Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
glibr.cpp
- Committer:
- certvert
- Date:
- 2019-01-07
- Revision:
- 1:cfad3d67ca16
- Parent:
- 0:091e1a699d64
File content as of revision 1:cfad3d67ca16:
#include "glibr.h"
#include "mbed.h"
extern Serial pc;
extern I2C i2c;
glibr::glibr()
{
gesture_ud_delta_ = 0;
gesture_lr_delta_ = 0;
gesture_ud_count_ = 0;
gesture_lr_count_ = 0;
gesture_near_count_ = 0;
gesture_far_count_ = 0;
gesture_state_ = 0;
gesture_motion_ = DIR_NONE;
}
glibr::~glibr(){
}
bool glibr::ginit(){
uint8_t id;
id=I2CreadByte(APDS9960_I2C_ADDR, APDS9960_ID);
if( (!(id == APDS9960_ID_1 || id == APDS9960_ID_2))||id==ERROR) {
return false;
}
if(!setMode(ALL, OFF)) {
return false;
}
if(I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_ATIME, DEFAULT_ATIME)){
return false;
}
if(I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_WTIME, DEFAULT_WTIME)){
return false;
}
if(I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_PPULSE, DEFAULT_PROX_PPULSE)){
return false;
}
if(I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_POFFSET_UR, DEFAULT_POFFSET_UR)){
return false;
}
if(I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_POFFSET_DL, DEFAULT_POFFSET_DL)){
return false;
}
if(I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_CONFIG1, DEFAULT_CONFIG1)){
return false;
}
if( !setLEDDrive(DEFAULT_LDRIVE) ) {
return false;
}
if( !setProximityGain(DEFAULT_PGAIN) ) {
return false;
}
if( !setAmbientLightGain(DEFAULT_AGAIN) ) {
return false;
}
if( !setProxIntLowThresh(DEFAULT_PILT) ) {
return false;
}
if( !setProxIntHighThresh(DEFAULT_PIHT) ) {
return false;
}
if( !setLightIntLowThreshold(DEFAULT_AILT) ) {
return false;
}
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_CONFIG2, DEFAULT_CONFIG2) ) {
return false;
}
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_CONFIG3, DEFAULT_CONFIG3) ) {
return false;
}
if( !setGestureEnterThresh(DEFAULT_GPENTH) ) {
return false;
}
if( !setGestureExitThresh(DEFAULT_GEXTH) ) {
return false;
}
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_GCONF1, DEFAULT_GCONF1) ) {
return false;
}
if( !setGestureGain(DEFAULT_GGAIN) ) {
return false;
}
if( !setGestureLEDDrive(DEFAULT_GLDRIVE) ) {
return false;
}
if( !setGestureWaitTime(DEFAULT_GWTIME) ) {
return false;
}
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_GOFFSET_U, DEFAULT_GOFFSET) ) {
return false;
}
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_GOFFSET_D, DEFAULT_GOFFSET) ) {
return false;
}
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_GOFFSET_L, DEFAULT_GOFFSET) ) {
return false;
}
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_GOFFSET_R, DEFAULT_GOFFSET) ) {
return false;
}
if(I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_GPULSE, DEFAULT_GPULSE) ) {
return false;
}
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_GCONF3, DEFAULT_GCONF3) ) {
return false;
}
if( !setGestureIntEnable(DEFAULT_GIEN) ) {
return false;
}
return true;
}
//#if 0
// /* Gesture config register dump */
// uint8_t reg;
// uint8_t val;
//
// for(reg = 0x80; reg <= 0xAF; reg++) {
// if( (reg != 0x82) && \
// (reg != 0x8A) && \
// (reg != 0x91) && \
// (reg != 0xA8) && \
// (reg != 0xAC) && \
// (reg != 0xAD) )
// {
// val= I2CreadByte(APDS9960_I2C_ADDR, reg);
// if(val==ERROR){
// printf("ERROR");
// }
// /*
// print(reg, HEX);
// print(": 0x");
// println(val, HEX);*/
// }
// }
//
// for(reg = 0xE4; reg <= 0xE7; reg++) {
// val= I2CreadByte(APDS9960_I2C_ADDR, reg);
// /* Serial.print(reg, HEX);
// Serial.print(": 0x");
// Serial.println(val, HEX);*/
// }
//#endif
// return true;
/**
* @brief Enables or disables a feature in the APDS-9960
*
* @param[in] mode which feature to enable
* @param[in] enable ON (1) or OFF (0)
* @return True if operation success. False otherwise.
*/
bool glibr::setMode(uint8_t mode, uint8_t enable)
{
uint8_t reg_val;
/* Read current ENABLE register */
reg_val = getMode();
if( reg_val == ERROR ) {
return false;
}
/* Change bit(s) in ENABLE register */
enable = enable & 0x01;
if( mode >= 0 && mode <= 6 ) {
if (enable) {
reg_val |= (1 << mode);
} else {
reg_val &= ~(1 << mode);
}
} else if( mode == ALL ) {
if (enable) {
reg_val = 0x7F;
} else {
reg_val = 0x00;
}
}
/* Write value back to ENABLE register */
if(I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_ENABLE, reg_val)){
return false;
}
return true;
}
uint8_t glibr::getMode()
{
uint8_t val;
val= I2CreadByte(APDS9960_I2C_ADDR, APDS9960_ENABLE);
if(val==ERROR){
return ERROR;
}
return val;
}
bool glibr::enableLightSensor(bool interrupts)
{
/* Set default gain, interrupts, enable power, and enable sensor */
if( !setAmbientLightGain(DEFAULT_AGAIN) ) {
return false;
}
if( interrupts ) {
if( !setAmbientLightIntEnable(1) ) {
return false;
}
} else {
if( !setAmbientLightIntEnable(0) ) {
return false;
}
}
if( !enablePower() ){
return false;
}
if( !setMode(AMBIENT_LIGHT, 1) ) {
return false;
}
return true;
}
/**
* @brief Ends the light sensor on the APDS-9960
*
* @return True if sensor disabled correctly. False on error.
*/
bool glibr::disableLightSensor()
{
if( !setAmbientLightIntEnable(0) ) {
return false;
}
if( !setMode(AMBIENT_LIGHT, 0) ) {
return false;
}
return true;
}
/**
* @brief Starts the proximity sensor on the APDS-9960
*
* @param[in] interrupts true to enable hardware external interrupt on proximity
* @return True if sensor enabled correctly. False on error.
*/
bool glibr::enableProximitySensor(bool interrupts)
{
/* Set default gain, LED, interrupts, enable power, and enable sensor */
if( !setProximityGain(DEFAULT_PGAIN) ) {
return false;
}
if( !setLEDDrive(DEFAULT_LDRIVE) ) {
return false;
}
if( interrupts ) {
if( !setProximityIntEnable(1) ) {
return false;
}
} else {
if( !setProximityIntEnable(0) ) {
return false;
}
}
if( !enablePower() ){
return false;
}
if( !setMode(PROXIMITY, 1) ) {
return false;
}
return true;
}
/**
* @brief Ends the proximity sensor on the APDS-9960
*
* @return True if sensor disabled correctly. False on error.
