IMU LSM9DS1 Library (fixed)

Dependencies:   PinDetect

Fork of LSM9DS1_Library by Jason Mar

Committer:
cduck
Date:
Thu Aug 03 15:50:09 2017 -0700
Revision:
5:8da857db15e0
Parent:
4:1345050179ad
Rename main.cpp so it isn't compiled as part of the library

Who changed what in which revision?

UserRevisionLine numberNew contents of line
jmar7 0:e8167f37725c 1 /******************************************************************************
jmar7 0:e8167f37725c 2 SFE_LSM9DS1.cpp
jmar7 0:e8167f37725c 3 SFE_LSM9DS1 Library Source File
jmar7 0:e8167f37725c 4 Jim Lindblom @ SparkFun Electronics
jmar7 0:e8167f37725c 5 Original Creation Date: February 27, 2015
jmar7 0:e8167f37725c 6 https://github.com/sparkfun/LSM9DS1_Breakout
jmar7 0:e8167f37725c 7
jmar7 0:e8167f37725c 8 This file implements all functions of the LSM9DS1 class. Functions here range
jmar7 0:e8167f37725c 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
jmar7 0:e8167f37725c 10 hardware reads and writes. Both SPI and I2C handler functions can be found
jmar7 0:e8167f37725c 11 towards the bottom of this file.
jmar7 0:e8167f37725c 12
jmar7 0:e8167f37725c 13 Development environment specifics:
jmar7 0:e8167f37725c 14 IDE: Arduino 1.6
jmar7 0:e8167f37725c 15 Hardware Platform: Arduino Uno
jmar7 0:e8167f37725c 16 LSM9DS1 Breakout Version: 1.0
jmar7 0:e8167f37725c 17
jmar7 0:e8167f37725c 18 This code is beerware; if you see me (or any other SparkFun employee) at the
jmar7 0:e8167f37725c 19 local, and you've found our code helpful, please buy us a round!
jmar7 0:e8167f37725c 20
jmar7 0:e8167f37725c 21 Distributed as-is; no warranty is given.
jmar7 0:e8167f37725c 22 ******************************************************************************/
jmar7 0:e8167f37725c 23
jmar7 0:e8167f37725c 24 #include "LSM9DS1.h"
jmar7 0:e8167f37725c 25 #include "LSM9DS1_Registers.h"
jmar7 0:e8167f37725c 26 #include "LSM9DS1_Types.h"
jmar7 0:e8167f37725c 27 //#include <Wire.h> // Wire library is used for I2C
jmar7 0:e8167f37725c 28 //#include <SPI.h> // SPI library is used for...SPI.
jmar7 0:e8167f37725c 29
jmar7 0:e8167f37725c 30 //#if defined(ARDUINO) && ARDUINO >= 100
jmar7 0:e8167f37725c 31 // #include "Arduino.h"
jmar7 0:e8167f37725c 32 //#else
jmar7 0:e8167f37725c 33 // #include "WProgram.h"
jmar7 0:e8167f37725c 34 //#endif
jmar7 0:e8167f37725c 35
jmar7 0:e8167f37725c 36 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
jmar7 0:e8167f37725c 37
jmar7 0:e8167f37725c 38 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
jmar7 0:e8167f37725c 39
jmar7 0:e8167f37725c 40 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
jmar7 0:e8167f37725c 41 :i2c(sda, scl)
jmar7 0:e8167f37725c 42 {
jmar7 0:e8167f37725c 43 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
jmar7 0:e8167f37725c 44 }
jmar7 1:87d535bf8c53 45 /*
jmar7 0:e8167f37725c 46 LSM9DS1::LSM9DS1()
jmar7 0:e8167f37725c 47 {
jmar7 0:e8167f37725c 48 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
jmar7 0:e8167f37725c 49 }
jmar7 0:e8167f37725c 50
jmar7 0:e8167f37725c 51 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
jmar7 0:e8167f37725c 52 {
jmar7 0:e8167f37725c 53 init(interface, xgAddr, mAddr);
jmar7 0:e8167f37725c 54 }
jmar7 0:e8167f37725c 55 */
jmar7 0:e8167f37725c 56
jmar7 0:e8167f37725c 57 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
jmar7 0:e8167f37725c 58 {
jmar7 0:e8167f37725c 59 settings.device.commInterface = interface;
jmar7 0:e8167f37725c 60 settings.device.agAddress = xgAddr;
jmar7 0:e8167f37725c 61 settings.device.mAddress = mAddr;
jmar7 0:e8167f37725c 62
jmar7 0:e8167f37725c 63 settings.gyro.enabled = true;
jmar7 0:e8167f37725c 64 settings.gyro.enableX = true;
jmar7 0:e8167f37725c 65 settings.gyro.enableY = true;
jmar7 0:e8167f37725c 66 settings.gyro.enableZ = true;
jmar7 0:e8167f37725c 67 // gyro scale can be 245, 500, or 2000
jmar7 0:e8167f37725c 68 settings.gyro.scale = 245;
jmar7 0:e8167f37725c 69 // gyro sample rate: value between 1-6
jmar7 0:e8167f37725c 70 // 1 = 14.9 4 = 238
jmar7 0:e8167f37725c 71 // 2 = 59.5 5 = 476
jmar7 0:e8167f37725c 72 // 3 = 119 6 = 952
jmar7 0:e8167f37725c 73 settings.gyro.sampleRate = 6;
jmar7 0:e8167f37725c 74 // gyro cutoff frequency: value between 0-3
jmar7 0:e8167f37725c 75 // Actual value of cutoff frequency depends
jmar7 0:e8167f37725c 76 // on sample rate.
jmar7 0:e8167f37725c 77 settings.gyro.bandwidth = 0;
jmar7 0:e8167f37725c 78 settings.gyro.lowPowerEnable = false;
jmar7 0:e8167f37725c 79 settings.gyro.HPFEnable = false;
jmar7 0:e8167f37725c 80 // Gyro HPF cutoff frequency: value between 0-9
jmar7 0:e8167f37725c 81 // Actual value depends on sample rate. Only applies
jmar7 0:e8167f37725c 82 // if gyroHPFEnable is true.
