS=(V_B_PGOOD_1)?(GPIO_STATUS)|((uint16_t)(0x1<<14)):(GPIO_STATUS)&(~((uint16_t)(0x1<<14)));
00361     //V_B_PGOOD_2 //3V3BEN //$
00362     GPIO_STATUS=(V_B_PGOOD_2)?(GPIO_STATUS)|((uint16_t)(0x1<<13)):(GPIO_STATUS)&(~((uint16_t)(0x1<<13)));
00363     //V_C_PGOOD //3V3CPGOOD //$
00364     GPIO_STATUS=(V_C_PGOOD)?(GPIO_STATUS)|((uint16_t)(0x1<<12)):(GPIO_STATUS)&(~((uint16_t)(0x1<<12)));
00365     */
00366     
00367     //COMRX_OC_FAULT //$
00368     GPIO_STATUS=(COMRX_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<11)):(GPIO_STATUS)&(~((uint16_t)(0x1<<11)));
00369     // COMTX_OC_FAULT //$
00370     GPIO_STATUS=(COM_TX_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<10)):(GPIO_STATUS)&(~((uint16_t)(0x1<<10)));
00371     // CDMS_SD_OC_FAULT
00372     GPIO_STATUS=(SD_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<9)):(GPIO_STATUS)&(~((uint16_t)(0x1<<9)));
00373     //BAE_OC_FAULT //$
00374     GPIO_STATUS=(BAE_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<8)):(GPIO_STATUS)&(~((uint16_t)(0x1<<8)));
00375     
00376     /*
00377     //PL_GPIO_1_STATUS //$
00378     GPIO_STATUS=(PL_GPIO_1_STATUS)?(GPIO_STATUS)|((uint16_t)(0x1<<8)):(GPIO_STATUS)&(~((uint16_t)(0x1<<8)));
00379     //PL_GPIO_2_STATUS //$
00380     GPIO_STATUS=(PL_GPIO_2_STATUS)?(GPIO_STATUS)|((uint16_t)(0x1<<7)):(GPIO_STATUS)&(~((uint16_t)(0x1<<7)));
00381     //PL_GPIO_3_STATUS //$
00382     GPIO_STATUS=(PL_GPIO_3_STATUS)?(GPIO_STATUS)|((uint16_t)(0x1<<6)):(GPIO_STATUS)&(~((uint16_t)(0x1<<6)));
00383     */
00384     
00385     //PL_BEE_SW_OC_FAULT //to be verified
00386     GPIO_STATUS=(PL_BEE_SW_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<4)):(GPIO_STATUS)&(~((uint16_t)(0x1<<4)));
00387     //PL_EPS_LATCH_SW_OC_FAULT // to be verified
00388     GPIO_STATUS=(PL_EPS_LATCH_SW_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<3)):(GPIO_STATUS)&(~((uint16_t)(0x1<<3)));
00389     //EPS_V_C_EN_STATUS
00390     GPIO_STATUS=(COM_RX_CNTRL)?(GPIO_STATUS)|((uint16_t)(0x1<<2)):(GPIO_STATUS)&(~((uint16_t)(0x1<<2)));
00391     //EPS_V_D_EN_STATUS
00392     GPIO_STATUS=(COM_TX_CNTRL)?(GPIO_STATUS)|((uint16_t)(0x1<<1)):(GPIO_STATUS)&(~((uint16_t)(0x1<<1)));
00393   //  gPC.printf("%04x\n",GPIO_STATUS);
00394    gPC.printf("\rBAE_OC STATE = %04x \n",GPIO_STATUS);
00395 }
00396 
00397 void VERIFY_COMRX()
00398 {
00399     //COMRX_OC_FAULT //$
00400     if(COMRX_OC_FAULT==0 && RSSI_volatge > 0.4) {
00401         COMRX_STATUS = COMRX_ALIVE;
00402     } else {
00403         //RESET_COMRX();
00404         COMRX_RESET_COUNTER++;
00405         if(COMRX_OC_FAULT==0 && RSSI_volatge > 0.4)
00406             COMRX_STATUS = COMRX_ALIVE;