*/
bool glibr::disableProximitySensor()
{
if( !setProximityIntEnable(0) ) {
return false;
}
if( !setMode(PROXIMITY, 0) ) {
return false;
}
return true;
}
/**
* @brief Starts the gesture recognition engine on the APDS-9960
*
* @param[in] interrupts true to enable hardware external interrupt on gesture
* @return True if engine enabled correctly. False on error.
*/
bool glibr::enableGestureSensor(bool interrupts)
{
/* Enable gesture mode
Set ENABLE to 0 (power off)
Set WTIME to 0xFF
Set AUX to LED_BOOST_300
Enable PON, WEN, PEN, GEN in ENABLE
*/
resetGestureParameters();
if(I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_WTIME, 0xFF) ) {
return false;
}
if(I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_PPULSE, DEFAULT_GESTURE_PPULSE) ) {
return false;
}
if( !setLEDBoost(LED_BOOST_300) ) {
return false;
}
if( interrupts ) {
if( !setGestureIntEnable(1) ) {
return false;
}
} else {
if( !setGestureIntEnable(0) ) {
return false;
}
}
if( !setGestureMode(1) ) {
return false;
}
if( !enablePower() ){
return false;
}
if( !setMode(WAIT, 1) ) {
return false;
}
if( !setMode(PROXIMITY, 1) ) {
return false;
}
if( !setMode(GESTURE, 1) ) {
return false;
}
return true;
}
/**
* @brief Ends the gesture recognition engine on the APDS-9960
*
* @return True if engine disabled correctly. False on error.
*/
bool glibr::disableGestureSensor()
{
resetGestureParameters();
if( !setGestureIntEnable(0) ) {
return false;
}
if( !setGestureMode(0) ) {
return false;
}
if( !setMode(GESTURE, 0) ) {
return false;
}
return true;
}
/**
* @brief Determines if there is a gesture available for reading
*
* @return True if gesture available. False otherwise.
*/
bool glibr::isGestureAvailable()
{
uint8_t val;
/* Read value from GSTATUS register */
val=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_GSTATUS);
if( val==ERROR) {
return ERROR;
}
/* Shift and mask out GVALID bit */
val &= APDS9960_GVALID;
/* Return true/false based on GVALID bit */
if( val == 1) {
return true;
} else {
return false;
}
}
int glibr::readGesture()
{
uint8_t fifo_level = 0;
// uint8_t bytes_expected= 0;
int check;
//char fifo_data[128];
char fifo_data[128];
char *fptr;
fptr= fifo_data;
uint8_t gstatus;
int motion;
int i;
/* Make sure that power and gesture is on and data is valid */
if( !isGestureAvailable() || !(getMode() & 0x41) ) {
return DIR_NONE;
}
/* Keep looping as long as gesture data is valid */
while(1) {
/* Wait some time to collect next batch of FIFO data */
wait(FIFO_PAUSE_TIME);
/* Get the contents of the STATUS register. Is data still valid? */
gstatus=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_GSTATUS);
if( gstatus==ERROR ) {
return ERROR;
}
/* If we have valid data, read in FIFO */
if( (gstatus & APDS9960_GVALID) == APDS9960_GVALID ) {
/* Read the current FIFO level */
fifo_level=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_GFLVL);
if( fifo_level==ERROR ) {
return ERROR;
}
//#if DEBUG
// Serial.print("FIFO Level: ");
// Serial.println(fifo_level);
//#endif
/* If there's stuff in the FIFO, read it into our data block */ //NEED TO FIGURE OUT WHAT THIS IS DOING.
if( fifo_level > 0) {
check = I2CReadDataBlock(APDS9960_I2C_ADDR,APDS9960_GFIFO_U,
fptr,
(fifo_level * 4) );
if( check == -1 ) {
return ERROR;
}
#if DEBUG
//Serial.print("FIFO Dump: ");
for ( i = 0; i < (fifo_level * 4); i++ ) {
// Serial.print(fifo_data[i]);
// Serial.print(" ");
}
//Serial.println();
#endif
/* If at least 1 set of data, sort the data into U/D/L/R */
if((fifo_level * 4) >= 4 ) {
for( i = 0; i < (fifo_level * 4); i += 4 ) {
gesture_data_.u_data[gesture_data_.sindex] = \
fifo_data[i + 0];
gesture_data_.d_data[gesture_data_.sindex] = \
fifo_data[i + 1];
gesture_data_.l_data[gesture_data_.sindex] = \
fifo_data[i + 2];
gesture_data_.r_data[gesture_data_.sindex] = \
fifo_data[i + 3];
gesture_data_.sindex++;
gesture_data_.total_gestures++;
}
#if DEBUG
// Serial.print("Up Data: ");
for ( i = 0; i < gesture_data_.total_gestures; i++ ) {
// Serial.print(gesture_data_.u_data[i]);
// Serial.print(" ");
}
// Serial.println();
#endif
/* Filter and process gesture data. Decode near/far state */
if( processGestureData() ) {
if( decodeGesture() ) {
//***TODO: U-Turn Gestures
#if DEBUG
//Serial.println(gesture_motion_);
#endif
}
}
/* Reset data */
gesture_data_.sindex = 0;
gesture_data_.total_gestures = 0;
}
}
} else {
/* Determine best guessed gesture and clean up */
wait(FIFO_PAUSE_TIME);
decodeGesture();
motion = gesture_motion_;
#if DEBUG
// Serial.print("END: ");
// Serial.println(gesture_motion_);
#endif
resetGestureParameters();
return motion;
}
}
// delete fptr;
}
/**
* Turn the APDS-9960 on
*
* @return True if operation successful. False otherwise.
*/
bool glibr::enablePower()
{
if( !setMode(POWER, 1) ) {
return false;
}
return true;
}
/**
* Turn the APDS-9960 off
*
* @return True if operation successful. False otherwise.
*/
bool glibr::disablePower()
{
if( !setMode(POWER, 0) ) {
return false;
}
return true;
}
/*******************************************************************************
* Ambient light and color sensor controls
******************************************************************************/
/**
* @brief Reads the ambient (clear) light level as a 16-bit value
*
* @param[out] val value of the light sensor.
* @return True if operation successful. False otherwise.
*/
bool glibr::readAmbientLight(uint16_t* val)
{
uint8_t val_byte;
*val = 0;
/* Read value from clear channel, low byte register */
val_byte=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_CDATAL);
if( val_byte==ERROR) {
return false;
}
*val = val_byte;
/* Read value from clear channel, high byte register */
val_byte=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_CDATAH);
if( val_byte==ERROR) {
return false;
}
*val = *val + ((uint16_t)val_byte << 8);
return true;
}
/**
* @brief Reads the red light level as a 16-bit value
*
* @param[out] val value of the light sensor.