jmar7 0:e8167f37725c 83 settings.gyro.HPFCutoff = 0;
jmar7 0:e8167f37725c 84 settings.gyro.flipX = false;
jmar7 0:e8167f37725c 85 settings.gyro.flipY = false;
jmar7 0:e8167f37725c 86 settings.gyro.flipZ = false;
jmar7 0:e8167f37725c 87 settings.gyro.orientation = 0;
jmar7 0:e8167f37725c 88 settings.gyro.latchInterrupt = true;
jmar7 0:e8167f37725c 89
jmar7 0:e8167f37725c 90 settings.accel.enabled = true;
jmar7 0:e8167f37725c 91 settings.accel.enableX = true;
jmar7 0:e8167f37725c 92 settings.accel.enableY = true;
jmar7 0:e8167f37725c 93 settings.accel.enableZ = true;
jmar7 0:e8167f37725c 94 // accel scale can be 2, 4, 8, or 16
jmar7 0:e8167f37725c 95 settings.accel.scale = 2;
jmar7 0:e8167f37725c 96 // accel sample rate can be 1-6
jmar7 0:e8167f37725c 97 // 1 = 10 Hz 4 = 238 Hz
jmar7 0:e8167f37725c 98 // 2 = 50 Hz 5 = 476 Hz
jmar7 0:e8167f37725c 99 // 3 = 119 Hz 6 = 952 Hz
jmar7 0:e8167f37725c 100 settings.accel.sampleRate = 6;
jmar7 0:e8167f37725c 101 // Accel cutoff freqeuncy can be any value between -1 - 3.
jmar7 0:e8167f37725c 102 // -1 = bandwidth determined by sample rate
jmar7 0:e8167f37725c 103 // 0 = 408 Hz 2 = 105 Hz
jmar7 0:e8167f37725c 104 // 1 = 211 Hz 3 = 50 Hz
jmar7 0:e8167f37725c 105 settings.accel.bandwidth = -1;
jmar7 0:e8167f37725c 106 settings.accel.highResEnable = false;
jmar7 0:e8167f37725c 107 // accelHighResBandwidth can be any value between 0-3
jmar7 0:e8167f37725c 108 // LP cutoff is set to a factor of sample rate
jmar7 0:e8167f37725c 109 // 0 = ODR/50 2 = ODR/9
jmar7 0:e8167f37725c 110 // 1 = ODR/100 3 = ODR/400
jmar7 0:e8167f37725c 111 settings.accel.highResBandwidth = 0;
jmar7 0:e8167f37725c 112
jmar7 0:e8167f37725c 113 settings.mag.enabled = true;
jmar7 0:e8167f37725c 114 // mag scale can be 4, 8, 12, or 16
jmar7 0:e8167f37725c 115 settings.mag.scale = 4;
jmar7 0:e8167f37725c 116 // mag data rate can be 0-7
jmar7 0:e8167f37725c 117 // 0 = 0.625 Hz 4 = 10 Hz
jmar7 0:e8167f37725c 118 // 1 = 1.25 Hz 5 = 20 Hz
jmar7 0:e8167f37725c 119 // 2 = 2.5 Hz 6 = 40 Hz
jmar7 0:e8167f37725c 120 // 3 = 5 Hz 7 = 80 Hz
jmar7 0:e8167f37725c 121 settings.mag.sampleRate = 7;
jmar7 0:e8167f37725c 122 settings.mag.tempCompensationEnable = false;
jmar7 0:e8167f37725c 123 // magPerformance can be any value between 0-3
jmar7 0:e8167f37725c 124 // 0 = Low power mode 2 = high performance
jmar7 0:e8167f37725c 125 // 1 = medium performance 3 = ultra-high performance
jmar7 0:e8167f37725c 126 settings.mag.XYPerformance = 3;
jmar7 0:e8167f37725c 127 settings.mag.ZPerformance = 3;
jmar7 0:e8167f37725c 128 settings.mag.lowPowerEnable = false;
jmar7 0:e8167f37725c 129 // magOperatingMode can be 0-2
jmar7 0:e8167f37725c 130 // 0 = continuous conversion
jmar7 0:e8167f37725c 131 // 1 = single-conversion
jmar7 0:e8167f37725c 132 // 2 = power down
jmar7 0:e8167f37725c 133 settings.mag.operatingMode = 0;
jmar7 0:e8167f37725c 134
jmar7 0:e8167f37725c 135 settings.temp.enabled = true;
jmar7 0:e8167f37725c 136 for (int i=0; i<3; i++)
jmar7 0:e8167f37725c 137 {
jmar7 0:e8167f37725c 138 gBias[i] = 0;
jmar7 0:e8167f37725c 139 aBias[i] = 0;
jmar7 0:e8167f37725c 140 mBias[i] = 0;
jmar7 0:e8167f37725c 141 gBiasRaw[i] = 0;
jmar7 0:e8167f37725c 142 aBiasRaw[i] = 0;
jmar7 0:e8167f37725c 143 mBiasRaw[i] = 0;
jmar7 0:e8167f37725c 144 }
jmar7 0:e8167f37725c 145 _autoCalc = false;
jmar7 0:e8167f37725c 146 }
jmar7 0:e8167f37725c 147
jmar7 0:e8167f37725c 148
jmar7 0:e8167f37725c 149 uint16_t LSM9DS1::begin()
jmar7 0:e8167f37725c 150 {
jmar7 0:e8167f37725c 151 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
jmar7 0:e8167f37725c 152 _xgAddress = settings.device.agAddress;
jmar7 0:e8167f37725c 153 _mAddress = settings.device.mAddress;
jmar7 0:e8167f37725c 154
jmar7 0:e8167f37725c 155 constrainScales();
jmar7 0:e8167f37725c 156 // Once we have the scale values, we can calculate the resolution
jmar7 0:e8167f37725c 157 // of each sensor. That's what these functions are for. One for each sensor
jmar7 0:e8167f37725c 158 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
jmar7 0:e8167f37725c 159 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
jmar7 0:e8167f37725c 160 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
jmar7 0:e8167f37725c 161
jmar7 0:e8167f37725c 162 // Now, initialize our hardware interface.
jmar7 0:e8167f37725c 163 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
jmar7 0:e8167f37725c 164 initI2C(); // Initialize I2C
jmar7 0:e8167f37725c 165 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
jmar7 0:e8167f37725c 166 initSPI(); // Initialize SPI
jmar7 0:e8167f37725c 167
jmar7 0:e8167f37725c 168 // To verify communication, we can read from the WHO_AM_I register of
jmar7 0:e8167f37725c 169 // each device. Store those in a variable so we can return them.