00407         else
00408             COMRX_STATUS = COMRX_DEAD;
00409     }
00410 }
00411 
00412 void VERIFY_RTC()
00413 {
00414         uint8_t response;
00415         if(EN_RTC == 0x00)
00416         return;
00417         gCS_RTC=1;
00418         gCS_RTC=0;
00419         spi.write(0x0F);
00420         response = spi.write(0x00);
00421         CDMS_RTC_BL = (response & 0x10) >>4;
00422         if(response & 0x04 == 0x04) {
00423             //RESET_RTC();
00424             RTC_STATUS = 0x01;
00425             RTC_FAULTCOUNT++;
00426         }
00427         gCS_RTC=1;
00428 }
00429 
00430 void HANDLE_HW_FAULTS()
00431 {
00432     HANDLE_HW_FAULT_SD();
00433     HANDLE_HW_FAULT_BAE();
00434     HANDLE_HW_FAULT_PL();
00435 }
00436 
00437 void HANDLE_HW_FAULT_SD()
00438 {
00439     if(SD_STATUS != DEVICE_DISABLED) {
00440         if(SD_STATUS == DEVICE_OC_FAULT){
00441             gPC.printf("Switching on SD card");
00442             SD_SW_EN_DS = 1; //powering on SD
00443             wait_ms(10);
00444         }
00445             
00446         if(SD_OC_FAULT == 0) {
00447             gPC.printf("Switching off SD card");
00448             SD_SW_EN_DS = 0; //switching off SD card
00449             SD_FAULTCOUNT++;
00450             SD_STATUS = (SD_FAULTCOUNT == 3) ? DEVICE_DISABLED :DEVICE_OC_FAULT;
00451             if(SD_FAULTCOUNT == 3){
00452                 FCTN_CDMS_WR_FLASH(2,DEVICE_DISABLED);    
00453                 gPC.printf("Declaring SD card permanantly Disabled");
00454             }
00455         } else {
00456             SD_STATUS = DEVICE_POWERED;
00457             if(SD_STATUS != DEVICE_POWERED)
00458                 FCTN_CDMS_WR_FLASH(2,DEVICE_POWERED);
00459             SD_FAULTCOUNT = 0;
00460         }
00461     }
00462 }
00463 
00464 void HANDLE_HW_FAULT_BAE()
00465 {
00466     if(BAE_STATUS != DEVICE_DISABLED) {
00467         if(BAE_STATUS == DEVICE_OC_FAULT){
00468             gPC.printf("Switching on BAE");
00469             BAE_SW_EN_DS = 1; //Power ON BAE
00470             wait_ms(10);
00471         }
00472         
00473         if(BAE_OC_FAULT == 0) {
00474             gPC.printf("Switching off BAE");
00475             BAE_SW_EN_DS = 0; //Switch OFF BAE
00476             BAE_FAULTCOUNT++;
00477             BAE_STATUS = (BAE_FAULTCOUNT == 3)?DEVICE_DISABLED:DEVICE_OC_FAULT;
00478             if(BAE_FAULTCOUNT == 3){
00479                 FCTN_CDMS_WR_FLASH(1,DEVICE_DISABLED);
00480                 gPC.printf("Declaring BAE permanantly Disabled");
00481             }
00482         } else {
00483             BAE_STATUS = DEVICE_POWERED;
00484             if(SD_STATUS != DEVICE_POWERED);