* @return True if operation successful. False otherwise.
*/
bool glibr::readRedLight(uint16_t *val)
{
unsigned char val_byte;
*val = 0;
/* Read value from clear channel, low byte register */
val_byte=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_RDATAL);
if( val_byte==ERROR) {
return false;
}
*val = val_byte;
/* Read value from clear channel, high byte register */
val_byte=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_RDATAH);
if( val_byte==ERROR) {
return false;
}
*val = *val + ((uint16_t)val_byte << 8);
return true;
}
/**
* @brief Reads the green light level as a 16-bit value
*
* @param[out] val value of the light sensor.
* @return True if operation successful. False otherwise.
*/
bool glibr::readGreenLight(uint16_t *val)
{
uint8_t val_byte;
*val = 0;
/* Read value from clear channel, low byte register */
val_byte=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_GDATAL);
if( val_byte==ERROR) {
return false;
}
*val = val_byte;
/* Read value from clear channel, high byte register */
val_byte=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_GDATAH);
if( val_byte==ERROR) {
return false;
}
*val = *val + ((uint16_t)val_byte << 8);
return true;
}
/**
* @brief Reads the red light level as a 16-bit value
*
* @param[out] val value of the light sensor.
* @return True if operation successful. False otherwise.
*/
bool glibr::readBlueLight(uint16_t *val)
{
uint8_t val_byte;
*val = 0;
/* Read value from clear channel, low byte register */
val_byte=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_BDATAL);
if( val_byte==ERROR) {
return false;
}
*val = val_byte;
/* Read value from clear channel, high byte register */
val_byte=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_BDATAH);
if( val_byte==ERROR) {
return false;
}
*val = *val + ((uint16_t)val_byte << 8);
return true;
}
/*******************************************************************************
* Proximity sensor controls
******************************************************************************/
/**
* @brief Reads the proximity level as an 8-bit value
*
* @param[out] val value of the proximity sensor.
* @return True if operation successful. False otherwise.
*/
bool glibr::readProximity(uint8_t &val)
{
val = 0;
/* Read value from proximity data register */
val=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_PDATA);
if(val==ERROR){
return false;
}
return true;
}
/*******************************************************************************
* High-level gesture controls
******************************************************************************/
/**
* @brief Resets all the parameters in the gesture data member
*/
void glibr::resetGestureParameters()
{
gesture_data_.sindex = 0;
gesture_data_.total_gestures = 0;
gesture_ud_delta_ = 0;
gesture_lr_delta_ = 0;
gesture_ud_count_ = 0;
gesture_lr_count_ = 0;
gesture_near_count_ = 0;
gesture_far_count_ = 0;
gesture_state_ = 0;
gesture_motion_ = DIR_NONE;
}
bool glibr::processGestureData()
{
uint8_t u_first = 0;
uint8_t d_first = 0;
uint8_t l_first = 0;
uint8_t r_first = 0;
uint8_t u_last = 0;
uint8_t d_last = 0;
uint8_t l_last = 0;
uint8_t r_last = 0;
int ud_ratio_first;
int lr_ratio_first;
int ud_ratio_last;
int lr_ratio_last;
int ud_delta;
int lr_delta;
int i;
/* If we have less than 4 total gestures, that's not enough */
if( gesture_data_.total_gestures <= 4 ) {
return false;
}
/* Check to make sure our data isn't out of bounds */
if( (gesture_data_.total_gestures <= 32) && \
(gesture_data_.total_gestures > 0) ) {
/* Find the first value in U/D/L/R above the threshold */
for( i = 0; i < gesture_data_.total_gestures; i++ ) {
if( (gesture_data_.u_data[i] > GESTURE_THRESHOLD_OUT) &&
(gesture_data_.d_data[i] > GESTURE_THRESHOLD_OUT) &&
(gesture_data_.l_data[i] > GESTURE_THRESHOLD_OUT) &&
(gesture_data_.r_data[i] > GESTURE_THRESHOLD_OUT) ) {
u_first = gesture_data_.u_data[i];
d_first = gesture_data_.d_data[i];
l_first = gesture_data_.l_data[i];
r_first = gesture_data_.r_data[i];
break;
}
}
/* If one of the _first values is 0, then there is no good data */
if( (u_first == 0) || (d_first == 0) || \
(l_first == 0) || (r_first == 0) ) {
return false;
}
/* Find the last value in U/D/L/R above the threshold */
for( i = gesture_data_.total_gestures - 1; i >= 0; i-- ) {
/* #if DEBUG
Serial.print(F("Finding last: "));
Serial.print(F("U:"));
Serial.print(gesture_data_.u_data[i]);
Serial.print(F(" D:"));
Serial.print(gesture_data_.d_data[i]);
Serial.print(F(" L:"));
Serial.print(gesture_data_.l_data[i]);
Serial.print(F(" R:"));
Serial.println(gesture_data_.r_data[i]);
#endif */
if( (gesture_data_.u_data[i] > GESTURE_THRESHOLD_OUT) &&
(gesture_data_.d_data[i] > GESTURE_THRESHOLD_OUT) &&
(gesture_data_.l_data[i] > GESTURE_THRESHOLD_OUT) &&
(gesture_data_.r_data[i] > GESTURE_THRESHOLD_OUT) ) {
u_last = gesture_data_.u_data[i];
d_last = gesture_data_.d_data[i];
l_last = gesture_data_.l_data[i];
r_last = gesture_data_.r_data[i];
break;
}
}
}
/* Calculate the first vs. last ratio of up/down and left/right */
ud_ratio_first = ((u_first - d_first) * 100) / (u_first + d_first);
lr_ratio_first = ((l_first - r_first) * 100) / (l_first + r_first);
ud_ratio_last = ((u_last - d_last) * 100) / (u_last + d_last);
lr_ratio_last = ((l_last - r_last) * 100) / (l_last + r_last);
/* #if DEBUG
Serial.print(F("Last Values: "));
Serial.print(F("U:"));
Serial.print(u_last);
Serial.print(F(" D:"));
Serial.print(d_last);
Serial.print(F(" L:"));
Serial.print(l_last);
Serial.print(F(" R:"));
Serial.println(r_last);
Serial.print(F("Ratios: "));
Serial.print(F("UD Fi: "));
Serial.print(ud_ratio_first);