jmar7 0:e8167f37725c 170 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
jmar7 0:e8167f37725c 171 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
jmar7 0:e8167f37725c 172 uint16_t whoAmICombined = (xgTest << 8) | mTest;
jmar7 0:e8167f37725c 173
jmar7 0:e8167f37725c 174 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
jmar7 0:e8167f37725c 175 return 0;
jmar7 0:e8167f37725c 176
jmar7 0:e8167f37725c 177 // Gyro initialization stuff:
jmar7 0:e8167f37725c 178 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
jmar7 0:e8167f37725c 179
jmar7 0:e8167f37725c 180 // Accelerometer initialization stuff:
jmar7 0:e8167f37725c 181 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
jmar7 0:e8167f37725c 182
jmar7 0:e8167f37725c 183 // Magnetometer initialization stuff:
jmar7 0:e8167f37725c 184 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
jmar7 0:e8167f37725c 185
jmar7 0:e8167f37725c 186 // Once everything is initialized, return the WHO_AM_I registers we read:
jmar7 0:e8167f37725c 187 return whoAmICombined;
jmar7 0:e8167f37725c 188 }
jmar7 0:e8167f37725c 189
jmar7 0:e8167f37725c 190 void LSM9DS1::initGyro()
jmar7 0:e8167f37725c 191 {
jmar7 0:e8167f37725c 192 uint8_t tempRegValue = 0;
jmar7 0:e8167f37725c 193
jmar7 0:e8167f37725c 194 // CTRL_REG1_G (Default value: 0x00)
jmar7 0:e8167f37725c 195 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
jmar7 0:e8167f37725c 196 // ODR_G[2:0] - Output data rate selection
jmar7 0:e8167f37725c 197 // FS_G[1:0] - Gyroscope full-scale selection
jmar7 0:e8167f37725c 198 // BW_G[1:0] - Gyroscope bandwidth selection
jmar7 0:e8167f37725c 199
jmar7 0:e8167f37725c 200 // To disable gyro, set sample rate bits to 0. We'll only set sample
jmar7 0:e8167f37725c 201 // rate if the gyro is enabled.
jmar7 0:e8167f37725c 202 if (settings.gyro.enabled)
jmar7 0:e8167f37725c 203 {
jmar7 0:e8167f37725c 204 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
jmar7 0:e8167f37725c 205 }
jmar7 0:e8167f37725c 206 switch (settings.gyro.scale)
jmar7 0:e8167f37725c 207 {
jmar7 0:e8167f37725c 208 case 500:
jmar7 0:e8167f37725c 209 tempRegValue |= (0x1 << 3);
jmar7 0:e8167f37725c 210 break;
jmar7 0:e8167f37725c 211 case 2000:
jmar7 0:e8167f37725c 212 tempRegValue |= (0x3 << 3);
jmar7 0:e8167f37725c 213 break;
jmar7 0:e8167f37725c 214 // Otherwise we'll set it to 245 dps (0x0 << 4)
jmar7 0:e8167f37725c 215 }
jmar7 0:e8167f37725c 216 tempRegValue |= (settings.gyro.bandwidth & 0x3);
jmar7 0:e8167f37725c 217 xgWriteByte(CTRL_REG1_G, tempRegValue);
jmar7 0:e8167f37725c 218
jmar7 0:e8167f37725c 219 // CTRL_REG2_G (Default value: 0x00)
jmar7 0:e8167f37725c 220 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
jmar7 0:e8167f37725c 221 // INT_SEL[1:0] - INT selection configuration
jmar7 0:e8167f37725c 222 // OUT_SEL[1:0] - Out selection configuration
jmar7 0:e8167f37725c 223 xgWriteByte(CTRL_REG2_G, 0x00);
jmar7 0:e8167f37725c 224
jmar7 0:e8167f37725c 225 // CTRL_REG3_G (Default value: 0x00)
jmar7 0:e8167f37725c 226 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
jmar7 0:e8167f37725c 227 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
jmar7 0:e8167f37725c 228 // HP_EN - HPF enable (0:disabled, 1: enabled)
jmar7 0:e8167f37725c 229 // HPCF_G[3:0] - HPF cutoff frequency
jmar7 0:e8167f37725c 230 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
jmar7 0:e8167f37725c 231 if (settings.gyro.HPFEnable)
jmar7 0:e8167f37725c 232 {
jmar7 0:e8167f37725c 233 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
jmar7 0:e8167f37725c 234 }
jmar7 0:e8167f37725c 235 xgWriteByte(CTRL_REG3_G, tempRegValue);
jmar7 0:e8167f37725c 236
jmar7 0:e8167f37725c 237 // CTRL_REG4 (Default value: 0x38)
jmar7 0:e8167f37725c 238 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
jmar7 0:e8167f37725c 239 // Zen_G - Z-axis output enable (0:disable, 1:enable)
jmar7 0:e8167f37725c 240 // Yen_G - Y-axis output enable (0:disable, 1:enable)
jmar7 0:e8167f37725c 241 // Xen_G - X-axis output enable (0:disable, 1:enable)
jmar7 0:e8167f37725c 242 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
jmar7 0:e8167f37725c 243 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
jmar7 0:e8167f37725c 244 tempRegValue = 0;
jmar7 0:e8167f37725c 245 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
jmar7 0:e8167f37725c 246 if (settings.gyro.enableY) tempRegValue |= (1<<4);
jmar7 0:e8167f37725c 247 if (settings.gyro.enableX) tempRegValue |= (1<<3);
jmar7 0:e8167f37725c 248 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
jmar7 0:e8167f37725c 249 xgWriteByte(CTRL_REG4, tempRegValue);
jmar7 0:e8167f37725c 250
jmar7 0:e8167f37725c 251 // ORIENT_CFG_G (Default value: 0x00)
jmar7 0:e8167f37725c 252 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
jmar7 0:e8167f37725c 253 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
jmar7 0:e8167f37725c 254 // Orient [2:0] - Directional user orientation selection
jmar7 0:e8167f37725c 255 tempRegValue = 0;
jmar7 0:e8167f37725c 256 if (settings.gyro.flipX) tempRegValue |= (1<<5);
jmar7 0:e8167f37725c 257 if (settings.gyro.flipY) tempRegValue |= (1<<4);
jmar7 0:e8167f37725c 258 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
jmar7 0:e8167f37725c 259 xgWriteByte(ORIENT_CFG_G, tempRegValue);
jmar7 0:e8167f37725c 260 }
jmar7 0:e8167f37725c 261
jmar7 0:e8167f37725c 262 void LSM9DS1::initAccel()
jmar7 0:e8167f37725c 263 {
jmar7 0:e8167f37725c 264 uint8_t tempRegValue = 0;
jmar7 0:e8167f37725c 265
jmar7 0:e8167f37725c 266 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
jmar7 0:e8167f37725c 267 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
jmar7 0:e8167f37725c 268 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
jmar7 0:e8167f37725c 269 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
jmar7 0:e8167f37725c 270 // Zen_XL - Z-axis output enabled
jmar7 0:e8167f37725c 271 // Yen_XL - Y-axis output enabled
jmar7 0:e8167f37725c 272 // Xen_XL - X-axis output enabled
jmar7 0:e8167f37725c 273 if (settings.accel.enableZ) tempRegValue |= (1<<5);
jmar7 0:e8167f37725c 274 if (settings.accel.enableY) tempRegValue |= (1<<4);
jmar7 0:e8167f37725c 275 if (settings.accel.enableX) tempRegValue |= (1<<3);
jmar7 0:e8167f37725c 276
jmar7 0:e8167f37725c 277 xgWriteByte(CTRL_REG5_XL, tempRegValue);
jmar7 0:e8167f37725c 278
jmar7 0:e8167f37725c 279 // CTRL_REG6_XL (0x20) (Default value: 0x00)
jmar7 0:e8167f37725c 280 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
jmar7 0:e8167f37725c 281 // ODR_XL[2:0] - Output data rate & power mode selection
jmar7 0:e8167f37725c 282 // FS_XL[1:0] - Full-scale selection
jmar7 0:e8167f37725c 283 // BW_SCAL_ODR - Bandwidth selection
jmar7 0:e8167f37725c 284 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
jmar7 0:e8167f37725c 285 tempRegValue = 0;
jmar7 0:e8167f37725c 286 // To disable the accel, set the sampleRate bits to 0.