00485                 FCTN_CDMS_WR_FLASH(1,DEVICE_POWERED);
00486             BAE_FAULTCOUNT = 0;
00487         }
00488     }
00489 }
00490 
00491 void HANDLE_HW_FAULT_PL()
00492 {
00493     if(PL_STATUS != DEVICE_DISABLED) {
00494         if(PL_STATUS == DEVICE_OC_FAULT){
00495             gPC.printf("Switching on PL_BEE");
00496             PYLD_DFF_CLK = 0;
00497             PYLD_DFF = 1;           // Switching ON PL
00498             wait_us(1);
00499             PYLD_DFF_CLK = 1;
00500             wait_us(1);
00501             PYLD_DFF_CLK = 0;
00502             wait_us(1);         
00503         }
00504         if(PL_BEE_SW_OC_FAULT == 0) { // if OC Fault
00505             gPC.printf("Switching off PL_BEE");
00506             PYLD_DFF_CLK = 0;     
00507             PYLD_DFF = 0;             //Switching OFF PL
00508             wait_us(1);
00509             PYLD_DFF_CLK = 1;
00510             wait_us(1);
00511             PYLD_DFF_CLK = 0;
00512             wait_us(1);
00513             PL_FAULTCOUNT++;
00514             PL_STATUS = (PL_FAULTCOUNT == 3)?DEVICE_DISABLED:DEVICE_OC_FAULT;
00515             if(PL_FAULTCOUNT == 3){
00516                 FCTN_CDMS_WR_FLASH(3,DEVICE_DISABLED);
00517                 gPC.printf("Declaring PL_BEE permanantly Disabled");
00518             }
00519         } else {
00520             if(PL_STATUS == DEVICE_OC_FAULT){
00521                 gPC.printf("Switching off PL_BEE");
00522                 PYLD_DFF_CLK = 0;     
00523                 PYLD_DFF = 0;             //Switching OFF PL
00524                 wait_us(1);
00525                 PYLD_DFF_CLK = 1;
00526                 wait_us(1);
00527                 PYLD_DFF_CLK = 0;
00528                 wait_us(1);
00529             }
00530             PL_STATUS = DEVICE_ENABLED;
00531             if(PL_STATUS != DEVICE_ENABLED)
00532                 FCTN_CDMS_WR_FLASH(3,DEVICE_ENABLED);
00533             PL_FAULTCOUNT = 0;
00534         }
00535     }
00536 }
00537 
00538 void COLLECT_CDMS_RAM()
00539 {
00540     CDMS_RAM[0] = ((PL_INIT_STATUS<<7)&0x80)|((PL_MAIN_status<<6)&0x40)|((PL_LOW_power<<5)&0x20)|((PL_STATE<<3)&0x18)|(PL_STATUS&0x07);
00541     //gPC.printf("\n\rPL_STATUS : %d",PL_STATUS);
00542     //gPC.printf("\n\rPL_STATE : %d",PL_STATE);
00543     //gPC.printf("\n\rpl bits = %02x\n",CDMS_RAM[0]);
00544     CDMS_RAM[1] = ((PL_RCV_SC_DATA_STATUS<<7)&0x80)|((COM_SESSION<<6)&0x40)|((COM_RX<<5)&0x20)|((RF_SW_STATUS<<4)&0x10)|((COM_TX<<3)&0x08)|((COM_TX_STATUS<<2)&0x04)|((COM_MNG_TMTC<<1)&0x02)|(EN_CDMS_HK&0x01);