Serial.print(F(" UD La: "));
Serial.print(ud_ratio_last);
Serial.print(F(" LR Fi: "));
Serial.print(lr_ratio_first);
Serial.print(F(" LR La: "));
Serial.println(lr_ratio_last);
#endif */
/* Determine the difference between the first and last ratios */
ud_delta = ud_ratio_last - ud_ratio_first;
lr_delta = lr_ratio_last - lr_ratio_first;
/* #if DEBUG
Serial.print("Deltas: ");
Serial.print("UD: ");
Serial.print(ud_delta);
Serial.print(" LR: ");
Serial.println(lr_delta);
#endif */
/* Accumulate the UD and LR delta values */
gesture_ud_delta_ += ud_delta;
gesture_lr_delta_ += lr_delta;
/* #if DEBUG
Serial.print("Accumulations: ");
Serial.print("UD: ");
Serial.print(gesture_ud_delta_);
Serial.print(" LR: ");
Serial.println(gesture_lr_delta_);
#endif */
/* Determine U/D gesture */
if( gesture_ud_delta_ >= GESTURE_SENSITIVITY_1 ) {
gesture_ud_count_ = 1;
} else if( gesture_ud_delta_ <= -GESTURE_SENSITIVITY_1 ) {
gesture_ud_count_ = -1;
} else {
gesture_ud_count_ = 0;
}
/* Determine L/R gesture */
if( gesture_lr_delta_ >= GESTURE_SENSITIVITY_1 ) {
gesture_lr_count_ = 1;
} else if( gesture_lr_delta_ <= -GESTURE_SENSITIVITY_1 ) {
gesture_lr_count_ = -1;
} else {
gesture_lr_count_ = 0;
}
/* Determine Near/Far gesture */
if( (gesture_ud_count_ == 0) && (gesture_lr_count_ == 0) ) {
if( (abs(ud_delta) < GESTURE_SENSITIVITY_2) && \
(abs(lr_delta) < GESTURE_SENSITIVITY_2) ) {
if( (ud_delta == 0) && (lr_delta == 0) ) {
gesture_near_count_++;
} else if( (ud_delta != 0) || (lr_delta != 0) ) {
gesture_far_count_++;
}
if( (gesture_near_count_ >= 10) && (gesture_far_count_ >= 2) ) {
if( (ud_delta == 0) && (lr_delta == 0) ) {
gesture_state_ = NEAR_STATE;
} else if( (ud_delta != 0) && (lr_delta != 0) ) {
gesture_state_ = FAR_STATE;
}
return true;
}
}
} else {
if( (abs(ud_delta) < GESTURE_SENSITIVITY_2) && \
(abs(lr_delta) < GESTURE_SENSITIVITY_2) ) {
if( (ud_delta == 0) && (lr_delta == 0) ) {
gesture_near_count_++;
}
if( gesture_near_count_ >= 5 ) {
gesture_ud_count_ = 0;
gesture_lr_count_ = 0;
gesture_ud_delta_ = 0;
gesture_lr_delta_ = 0;
}
}
}
// #if DEBUG
/* printf("UD_CT: %d\n",gesture_ud_count_);
printf("LR_CT: %d\n",gesture_lr_count_);
printf("NEAR_CT: %d\n",gesture_near_count_);
printf(" FAR_CT: %d\n",gesture_far_count_);
printf("----------"); */
//#endif */
return false;
}
/**
* @brief Determines swipe direction or near/far state
*
* @return True if near/far event. False otherwise.
*/
bool glibr::decodeGesture()
{
/* Return if near or far event is detected */
if( gesture_state_ == NEAR_STATE ) {
gesture_motion_ = DIR_NEAR;
return true;
} else if ( gesture_state_ == FAR_STATE ) {
gesture_motion_ = DIR_FAR;
return true;
}
/* Determine swipe direction */
if( (gesture_ud_count_ == -1) && (gesture_lr_count_ == 0) ) {
gesture_motion_ = DIR_UP;
} else if( (gesture_ud_count_ == 1) && (gesture_lr_count_ == 0) ) {
gesture_motion_ = DIR_DOWN;
} else if( (gesture_ud_count_ == 0) && (gesture_lr_count_ == 1) ) {
gesture_motion_ = DIR_RIGHT;
} else if( (gesture_ud_count_ == 0) && (gesture_lr_count_ == -1) ) {
gesture_motion_ = DIR_LEFT;
} else if( (gesture_ud_count_ == -1) && (gesture_lr_count_ == 1) ) {
if( abs(gesture_ud_delta_) > abs(gesture_lr_delta_) ) {
gesture_motion_ = DIR_UP;
} else {
gesture_motion_ = DIR_RIGHT;
}
} else if( (gesture_ud_count_ == 1) && (gesture_lr_count_ == -1) ) {
if( abs(gesture_ud_delta_) > abs(gesture_lr_delta_) ) {
gesture_motion_ = DIR_DOWN;
} else {
gesture_motion_ = DIR_LEFT;
}
} else if( (gesture_ud_count_ == -1) && (gesture_lr_count_ == -1) ) {
if( abs(gesture_ud_delta_) > abs(gesture_lr_delta_) ) {
gesture_motion_ = DIR_UP;
} else {
gesture_motion_ = DIR_LEFT;
}
} else if( (gesture_ud_count_ == 1) && (gesture_lr_count_ == 1) ) {
if( abs(gesture_ud_delta_) > abs(gesture_lr_delta_) ) {
gesture_motion_ = DIR_DOWN;
} else {
gesture_motion_ = DIR_RIGHT;
}
} else {
return false;
}
return true;
}
/*******************************************************************************
* Getters and setters for register values
******************************************************************************/
/**
* @brief Returns the lower threshold for proximity detection
*
* @return lower threshold
*/
uint8_t glibr::getProxIntLowThresh()
{
uint8_t val;
/* Read value from PILT register */
/* if( !wireReadDataByte(APDS9960_PILT, val) ) {
val = 0;
}*/
val=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_PILT);
if(val==ERROR){
val=0;
}
return val;
}
/**
* @brief Sets the lower threshold for proximity detection
*
* @param[in] threshold the lower proximity threshold
* @return True if operation successful. False otherwise.
*/
bool glibr::setProxIntLowThresh(uint8_t threshold)
{
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_PILT, threshold) ) {
return false;
}
return true;
}
/**
* @brief Returns the high threshold for proximity detection
*
* @return high threshold
*/
uint8_t glibr::getProxIntHighThresh()
{
uint8_t val;
/* Read value from PIHT register */
val=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_PILT);
if( val==ERROR ) {
val = 0;
}
return val;
}
/**
* @brief Sets the high threshold for proximity detection
*
* @param[in] threshold the high proximity threshold
* @return True if operation successful. False otherwise.
*/
bool glibr::setProxIntHighThresh(uint8_t threshold)
{
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_PIHT, threshold) ) {
return false;
}
return true;
}
/**
* @brief Returns LED drive strength for proximity and ALS
*
* Value LED Current
* 0 100 mA
* 1 50 mA
* 2 25 mA
* 3 12.5 mA
*
* @return the value of the LED drive strength. 0xFF on failure.