jmar7 0:e8167f37725c 287 if (settings.accel.enabled)
jmar7 0:e8167f37725c 288 {
jmar7 0:e8167f37725c 289 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
jmar7 0:e8167f37725c 290 }
jmar7 0:e8167f37725c 291 switch (settings.accel.scale)
jmar7 0:e8167f37725c 292 {
jmar7 0:e8167f37725c 293 case 4:
jmar7 0:e8167f37725c 294 tempRegValue |= (0x2 << 3);
jmar7 0:e8167f37725c 295 break;
jmar7 0:e8167f37725c 296 case 8:
jmar7 0:e8167f37725c 297 tempRegValue |= (0x3 << 3);
jmar7 0:e8167f37725c 298 break;
jmar7 0:e8167f37725c 299 case 16:
jmar7 0:e8167f37725c 300 tempRegValue |= (0x1 << 3);
jmar7 0:e8167f37725c 301 break;
jmar7 0:e8167f37725c 302 // Otherwise it'll be set to 2g (0x0 << 3)
jmar7 0:e8167f37725c 303 }
jmar7 0:e8167f37725c 304 if (settings.accel.bandwidth >= 0)
jmar7 0:e8167f37725c 305 {
jmar7 0:e8167f37725c 306 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
jmar7 0:e8167f37725c 307 tempRegValue |= (settings.accel.bandwidth & 0x03);
jmar7 0:e8167f37725c 308 }
jmar7 0:e8167f37725c 309 xgWriteByte(CTRL_REG6_XL, tempRegValue);
jmar7 0:e8167f37725c 310
jmar7 0:e8167f37725c 311 // CTRL_REG7_XL (0x21) (Default value: 0x00)
jmar7 0:e8167f37725c 312 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
jmar7 0:e8167f37725c 313 // HR - High resolution mode (0: disable, 1: enable)
jmar7 0:e8167f37725c 314 // DCF[1:0] - Digital filter cutoff frequency
jmar7 0:e8167f37725c 315 // FDS - Filtered data selection
jmar7 0:e8167f37725c 316 // HPIS1 - HPF enabled for interrupt function
jmar7 0:e8167f37725c 317 tempRegValue = 0;
jmar7 0:e8167f37725c 318 if (settings.accel.highResEnable)
jmar7 0:e8167f37725c 319 {
jmar7 0:e8167f37725c 320 tempRegValue |= (1<<7); // Set HR bit
jmar7 0:e8167f37725c 321 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
jmar7 0:e8167f37725c 322 }
jmar7 0:e8167f37725c 323 xgWriteByte(CTRL_REG7_XL, tempRegValue);
jmar7 0:e8167f37725c 324 }
jmar7 0:e8167f37725c 325
jmar7 0:e8167f37725c 326 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
jmar7 0:e8167f37725c 327 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
jmar7 0:e8167f37725c 328 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
jmar7 0:e8167f37725c 329 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
jmar7 0:e8167f37725c 330 // subtract the biases ourselves. This results in a more accurate measurement in general and can
jmar7 0:e8167f37725c 331 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
jmar7 0:e8167f37725c 332 // is good practice.
jmar7 0:e8167f37725c 333 void LSM9DS1::calibrate(bool autoCalc)
jmar7 0:e8167f37725c 334 {
jmar7 0:e8167f37725c 335 uint8_t samples = 0;
jmar7 0:e8167f37725c 336 int ii;
jmar7 0:e8167f37725c 337 int32_t aBiasRawTemp[3] = {0, 0, 0};
jmar7 0:e8167f37725c 338 int32_t gBiasRawTemp[3] = {0, 0, 0};
jmar7 0:e8167f37725c 339
jmar7 0:e8167f37725c 340 // Turn on FIFO and set threshold to 32 samples
jmar7 0:e8167f37725c 341 enableFIFO(true);
jmar7 0:e8167f37725c 342 setFIFO(FIFO_THS, 0x1F);
jmar7 0:e8167f37725c 343 while (samples < 0x1F)
jmar7 0:e8167f37725c 344 {
jmar7 0:e8167f37725c 345 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
jmar7 0:e8167f37725c 346 }
jmar7 0:e8167f37725c 347 for(ii = 0; ii < samples ; ii++)
jmar7 0:e8167f37725c 348 { // Read the gyro data stored in the FIFO
jmar7 0:e8167f37725c 349 readGyro();
jmar7 0:e8167f37725c 350 gBiasRawTemp[0] += gx;
jmar7 0:e8167f37725c 351 gBiasRawTemp[1] += gy;
jmar7 0:e8167f37725c 352 gBiasRawTemp[2] += gz;
jmar7 0:e8167f37725c 353 readAccel();
jmar7 0:e8167f37725c 354 aBiasRawTemp[0] += ax;
jmar7 0:e8167f37725c 355 aBiasRawTemp[1] += ay;
cduck 2:6036e7916c7a 356 aBiasRawTemp[2] += az - (int16_t)(1.f/aRes); // Assumes sensor facing up!