00545     CDMS_RAM[2] = ((EN_PL<<7)&0x80)|((EN_RCV_SC<<6)&0x40)|((CDMS_INIT_STATUS<<5)&0x20)|((CDMS_HK_MAIN_STATUS<<4)&0x10)|((CDMS_HK_STATUS<<2)&0x0C)|((COM_RX_STATUS<<1)&0x02)|(CDMS_RTC_BL&0x01);
00546     CDMS_RAM[3] = CDMS_I2C_ERR_SPEED_COUNTER >> 8;
00547     CDMS_RAM[4] = CDMS_I2C_ERR_SPEED_COUNTER;
00548     CDMS_RAM[5] = CDMS_I2C_ERR_BAE_COUNTER >> 8;
00549     CDMS_RAM[6] = CDMS_I2C_ERR_BAE_COUNTER;
00550     CDMS_RAM[7] = CDMS_HK_MAIN_COUNTER >> 8;
00551     CDMS_RAM[8] = CDMS_HK_MAIN_COUNTER;
00552     CDMS_RAM[9] = PL_MAIN_COUNTER >> 8;
00553     CDMS_RAM[10] = PL_MAIN_COUNTER;
00554     CDMS_RAM[11] = PL_RCV_SC_DATA_COUNTER >> 8;
00555     CDMS_RAM[12] = PL_RCV_SC_DATA_COUNTER;
00556     CDMS_RAM[13] = COMRX_RESET_COUNTER >> 8;
00557     CDMS_RAM[14] = COMRX_RESET_COUNTER;
00558     CDMS_RAM[15] = CDMS_WR_SD_FAULT_COUNTER >> 8;
00559     CDMS_RAM[16] = CDMS_WR_SD_FAULT_COUNTER;
00560     CDMS_RAM[17] = SD_LIB_WRITES >> 8;
00561     CDMS_RAM[18] = SD_LIB_WRITES;
00562     TIME_LATEST_RTC= FCTN_CDMS_RD_RTC() >> 7; // added by samp
00563     for(int i = 0; i<4; i++)
00564         CDMS_RAM[19+i] = TIME_LATEST_RTC >> (3-i)*8;   
00565     for(int i = 0; i<4; i++)
00566         CDMS_RAM[23+i] = TIME_LATEST_I2C_BAE >> (3-i)*8;
00567     for(int i = 0; i<4; i++)
00568         CDMS_RAM[27+i] = TIME_LATEST_I2C_SPEED >> (3-i)*8;
00569     for(int i = 0; i<4; i++)
00570         CDMS_RAM[31+i] = TIME_LATEST_SD_WR >> (3-i)*8;
00571     for(int i = 0; i<4; i++)
00572         CDMS_RAM[35+i] = TIME_LATEST_SD_RD >> (3-i)*8;
00573     for(int i = 0; i<4; i++)
00574         CDMS_RAM[39+i] = TIME_LATEST_SPI_SPEED >> (3-i)*8;
00575     for(int i = 0; i<4; i++)
00576         CDMS_RAM[43+i] = FSC_CURRENT[1] >> (3-i)*8;
00577     for(int i = 0; i<4; i++)
00578         CDMS_RAM[47+i] = FSC_LAST[1] >> (3-i)*8;
00579     for(int i = 0; i<4; i++)
00580         CDMS_RAM[51+i] = FSC_CURRENT[2] >> (3-i)*8;
00581     for(int i = 0; i<4; i++)
00582         CDMS_RAM[55+i] = FSC_LAST[2] >> (3-i)*8;
00583     for(int i = 0; i<4; i++)
00584         CDMS_RAM[59+i] = FSC_CURRENT[3] >> (3-i)*8;
00585     for(int i = 0; i<4; i++)
00586         CDMS_RAM[63+i] = FSC_LAST[3] >> (3-i)*8;
00587     for(int i = 0; i<4; i++)
00588         CDMS_RAM[67+i] = FSC_CURRENT[4] >> (3-i)*8;
00589     for(int i = 0; i<4; i++)
00590         CDMS_RAM[71+i] = FSC_LAST[4] >> (3-i)*8;
00591     for(int i = 0; i<4; i++)
00592         CDMS_RAM[75+i] = FSC_CURRENT[5] >> (3-i)*8;
00593     for(int i = 0; i<4; i++)
00594         CDMS_RAM[79+i] = FSC_LAST[5] >> (3-i)*8;
00595     CDMS_RAM[83] = 0x00;
00596     gPC.printf("\n\r%d %d %d %d %d",FSC_CURRENT[1],FSC_CURRENT[2],FSC_CURRENT[3],FSC_CURRENT[4],FSC_CURRENT[5]);
00597 }