*/
uint8_t glibr::getLEDDrive()
{
uint8_t val;
/* Read value from CONTROL register */
val=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_CONTROL);
if( val == ERROR ){//!wireReadDataByte(APDS9960_CONTROL, val) ) {
return ERROR;
}
/* Shift and mask out LED drive bits */
val = (val >> 6) & 0x03;//0b00000011;
return val;
}
/**
* @brief Sets the LED drive strength for proximity and ALS
*
* Value LED Current
* 0 100 mA
* 1 50 mA
* 2 25 mA
* 3 12.5 mA
*
* @param[in] drive the value (0-3) for the LED drive strength
* @return True if operation successful. False otherwise.
*/
bool glibr::setLEDDrive(uint8_t drive)
{
uint8_t val;
/* Read value from CONTROL register */
val=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_CONTROL);
if(val==ERROR){
return false;
}
/* Set bits in register to given value */
//drive &= 0b00000011
drive &= 0x03;
drive = drive << 6;
//val &= 0b00111111;
val &= 0x3F;
val |= drive;
/* Write register value back into CONTROL register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_CONTROL, val) ) {
return false;
}
return true;
}
/**
* @brief Returns receiver gain for proximity detection
*
* Value Gain
* 0 1x
* 1 2x
* 2 4x
* 3 8x
*
* @return the value of the proximity gain. 0xFF on failure.
*/
uint8_t glibr::getProximityGain()
{
uint8_t val;
/* Read value from CONTROL register */
val=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_CONTROL);
if( val == ERROR){//!wireReadDataByte(APDS9960_CONTROL, val) ) {
return ERROR;
}
/* Shift and mask out PDRIVE bits */
val = (val >> 2) & 0x03;//0b00000011;
return val;
}
/**
* @brief Sets the receiver gain for proximity detection
*
* Value Gain
* 0 1x
* 1 2x
* 2 4x
* 3 8x
*
* @param[in] drive the value (0-3) for the gain
* @return True if operation successful. False otherwise.
*/
bool glibr::setProximityGain(uint8_t drive)
{
uint8_t val;
/* Read value from CONTROL register */
val=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_CONTROL);
if(val==ERROR){
return false;
}
/* Set bits in register to given value */
//drive &= 0b00000011;
drive &=0x03;
drive = drive << 2;
//val &= 0b11110011
val &= 0xF3;
val |= drive;
/* Write register value back into CONTROL register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_CONTROL, val) ) {
return false;
}
return true;
}
/**
* @brief Returns receiver gain for the ambient light sensor (ALS)
*
* Value Gain
* 0 1x
* 1 4x
* 2 16x
* 3 64x
*
* @return the value of the ALS gain. 0xFF on failure.
*/
uint8_t glibr::getAmbientLightGain()
{
uint8_t val;
/* Read value from CONTROL register */
val=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_CONTROL);
if( val == ERROR){//!wireReadDataByte(APDS9960_CONTROL, val) ) {
return ERROR;
}
/* Shift and mask out ADRIVE bits */
val &= 0x03;//0b00000011;
return val;
}
/**
* @brief Sets the receiver gain for the ambient light sensor (ALS)
*
* Value Gain
* 0 1x
* 1 4x
* 2 16x
* 3 64x
*
* @param[in] drive the value (0-3) for the gain
* @return True if operation successful. False otherwise.
*/
bool glibr::setAmbientLightGain(uint8_t drive){
uint8_t val;
/* Read value from CONTROL register */
val=I2CreadByte(APDS9960_I2C_ADDR,APDS9960_CONTROL);
if(val==ERROR){
return false;
}
/* Set bits in register to given value */
//drive &= 0b00000011;
drive &=0x03;
drive = drive << 2;
//val &=0b11111100
val &= 0xF3;
val |= drive;
/* Write register value back into CONTROL register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_CONTROL, val) ) {
return false;
}
return true;
}
/**
* @brief Get the current LED boost value
*
* Value Boost Current
* 0 100%
* 1 150%
* 2 200%
* 3 300%
*
* @return The LED boost value. 0xFF on failure.
*/
uint8_t glibr::getLEDBoost() {
uint8_t val;
/* Read value from CONFIG2 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_CONFIG2);
if( val == ERROR){//!wireReadDataByte(APDS9960_CONFIG2, val) ) {
return ERROR;
}
/* Shift and mask out LED_BOOST bits */
val = (val >> 4) & 0x03;//0b00000011;
return val;
}
/**
* @brief Sets the LED current boost value
*
* Value Boost Current
* 0 100%
* 1 150%
* 2 200%
* 3 300%
*
* @param[in] drive the value (0-3) for current boost (100-300%)
* @return True if operation successful. False otherwise.
*/
bool glibr::setLEDBoost(uint8_t boost)
{
uint8_t val;
/* Read value from CONFIG2 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_CONFIG2);
if( val == ERROR){//!wireReadDataByte(APDS9960_CONFIG2, val) ) {
return false;
}
/* Set bits in register to given value */
boost &= 0x03;//0b00000011;
boost = boost << 4;
val &= 0xCF;//0b11001111;
val |= boost;
/* Write register value back into CONFIG2 register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_CONFIG2, val)){//!wireWriteDataByte(APDS9960_CONFIG2, val) ) {
return false;
}
return true;
}
/**
* @brief Gets proximity gain compensation enable
*
* @return 1 if compensation is enabled. 0 if not. 0xFF on error.
*/
uint8_t glibr::getProxGainCompEnable()
{
uint8_t val;
/* Read value from CONFIG3 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_CONFIG3);
if( val == ERROR){//!wireReadDataByte(APDS9960_CONFIG3, val) ) {
return ERROR;
}
/* Shift and mask out PCMP bits */
val = (val >> 5) & 0x01;//0b00000001;
return val;
}
/**
* @brief Sets the proximity gain compensation enable
*
* @param[in] enable 1 to enable compensation. 0 to disable compensation.
* @return True if operation successful. False otherwise.
*/
bool glibr::setProxGainCompEnable(uint8_t enable)
{
uint8_t val;
/* Read value from CONFIG3 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_CONFIG3);
if( val == ERROR){//!wireReadDataByte(APDS9960_CONFIG3, val) ) {
return false;
}
/* Set bits in register to given value */
enable &= 0x01;//0b00000001;
enable = enable << 5;
val &= 0xCF;//0b11011111;
val |= enable;
/* Write register value back into CONFIG3 register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_CONFIG3, val)){//!wireWriteDataByte(APDS9960_CONFIG3, val) ) {
return false;
}
return true;
}
/**
* @brief Gets the current mask for enabled/disabled proximity photodiodes
*
* 1 = disabled, 0 = enabled
* Bit Photodiode
* 3 UP
* 2 DOWN
* 1 LEFT
* 0 RIGHT
*
* @return Current proximity mask for photodiodes. 0xFF on error.