jmar7 0:e8167f37725c 357 }
jmar7 0:e8167f37725c 358 for (ii = 0; ii < 3; ii++)
jmar7 0:e8167f37725c 359 {
jmar7 0:e8167f37725c 360 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
jmar7 0:e8167f37725c 361 gBias[ii] = calcGyro(gBiasRaw[ii]);
jmar7 0:e8167f37725c 362 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
jmar7 0:e8167f37725c 363 aBias[ii] = calcAccel(aBiasRaw[ii]);
jmar7 0:e8167f37725c 364 }
jmar7 0:e8167f37725c 365
jmar7 0:e8167f37725c 366 enableFIFO(false);
jmar7 0:e8167f37725c 367 setFIFO(FIFO_OFF, 0x00);
jmar7 0:e8167f37725c 368
jmar7 0:e8167f37725c 369 if (autoCalc) _autoCalc = true;
jmar7 0:e8167f37725c 370 }
jmar7 0:e8167f37725c 371
jmar7 0:e8167f37725c 372 void LSM9DS1::calibrateMag(bool loadIn)
jmar7 0:e8167f37725c 373 {
jmar7 0:e8167f37725c 374 int i, j;
jmar7 0:e8167f37725c 375 int16_t magMin[3] = {0, 0, 0};
jmar7 0:e8167f37725c 376 int16_t magMax[3] = {0, 0, 0}; // The road warrior
jmar7 0:e8167f37725c 377
jmar7 0:e8167f37725c 378 for (i=0; i<128; i++)
jmar7 0:e8167f37725c 379 {
jmar7 0:e8167f37725c 380 while (!magAvailable())
jmar7 0:e8167f37725c 381 ;
jmar7 0:e8167f37725c 382 readMag();
jmar7 0:e8167f37725c 383 int16_t magTemp[3] = {0, 0, 0};
jmar7 0:e8167f37725c 384 magTemp[0] = mx;
jmar7 0:e8167f37725c 385 magTemp[1] = my;
jmar7 0:e8167f37725c 386 magTemp[2] = mz;
jmar7 0:e8167f37725c 387 for (j = 0; j < 3; j++)
jmar7 0:e8167f37725c 388 {
jmar7 0:e8167f37725c 389 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
jmar7 0:e8167f37725c 390 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
jmar7 0:e8167f37725c 391 }
jmar7 0:e8167f37725c 392 }
jmar7 0:e8167f37725c 393 for (j = 0; j < 3; j++)
jmar7 0:e8167f37725c 394 {
jmar7 0:e8167f37725c 395 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
jmar7 0:e8167f37725c 396 mBias[j] = calcMag(mBiasRaw[j]);
jmar7 0:e8167f37725c 397 if (loadIn)
jmar7 0:e8167f37725c 398 magOffset(j, mBiasRaw[j]);
jmar7 0:e8167f37725c 399 }
jmar7 0:e8167f37725c 400
jmar7 0:e8167f37725c 401 }
jmar7 0:e8167f37725c 402 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
jmar7 0:e8167f37725c 403 {
jmar7 0:e8167f37725c 404 if (axis > 2)
jmar7 0:e8167f37725c 405 return;
jmar7 0:e8167f37725c 406 uint8_t msb, lsb;
jmar7 0:e8167f37725c 407 msb = (offset & 0xFF00) >> 8;
jmar7 0:e8167f37725c 408 lsb = offset & 0x00FF;
jmar7 0:e8167f37725c 409 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
jmar7 0:e8167f37725c 410 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
jmar7 0:e8167f37725c 411 }
jmar7 0:e8167f37725c 412
jmar7 0:e8167f37725c 413 void LSM9DS1::initMag()
jmar7 0:e8167f37725c 414 {
jmar7 0:e8167f37725c 415 uint8_t tempRegValue = 0;
jmar7 0:e8167f37725c 416
jmar7 0:e8167f37725c 417 // CTRL_REG1_M (Default value: 0x10)
jmar7 0:e8167f37725c 418 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
jmar7 0:e8167f37725c 419 // TEMP_COMP - Temperature compensation
jmar7 0:e8167f37725c 420 // OM[1:0] - X & Y axes op mode selection
jmar7 0:e8167f37725c 421 // 00:low-power, 01:medium performance
jmar7 0:e8167f37725c 422 // 10: high performance, 11:ultra-high performance
jmar7 0:e8167f37725c 423 // DO[2:0] - Output data rate selection
jmar7 0:e8167f37725c 424 // ST - Self-test enable
jmar7 0:e8167f37725c 425 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
jmar7 0:e8167f37725c 426 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
jmar7 0:e8167f37725c 427 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
jmar7 0:e8167f37725c 428 mWriteByte(CTRL_REG1_M, tempRegValue);
jmar7 0:e8167f37725c 429
jmar7 0:e8167f37725c 430 // CTRL_REG2_M (Default value 0x00)
jmar7 0:e8167f37725c 431 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
jmar7 0:e8167f37725c 432 // FS[1:0] - Full-scale configuration
jmar7 0:e8167f37725c 433 // REBOOT - Reboot memory content (0:normal, 1:reboot)
jmar7 0:e8167f37725c 434 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
jmar7 0:e8167f37725c 435 tempRegValue = 0;
jmar7 0:e8167f37725c 436 switch (settings.mag.scale)
jmar7 0:e8167f37725c 437 {
jmar7 0:e8167f37725c 438 case 8:
jmar7 0:e8167f37725c 439 tempRegValue |= (0x1 << 5);
jmar7 0:e8167f37725c 440 break;
jmar7 0:e8167f37725c 441 case 12:
jmar7 0:e8167f37725c 442 tempRegValue |= (0x2 << 5);
jmar7 0:e8167f37725c 443 break;
jmar7 0:e8167f37725c 444 case 16:
jmar7 0:e8167f37725c 445 tempRegValue |= (0x3 << 5);
jmar7 0:e8167f37725c 446 break;
jmar7 0:e8167f37725c 447 // Otherwise we'll default to 4 gauss (00)
jmar7 0:e8167f37725c 448 }
jmar7 0:e8167f37725c 449 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
jmar7 0:e8167f37725c 450
jmar7 0:e8167f37725c 451 // CTRL_REG3_M (Default value: 0x03)
jmar7 0:e8167f37725c 452 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
jmar7 0:e8167f37725c 453 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
jmar7 0:e8167f37725c 454 // LP - Low-power mode cofiguration (1:enable)
jmar7 0:e8167f37725c 455 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
jmar7 0:e8167f37725c 456 // MD[1:0] - Operating mode