*/
uint8_t glibr::getProxPhotoMask()
{
uint8_t val;
/* Read value from CONFIG3 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_CONFIG3);
if( val == ERROR){//!wireReadDataByte(APDS9960_CONFIG3, val) ) {
return ERROR;
}
/* Mask out photodiode enable mask bits */
val &= 0x0F;//0b00001111;
return val;
}
/**
* @brief Sets the mask for enabling/disabling proximity photodiodes
*
* 1 = disabled, 0 = enabled
* Bit Photodiode
* 3 UP
* 2 DOWN
* 1 LEFT
* 0 RIGHT
*
* @param[in] mask 4-bit mask value
* @return True if operation successful. False otherwise.
*/
bool glibr::setProxPhotoMask(uint8_t mask)
{
uint8_t val;
/* Read value from CONFIG3 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_CONFIG3);
if( val == ERROR){//!wireReadDataByte(APDS9960_CONFIG3, val) ) {
return false;
}
/* Set bits in register to given value */
mask &= 0x0F;//0b00001111;
val &= 0xF0;//0b11110000;
val |= mask;
/* Write register value back into CONFIG3 register */
I2CwriteByte(APDS9960_I2C_ADDR, APDS9960_CONFIG3, val);
if( val == ERROR){//!wireWriteDataByte(APDS9960_CONFIG3, val) ) {
return false;
}
return true;
}
/**
* @brief Gets the entry proximity threshold for gesture sensing
*
* @return Current entry proximity threshold.
*/
uint8_t glibr::getGestureEnterThresh()
{
uint8_t val;
/* Read value from GPENTH register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GPENTH);
if( val == ERROR){//!wireReadDataByte(APDS9960_GPENTH, val) ) {
val = 0;
}
return val;
}
/**
* @brief Sets the entry proximity threshold for gesture sensing
*
* @param[in] threshold proximity value needed to start gesture mode
* @return True if operation successful. False otherwise.
*/
bool glibr::setGestureEnterThresh(uint8_t threshold)
{
if( I2CwriteByte(APDS9960_I2C_ADDR, APDS9960_GPENTH, threshold)){;//!wireWriteDataByte(APDS9960_GPENTH, threshold) ) {
return false;
}
return true;
}
/**
* @brief Gets the exit proximity threshold for gesture sensing
*
* @return Current exit proximity threshold.
*/
uint8_t glibr::getGestureExitThresh()
{
uint8_t val;
/* Read value from GEXTH register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GEXTH);
if( val == ERROR){//!wireReadDataByte(APDS9960_GEXTH, val) ) {
val = 0;
}
return val;
}
/**
* @brief Sets the exit proximity threshold for gesture sensing
*
* @param[in] threshold proximity value needed to end gesture mode
* @return True if operation successful. False otherwise.
*/
bool glibr::setGestureExitThresh(uint8_t threshold)
{
if( I2CwriteByte(APDS9960_I2C_ADDR, APDS9960_GEXTH, threshold)){//!wireWriteDataByte(APDS9960_GEXTH, threshold) ) {
return false;
}
return true;
}
/**
* @brief Gets the gain of the photodiode during gesture mode
*
* Value Gain
* 0 1x
* 1 2x
* 2 4x
* 3 8x
*
* @return the current photodiode gain. 0xFF on error.
*/
uint8_t glibr::getGestureGain()
{
uint8_t val;
/* Read value from GCONF2 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GCONF2);
if( val == ERROR){//!wireReadDataByte(APDS9960_GCONF2, val) ) {
return ERROR;
}
/* Shift and mask out GGAIN bits */
val = (val >> 5) & 0x03;//0b00000011;
return val;
}
/**
* @brief Sets the gain of the photodiode during gesture mode
*
* Value Gain
* 0 1x
* 1 2x
* 2 4x
* 3 8x
*
* @param[in] gain the value for the photodiode gain
* @return True if operation successful. False otherwise.
*/
bool glibr::setGestureGain(uint8_t gain)
{
uint8_t val;
/* Read value from GCONF2 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GCONF2);
if( val == ERROR){//!wireReadDataByte(APDS9960_GCONF2, val) ) {
return false;
}
/* Set bits in register to given value */
gain &= 0x03;//0b00000011;
gain = gain << 5;
val &= 0x9F;//0b10011111;
val |= gain;
/* Write register value back into GCONF2 register */
if( I2CwriteByte(APDS9960_I2C_ADDR, APDS9960_GCONF2, val)){//!wireWriteDataByte(APDS9960_GCONF2, val) ) {
return false;
}
return true;
}
/**
* @brief Gets the drive current of the LED during gesture mode
*
* Value LED Current
* 0 100 mA
* 1 50 mA
* 2 25 mA
* 3 12.5 mA
*
* @return the LED drive current value. 0xFF on error.
*/
uint8_t glibr::getGestureLEDDrive()
{
uint8_t val;
/* Read value from GCONF2 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GCONF2);
if( val == ERROR){//!wireReadDataByte(APDS9960_GCONF2, val) ) {
return ERROR;
}
/* Shift and mask out GLDRIVE bits */
val = (val >> 3) & 0x03;//0b00000011;
return val;
}
/**
* @brief Sets the LED drive current during gesture mode
*
* Value LED Current
* 0 100 mA
* 1 50 mA
* 2 25 mA
* 3 12.5 mA
*
* @param[in] drive the value for the LED drive current
* @return True if operation successful. False otherwise.
*/
bool glibr::setGestureLEDDrive(uint8_t drive)
{
uint8_t val;
/* Read value from GCONF2 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GCONF2);
if( val == ERROR){//!wireReadDataByte(APDS9960_GCONF2, val) ) {
return false;
}
/* Set bits in register to given value */
drive &= 0x03;//0b00000011;
drive = drive << 3;
val &= 0xE7;//0b11100111;
val |= drive;
/* Write register value back into GCONF2 register */
if( I2CwriteByte(APDS9960_I2C_ADDR, APDS9960_GCONF2, val)){//!wireWriteDataByte(APDS9960_GCONF2, val) ) {
return false;
}
return true;
}
/**
* @brief Gets the time in low power mode between gesture detections
*
* Value Wait time
* 0 0 ms
* 1 2.8 ms
* 2 5.6 ms
* 3 8.4 ms
* 4 14.0 ms
* 5 22.4 ms
* 6 30.8 ms
* 7 39.2 ms
*
* @return the current wait time between gestures. 0xFF on error.