jmar7 0:e8167f37725c 457 // 00:continuous conversion, 01:single-conversion,
jmar7 0:e8167f37725c 458 // 10,11: Power-down
jmar7 0:e8167f37725c 459 tempRegValue = 0;
jmar7 0:e8167f37725c 460 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
jmar7 0:e8167f37725c 461 tempRegValue |= (settings.mag.operatingMode & 0x3);
jmar7 0:e8167f37725c 462 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
jmar7 0:e8167f37725c 463
jmar7 0:e8167f37725c 464 // CTRL_REG4_M (Default value: 0x00)
jmar7 0:e8167f37725c 465 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
jmar7 0:e8167f37725c 466 // OMZ[1:0] - Z-axis operative mode selection
jmar7 0:e8167f37725c 467 // 00:low-power mode, 01:medium performance
jmar7 0:e8167f37725c 468 // 10:high performance, 10:ultra-high performance
jmar7 0:e8167f37725c 469 // BLE - Big/little endian data
jmar7 0:e8167f37725c 470 tempRegValue = 0;
jmar7 0:e8167f37725c 471 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
jmar7 0:e8167f37725c 472 mWriteByte(CTRL_REG4_M, tempRegValue);
jmar7 0:e8167f37725c 473
jmar7 0:e8167f37725c 474 // CTRL_REG5_M (Default value: 0x00)
jmar7 0:e8167f37725c 475 // [0][BDU][0][0][0][0][0][0]
jmar7 0:e8167f37725c 476 // BDU - Block data update for magnetic data
jmar7 0:e8167f37725c 477 // 0:continuous, 1:not updated until MSB/LSB are read
jmar7 0:e8167f37725c 478 tempRegValue = 0;
jmar7 0:e8167f37725c 479 mWriteByte(CTRL_REG5_M, tempRegValue);
jmar7 0:e8167f37725c 480 }
jmar7 0:e8167f37725c 481
jmar7 0:e8167f37725c 482 uint8_t LSM9DS1::accelAvailable()
jmar7 0:e8167f37725c 483 {
jmar7 0:e8167f37725c 484 uint8_t status = xgReadByte(STATUS_REG_1);
jmar7 0:e8167f37725c 485
jmar7 0:e8167f37725c 486 return (status & (1<<0));
jmar7 0:e8167f37725c 487 }
jmar7 0:e8167f37725c 488
jmar7 0:e8167f37725c 489 uint8_t LSM9DS1::gyroAvailable()
jmar7 0:e8167f37725c 490 {
jmar7 0:e8167f37725c 491 uint8_t status = xgReadByte(STATUS_REG_1);
jmar7 0:e8167f37725c 492
jmar7 0:e8167f37725c 493 return ((status & (1<<1)) >> 1);
jmar7 0:e8167f37725c 494 }
jmar7 0:e8167f37725c 495
jmar7 0:e8167f37725c 496 uint8_t LSM9DS1::tempAvailable()
jmar7 0:e8167f37725c 497 {
jmar7 0:e8167f37725c 498 uint8_t status = xgReadByte(STATUS_REG_1);
jmar7 0:e8167f37725c 499
jmar7 0:e8167f37725c 500 return ((status & (1<<2)) >> 2);
jmar7 0:e8167f37725c 501 }
jmar7 0:e8167f37725c 502
jmar7 0:e8167f37725c 503 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
jmar7 0:e8167f37725c 504 {
jmar7 0:e8167f37725c 505 uint8_t status;
jmar7 0:e8167f37725c 506 status = mReadByte(STATUS_REG_M);
jmar7 0:e8167f37725c 507
jmar7 0:e8167f37725c 508 return ((status & (1<<axis)) >> axis);
jmar7 0:e8167f37725c 509 }
jmar7 0:e8167f37725c 510
jmar7 0:e8167f37725c 511 void LSM9DS1::readAccel()
jmar7 0:e8167f37725c 512 {
jmar7 0:e8167f37725c 513 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
jmar7 0:e8167f37725c 514 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
jmar7 0:e8167f37725c 515 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
jmar7 0:e8167f37725c 516 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
jmar7 0:e8167f37725c 517 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
jmar7 0:e8167f37725c 518 if (_autoCalc)
jmar7 0:e8167f37725c 519 {
jmar7 0:e8167f37725c 520 ax -= aBiasRaw[X_AXIS];
jmar7 0:e8167f37725c 521 ay -= aBiasRaw[Y_AXIS];
jmar7 0:e8167f37725c 522 az -= aBiasRaw[Z_AXIS];
jmar7 0:e8167f37725c 523 }
jmar7 0:e8167f37725c 524 }
jmar7 0:e8167f37725c 525
jmar7 0:e8167f37725c 526 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
jmar7 0:e8167f37725c 527 {
jmar7 0:e8167f37725c 528 uint8_t temp[2];
jmar7 0:e8167f37725c 529 int16_t value;
jmar7 0:e8167f37725c 530 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
jmar7 0:e8167f37725c 531 value = (temp[1] << 8) | temp[0];
jmar7 0:e8167f37725c 532
jmar7 0:e8167f37725c 533 if (_autoCalc)
jmar7 0:e8167f37725c 534 value -= aBiasRaw[axis];
jmar7 0:e8167f37725c 535
jmar7 0:e8167f37725c 536 return value;
jmar7 0:e8167f37725c 537 }
jmar7 0:e8167f37725c 538
jmar7 0:e8167f37725c 539 void LSM9DS1::readMag()
jmar7 0:e8167f37725c 540 {
jmar7 0:e8167f37725c 541 uint8_t temp[6]; // We'll read six bytes from the mag into temp
jmar7 0:e8167f37725c 542 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
jmar7 0:e8167f37725c 543 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
jmar7 0:e8167f37725c 544 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
jmar7 0:e8167f37725c 545 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
jmar7 0:e8167f37725c 546 }
jmar7 0:e8167f37725c 547
jmar7 0:e8167f37725c 548 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
jmar7 0:e8167f37725c 549 {
jmar7 0:e8167f37725c 550 uint8_t temp[2];
jmar7 0:e8167f37725c 551 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
jmar7 0:e8167f37725c 552 return (temp[1] << 8) | temp[0];
jmar7 0:e8167f37725c 553 }
jmar7 0:e8167f37725c 554
jmar7 0:e8167f37725c 555 void LSM9DS1::readTemp()
jmar7 0:e8167f37725c 556 {
jmar7 0:e8167f37725c 557 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
jmar7 0:e8167f37725c 558 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
jmar7 0:e8167f37725c 559 temperature = ((int16_t)temp[1] << 8) | temp[0];
jmar7 0:e8167f37725c 560 }
jmar7 0:e8167f37725c 561
jmar7 0:e8167f37725c 562 void LSM9DS1::readGyro()
jmar7 0:e8167f37725c 563 {
jmar7 0:e8167f37725c 564 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
jmar7 0:e8167f37725c 565 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
jmar7 0:e8167f37725c 566 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
jmar7 0:e8167f37725c 567 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
jmar7 0:e8167f37725c 568 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
jmar7 0:e8167f37725c 569 if (_autoCalc)
jmar7 0:e8167f37725c 570 {
jmar7 0:e8167f37725c 571 gx -= gBiasRaw[X_AXIS];
jmar7 0:e8167f37725c 572 gy -= gBiasRaw[Y_AXIS];
jmar7 0:e8167f37725c 573 gz -= gBiasRaw[Z_AXIS];
jmar7 0:e8167f37725c 574 }
jmar7 0:e8167f37725c 575 }
jmar7 0:e8167f37725c 576
jmar7 0:e8167f37725c 577 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
jmar7 0:e8167f37725c 578 {
jmar7 0:e8167f37725c 579 uint8_t temp[2];
jmar7 0:e8167f37725c 580 int16_t value;
jmar7 0:e8167f37725c 581
jmar7 0:e8167f37725c 582 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
jmar7 0:e8167f37725c 583
jmar7 0:e8167f37725c 584 value = (temp[1] << 8) | temp[0];
jmar7 0:e8167f37725c 585
jmar7 0:e8167f37725c 586 if (_autoCalc)
jmar7 0:e8167f37725c 587 value -= gBiasRaw[axis];
jmar7 0:e8167f37725c 588
jmar7 0:e8167f37725c 589 return value;
jmar7 0:e8167f37725c 590 }
jmar7 0:e8167f37725c 591
jmar7 0:e8167f37725c 592 float LSM9DS1::calcGyro(int16_t gyro)
jmar7 0:e8167f37725c 593 {
jmar7 0:e8167f37725c 594 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
jmar7 0:e8167f37725c 595 return gRes * gyro;
jmar7 0:e8167f37725c 596 }
jmar7 0:e8167f37725c 597
jmar7 0:e8167f37725c 598 float LSM9DS1::calcAccel(int16_t accel)
jmar7 0:e8167f37725c 599 {
jmar7 0:e8167f37725c 600 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
jmar7 0:e8167f37725c 601 return aRes * accel;
jmar7 0:e8167f37725c 602 }
jmar7 0:e8167f37725c 603
jmar7 0:e8167f37725c 604 float LSM9DS1::calcMag(int16_t mag)
jmar7 0:e8167f37725c 605 {
jmar7 0:e8167f37725c 606 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
jmar7 0:e8167f37725c 607 return mRes * mag;
jmar7 0:e8167f37725c 608 }
jmar7 0:e8167f37725c 609
jmar7 0:e8167f37725c 610 void LSM9DS1::setGyroScale(uint16_t gScl)
jmar7 0:e8167f37725c 611 {
jmar7 0:e8167f37725c 612 // Read current value of CTRL_REG1_G:
jmar7 0:e8167f37725c 613 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
jmar7 0:e8167f37725c 614 // Mask out scale bits (3 & 4):
jmar7 0:e8167f37725c 615 ctrl1RegValue &= 0xE7;
jmar7 0:e8167f37725c 616 switch (gScl)
jmar7 0:e8167f37725c 617 {
jmar7 0:e8167f37725c 618 case 500:
jmar7 0:e8167f37725c 619 ctrl1RegValue |= (0x1 << 3);
jmar7 0:e8167f37725c 620 settings.gyro.scale = 500;
jmar7 0:e8167f37725c 621 break;
jmar7 0:e8167f37725c 622 case 2000:
jmar7 0:e8167f37725c 623 ctrl1RegValue |= (0x3 << 3);
jmar7 0:e8167f37725c 624 settings.gyro.scale = 2000;
jmar7 0:e8167f37725c 625 break;
jmar7 0:e8167f37725c 626 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
jmar7 0:e8167f37725c 627 settings.gyro.scale = 245;
jmar7 0:e8167f37725c 628 break;
jmar7 0:e8167f37725c 629 }
jmar7 0:e8167f37725c 630 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
jmar7 0:e8167f37725c 631
jmar7 0:e8167f37725c 632 calcgRes();
jmar7 0:e8167f37725c 633 }
jmar7 0:e8167f37725c 634
jmar7 0:e8167f37725c 635 void LSM9DS1::setAccelScale(uint8_t aScl)
jmar7 0:e8167f37725c 636 {
jmar7 0:e8167f37725c 637 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
jmar7 0:e8167f37725c 638 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
jmar7 0:e8167f37725c 639 // Mask out accel scale bits:
jmar7 0:e8167f37725c 640 tempRegValue &= 0xE7;
jmar7 0:e8167f37725c 641
jmar7 0:e8167f37725c 642 switch (aScl)
jmar7 0:e8167f37725c 643 {
jmar7 0:e8167f37725c 644 case 4:
jmar7 0:e8167f37725c 645 tempRegValue |= (0x2 << 3);
jmar7 0:e8167f37725c 646 settings.accel.scale = 4;
jmar7 0:e8167f37725c 647 break;
jmar7 0:e8167f37725c 648 case 8:
jmar7 0:e8167f37725c 649 tempRegValue |= (0x3 << 3);
jmar7 0:e8167f37725c 650 settings.accel.scale = 8;
jmar7 0:e8167f37725c 651 break;
jmar7 0:e8167f37725c 652 case 16:
jmar7 0:e8167f37725c 653 tempRegValue |= (0x1 << 3);
jmar7 0:e8167f37725c 654 settings.accel.scale = 16;
jmar7 0:e8167f37725c 655 break;
jmar7 0:e8167f37725c 656 default: // Otherwise it'll be set to 2g (0x0 << 3)
jmar7 0:e8167f37725c 657 settings.accel.scale = 2;
jmar7 0:e8167f37725c 658 break;
jmar7 0:e8167f37725c 659 }
jmar7 0:e8167f37725c 660 xgWriteByte(CTRL_REG6_XL, tempRegValue);
jmar7 0:e8167f37725c 661
jmar7 0:e8167f37725c 662 // Then calculate a new aRes, which relies on aScale being set correctly:
jmar7 0:e8167f37725c 663 calcaRes();
jmar7 0:e8167f37725c 664 }