*/
uint8_t glibr::getGestureWaitTime()
{
uint8_t val;
/* Read value from GCONF2 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GCONF2);
if( val == ERROR){//!wireReadDataByte(APDS9960_GCONF2, val) ) {
return ERROR;
}
/* Mask out GWTIME bits */
val &= 0x07;//0b00000111;
return val;
}
/*
*
*
*
*LEFT OFF HERE AT 3:47PM ON 3/6/15
*
*
*
*
*/
/**
* @brief Sets the time in low power mode between gesture detections
*
* Value Wait time
* 0 0 ms
* 1 2.8 ms
* 2 5.6 ms
* 3 8.4 ms
* 4 14.0 ms
* 5 22.4 ms
* 6 30.8 ms
* 7 39.2 ms
*
* @param[in] the value for the wait time
* @return True if operation successful. False otherwise.
*/
bool glibr::setGestureWaitTime(uint8_t time)
{
uint8_t val;
/* Read value from GCONF2 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GCONF2);
if( val == ERROR){//!wireReadDataByte(APDS9960_GCONF2, val) ) {
return false;
}
/* if( !wireReadDataByte(APDS9960_GCONF2, val) ) {
return false;
} */
/* Set bits in register to given value */
time &= 0x07;//0b00000111;
val &= 0xF8;//0b11111000;
val |= time;
/* Write register value back into GCONF2 register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_GCONF2,val)){//!wireWriteDataByte(APDS9960_GCONF2, val) ) {
return false;
}
/*if( !wireWriteDataByte(APDS9960_GCONF2, val) ) {
return false;
}*/
return true;
}
/**
* @brief Gets the low threshold for ambient light interrupts
*
* @param[out] threshold current low threshold stored on the APDS-9960
* @return True if operation successful. False otherwise.
*/
bool glibr::getLightIntLowThreshold(uint16_t &threshold)
{
uint8_t val_byte;
threshold = 0;
/* Read value from ambient light low threshold, low byte register */
val_byte = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_AILTL);
if( val_byte == ERROR){//!wireReadDataByte(APDS9960_AILTL, val_byte) ) {
return false;
}
threshold = val_byte;
/* Read value from ambient light low threshold, high byte register */
val_byte = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_AILTH);
if( val_byte == ERROR){//!wireReadDataByte(APDS9960_AILTH, val_byte) ) {
return false;
}
threshold = threshold + ((uint16_t)val_byte << 8);
return true;
}
/**
* @brief Sets the low threshold for ambient light interrupts
*
* @param[in] threshold low threshold value for interrupt to trigger
* @return True if operation successful. False otherwise.
*/
bool glibr::setLightIntLowThreshold(uint16_t threshold)
{
uint8_t val_low;
uint8_t val_high;
/* Break 16-bit threshold into 2 8-bit values */
val_low = threshold & 0x00FF;
val_high = (threshold & 0xFF00) >> 8;
/* Write low byte */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_AILTL,val_low)){//!wireWriteDataByte(APDS9960_AILTL, val_low) ) {
return false;
}
/* Write high byte */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_AILTH,val_high)){//!wireWriteDataByte(APDS9960_AILTH, val_high) ) {
return false;
}
return true;
}
/**
* @brief Gets the high threshold for ambient light interrupts
*
* @param[out] threshold current low threshold stored on the APDS-9960
* @return True if operation successful. False otherwise.
*/
bool glibr::getLightIntHighThreshold(uint16_t &threshold)
{
uint8_t val_byte;
threshold = 0;
/* Read value from ambient light high threshold, low byte register */
val_byte = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_AIHTL);
if( val_byte == ERROR){//!wireReadDataByte(APDS9960_AIHTL, val_byte) ) {
return false;
}
threshold = val_byte;
/* Read value from ambient light high threshold, high byte register */
val_byte = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_AIHTH);
if( val_byte == ERROR){//!wireReadDataByte(APDS9960_AIHTH, val_byte) ) {
return false;
}
threshold = threshold + ((uint16_t)val_byte << 8);
return true;
}
/**
* @brief Sets the high threshold for ambient light interrupts
*
* @param[in] threshold high threshold value for interrupt to trigger
* @return True if operation successful. False otherwise.
*/
bool glibr::setLightIntHighThreshold(uint16_t threshold)
{
uint8_t val_low;
uint8_t val_high;
/* Break 16-bit threshold into 2 8-bit values */
val_low = threshold & 0x00FF;
val_high = (threshold & 0xFF00) >> 8;
/* Write low byte */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_AIHTL,val_low)){//!wireWriteDataByte(APDS9960_AIHTL, val_low) ) {
return false;
}
/* Write high byte */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_AIHTH,val_high)){//!wireWriteDataByte(APDS9960_AIHTH, val_high) ) {
return false;
}
return true;
}
/**
* @brief Gets the low threshold for proximity interrupts
*
* @param[out] threshold current low threshold stored on the APDS-9960
* @return True if operation successful. False otherwise.
*/
bool glibr::getProximityIntLowThreshold(uint8_t &threshold)
{
threshold = 0;
/* Read value from proximity low threshold register */
threshold = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_PILT);
if( threshold == ERROR){//!wireReadDataByte(APDS9960_PILT, threshold) ) {
return false;
}
return true;
}
/**
* @brief Sets the low threshold for proximity interrupts
*
* @param[in] threshold low threshold value for interrupt to trigger
* @return True if operation successful. False otherwise.
*/
bool glibr::setProximityIntLowThreshold(uint8_t threshold)
{
/* Write threshold value to register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_PILT,threshold)){//!wireWriteDataByte(APDS9960_PILT, threshold) ) {
return false;
}
return true;
}
/**
* @brief Gets the high threshold for proximity interrupts
*
* @param[out] threshold current low threshold stored on the APDS-9960
* @return True if operation successful. False otherwise.
*/
bool glibr::getProximityIntHighThreshold(uint8_t &threshold)
{
threshold = 0;
/* Read value from proximity low threshold register */
threshold = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_PIHT);
if( threshold == ERROR){//!wireReadDataByte(APDS9960_PIHT, threshold) ) {
return false;
}
return true;
}
/**
* @brief Sets the high threshold for proximity interrupts
*
* @param[in] threshold high threshold value for interrupt to trigger
* @return True if operation successful. False otherwise.
*/
bool glibr::setProximityIntHighThreshold(uint8_t threshold)
{
/* Write threshold value to register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_PIHT,threshold)){//!wireWriteDataByte(APDS9960_PIHT, threshold) ) {
return false;
}
return true;
}
/**
* @brief Gets if ambient light interrupts are enabled or not
*
* @return 1 if interrupts are enabled, 0 if not. 0xFF on error.
*/
uint8_t glibr::getAmbientLightIntEnable()
{
uint8_t val;
/* Read value from ENABLE register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_ENABLE);
if( val == ERROR){//!wireReadDataByte(APDS9960_ENABLE, val) ) {
return ERROR;
}
/* Shift and mask out AIEN bit */
val = (val >> 4) & 0x01;//0b00000001;
return val;
}
/**
* @brief Turns ambient light interrupts on or off
*
* @param[in] enable 1 to enable interrupts, 0 to turn them off
* @return True if operation successful. False otherwise.
*/
bool glibr::setAmbientLightIntEnable(uint8_t enable)
{
uint8_t val;
/* Read value from ENABLE register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_ENABLE);
if( val == ERROR){//!wireReadDataByte(APDS9960_ENABLE, val) ) {
return false;
}
/* Set bits in register to given value */
enable &= 0x01;//0b00000001;
enable = enable << 4;
val &= 0xEF;//0b11101111;
val |= enable;
/* Write register value back into ENABLE register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_ENABLE,val)){//!wireWriteDataByte(APDS9960_ENABLE, val) ) {
return false;
}
return true;
}
/**
* @brief Gets if proximity interrupts are enabled or not
*
* @return 1 if interrupts are enabled, 0 if not. 0xFF on error.
*/
uint8_t glibr::getProximityIntEnable()
{
uint8_t val;
/* Read value from ENABLE register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_ENABLE);
if( val == ERROR){//!wireReadDataByte(APDS9960_ENABLE, val) ) {
return ERROR;
}
/* Shift and mask out PIEN bit */
val = (val >> 5) & 0x01;//0b00000001;
return val;
}
/**
* @brief Turns proximity interrupts on or off
*
* @param[in] enable 1 to enable interrupts, 0 to turn them off
* @return True if operation successful. False otherwise.
*/
bool glibr::setProximityIntEnable(uint8_t enable)
{
uint8_t val;
/* Read value from ENABLE register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_ENABLE);
if( val == ERROR){//!wireReadDataByte(APDS9960_ENABLE, val) ) {
return false;
}
/* Set bits in register to given value */
enable &= 0x01;//0b00000001;
enable = enable << 5;
val &= 0xDF;//0b11011111;
val |= enable;
/* Write register value back into ENABLE register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_ENABLE,val)){//!wireWriteDataByte(APDS9960_ENABLE, val) ) {
return false;
}
return true;
}
/**
* @brief Gets if gesture interrupts are enabled or not
*
* @return 1 if interrupts are enabled, 0 if not. 0xFF on error.
*/
uint8_t glibr::getGestureIntEnable()
{
uint8_t val;
/* Read value from GCONF4 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GCONF4);
if( val == ERROR){//!wireReadDataByte(APDS9960_GCONF4, val) ) {
return ERROR;
}
/* Shift and mask out GIEN bit */
val = (val >> 1) & 0x01;//0b00000001;
return val;
}
/**
* @brief Turns gesture-related interrupts on or off
*
* @param[in] enable 1 to enable interrupts, 0 to turn them off
* @return True if operation successful. False otherwise.
*/
bool glibr::setGestureIntEnable(uint8_t enable)
{
uint8_t val;
/* Read value from GCONF4 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GCONF4);
if( val == ERROR){//!wireReadDataByte(APDS9960_GCONF4, val) ) {
return false;
}
/* Set bits in register to given value */
enable &= 0x01;//0b00000001;
enable = enable << 1;
val &= 0xFD;//0b11111101;
val |= enable;
/* Write register value back into GCONF4 register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_GCONF4,val)){//!wireWriteDataByte(APDS9960_GCONF4, val) ) {
return false;
}
return true;
}
/**
* @brief Clears the ambient light interrupt
*
* @return True if operation completed successfully. False otherwise.
*/
bool glibr::clearAmbientLightInt()
{
uint8_t throwaway;
throwaway = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_AICLEAR);
if( throwaway == ERROR){//!wireReadDataByte(APDS9960_AICLEAR, throwaway) ) {
return false;
}
return true;
}
/**
* @brief Clears the proximity interrupt
*
* @return True if operation completed successfully. False otherwise.
*/
bool glibr::clearProximityInt()
{
uint8_t throwaway;
throwaway = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_PICLEAR);
if( throwaway == ERROR){//!wireReadDataByte(APDS9960_PICLEAR, throwaway) ) {
return false;
}
return true;
}
/**
* @brief Tells if the gesture state machine is currently running
*
* @return 1 if gesture state machine is running, 0 if not. 0xFF on error.
*/
uint8_t glibr::getGestureMode()
{
uint8_t val;
/* Read value from GCONF4 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GCONF4);
if( val == ERROR){//!wireReadDataByte(APDS9960_GCONF4, val) ) {
return ERROR;
}
/* Mask out GMODE bit */
val &= 0x01;//0b00000001;
return val;
}
/**
* @brief Tells the state machine to either enter or exit gesture state machine
*
* @param[in] mode 1 to enter gesture state machine, 0 to exit.
* @return True if operation successful. False otherwise.
*/
bool glibr::setGestureMode(uint8_t mode)
{
uint8_t val;
/* Read value from GCONF4 register */
val = I2CreadByte(APDS9960_I2C_ADDR, APDS9960_GCONF4);
if( val == ERROR){//!wireReadDataByte(APDS9960_GCONF4, val) ) {
return false;
}
/* Set bits in register to given value */
mode &= 0x01;//0b00000001;
val &= 0xFE;//0b11111110;
val |= mode;
/* Write register value back into GCONF4 register */
if( I2CwriteByte(APDS9960_I2C_ADDR,APDS9960_GCONF4,val)){//!wireWriteDataByte(APDS9960_GCONF4, val) ) {
return false;
}
return true;
}
int glibr::I2CwriteByte(char address, char subAddress, char data)
{
int ret;
char cmd[2] = {subAddress, data};
ret=i2c.write(address<<1, cmd, 2); //if ret is 1, then not acked.
if (ret != 1)
pc.printf("Error occured!!.\r\n");
return ret;
}
uint8_t glibr::I2CreadByte(char address, char subAddress)
{
char data; // store the register data
if(i2c.write(address<<1, &subAddress, 1, true)){
return ERROR; //7 bit //not acked
}
if(i2c.read(address<<1, &data, 1)){
return ERROR;
}
//i2c.read(address<<1, &data, 1);
return data;
}
// * @brief Reads a block (array) of bytes from the I2C device and register
// *
// * @param[in] reg the register to read from
// * @param[out] val pointer to the beginning of the data
// * @param[in] len number of bytes to read
// * @return Number of bytes read. -1 on read error.
// */
int glibr::I2CReadDataBlock(char address, char subAddress, char *data, unsigned int len)
{
// unsigned char i = 0;
/* Indicate which register we want to read from */
if(i2c.write(address<<1, &subAddress, 1, true)){
return -1; //7 bit //not acked
}
/* Read block data */
if(i2c.read(address<<1, data, len)){
return -1;
}
return 1;
//Wire.requestFrom(APDS9960_I2C_ADDR, len);
/*while (Wire.available()) {
if (i >= len) {
return -1;
}
val[i] = Wire.read();
i++;
}*/
}