jmar7 0:e8167f37725c 665
jmar7 0:e8167f37725c 666 void LSM9DS1::setMagScale(uint8_t mScl)
jmar7 0:e8167f37725c 667 {
jmar7 0:e8167f37725c 668 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
jmar7 0:e8167f37725c 669 uint8_t temp = mReadByte(CTRL_REG2_M);
jmar7 0:e8167f37725c 670 // Then mask out the mag scale bits:
jmar7 0:e8167f37725c 671 temp &= 0xFF^(0x3 << 5);
jmar7 0:e8167f37725c 672
jmar7 0:e8167f37725c 673 switch (mScl)
jmar7 0:e8167f37725c 674 {
jmar7 0:e8167f37725c 675 case 8:
jmar7 0:e8167f37725c 676 temp |= (0x1 << 5);
jmar7 0:e8167f37725c 677 settings.mag.scale = 8;
jmar7 0:e8167f37725c 678 break;
jmar7 0:e8167f37725c 679 case 12:
jmar7 0:e8167f37725c 680 temp |= (0x2 << 5);
jmar7 0:e8167f37725c 681 settings.mag.scale = 12;
jmar7 0:e8167f37725c 682 break;
jmar7 0:e8167f37725c 683 case 16:
jmar7 0:e8167f37725c 684 temp |= (0x3 << 5);
jmar7 0:e8167f37725c 685 settings.mag.scale = 16;
jmar7 0:e8167f37725c 686 break;
jmar7 0:e8167f37725c 687 default: // Otherwise we'll default to 4 gauss (00)
jmar7 0:e8167f37725c 688 settings.mag.scale = 4;
jmar7 0:e8167f37725c 689 break;
jmar7 0:e8167f37725c 690 }
jmar7 0:e8167f37725c 691
jmar7 0:e8167f37725c 692 // And write the new register value back into CTRL_REG6_XM:
jmar7 0:e8167f37725c 693 mWriteByte(CTRL_REG2_M, temp);
jmar7 0:e8167f37725c 694
jmar7 0:e8167f37725c 695 // We've updated the sensor, but we also need to update our class variables
jmar7 0:e8167f37725c 696 // First update mScale:
jmar7 0:e8167f37725c 697 //mScale = mScl;
jmar7 0:e8167f37725c 698 // Then calculate a new mRes, which relies on mScale being set correctly:
jmar7 0:e8167f37725c 699 calcmRes();
jmar7 0:e8167f37725c 700 }
jmar7 0:e8167f37725c 701
jmar7 0:e8167f37725c 702 void LSM9DS1::setGyroODR(uint8_t gRate)
jmar7 0:e8167f37725c 703 {
jmar7 0:e8167f37725c 704 // Only do this if gRate is not 0 (which would disable the gyro)
jmar7 0:e8167f37725c 705 if ((gRate & 0x07) != 0)
jmar7 0:e8167f37725c 706 {
jmar7 0:e8167f37725c 707 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
jmar7 0:e8167f37725c 708 uint8_t temp = xgReadByte(CTRL_REG1_G);
jmar7 0:e8167f37725c 709 // Then mask out the gyro ODR bits:
jmar7 0:e8167f37725c 710 temp &= 0xFF^(0x7 << 5);
jmar7 0:e8167f37725c 711 temp |= (gRate & 0x07) << 5;
jmar7 0:e8167f37725c 712 // Update our settings struct
jmar7 0:e8167f37725c 713 settings.gyro.sampleRate = gRate & 0x07;
jmar7 0:e8167f37725c 714 // And write the new register value back into CTRL_REG1_G:
jmar7 0:e8167f37725c 715 xgWriteByte(CTRL_REG1_G, temp);
jmar7 0:e8167f37725c 716 }
jmar7 0:e8167f37725c 717 }
jmar7 0:e8167f37725c 718
jmar7 0:e8167f37725c 719 void LSM9DS1::setAccelODR(uint8_t aRate)
jmar7 0:e8167f37725c 720 {
jmar7 0:e8167f37725c 721 // Only do this if aRate is not 0 (which would disable the accel)
jmar7 0:e8167f37725c 722 if ((aRate & 0x07) != 0)
jmar7 0:e8167f37725c 723 {
jmar7 0:e8167f37725c 724 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
jmar7 0:e8167f37725c 725 uint8_t temp = xgReadByte(CTRL_REG6_XL);
jmar7 0:e8167f37725c 726 // Then mask out the accel ODR bits:
jmar7 0:e8167f37725c 727 temp &= 0x1F;
jmar7 0:e8167f37725c 728 // Then shift in our new ODR bits:
jmar7 0:e8167f37725c 729 temp |= ((aRate & 0x07) << 5);
jmar7 0:e8167f37725c 730 settings.accel.sampleRate = aRate & 0x07;
jmar7 0:e8167f37725c 731 // And write the new register value back into CTRL_REG1_XM:
jmar7 0:e8167f37725c 732 xgWriteByte(CTRL_REG6_XL, temp);
jmar7 0:e8167f37725c 733 }
jmar7 0:e8167f37725c 734 }
jmar7 0:e8167f37725c 735
jmar7 0:e8167f37725c 736 void LSM9DS1::setMagODR(uint8_t mRate)
jmar7 0:e8167f37725c 737 {
jmar7 0:e8167f37725c 738 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
jmar7 0:e8167f37725c 739 uint8_t temp = mReadByte(CTRL_REG1_M);
jmar7 0:e8167f37725c 740 // Then mask out the mag ODR bits:
jmar7 0:e8167f37725c 741 temp &= 0xFF^(0x7 << 2);
jmar7 0:e8167f37725c 742 // Then shift in our new ODR bits:
jmar7 0:e8167f37725c 743 temp |= ((mRate & 0x07) << 2);
jmar7 0:e8167f37725c 744 settings.mag.sampleRate = mRate & 0x07;
jmar7 0:e8167f37725c 745 // And write the new register value back into CTRL_REG5_XM:
jmar7 0:e8167f37725c 746 mWriteByte(CTRL_REG1_M, temp);
jmar7 0:e8167f37725c 747 }
jmar7 0:e8167f37725c 748
jmar7 0:e8167f37725c 749 void LSM9DS1::calcgRes()
jmar7 0:e8167f37725c 750 {
cduck 2:6036e7916c7a 751 gRes = ((float) settings.gyro.scale) / 32768.0f;
jmar7 0:e8167f37725c 752 }
jmar7 0:e8167f37725c 753
jmar7 0:e8167f37725c 754 void LSM9DS1::calcaRes()
jmar7 0:e8167f37725c 755 {
cduck 2:6036e7916c7a 756 aRes = ((float) settings.accel.scale) / 32768.0f;
jmar7 0:e8167f37725c 757 }
jmar7 0:e8167f37725c 758
jmar7 0:e8167f37725c 759 void LSM9DS1::calcmRes()
jmar7 0:e8167f37725c 760 {
jmar7 0:e8167f37725c 761 //mRes = ((float) settings.mag.scale) / 32768.0;
jmar7 0:e8167f37725c 762 switch (settings.mag.scale)
jmar7 0:e8167f37725c 763 {
jmar7 0:e8167f37725c 764 case 4:
jmar7 0:e8167f37725c 765 mRes = magSensitivity[0];
jmar7 0:e8167f37725c 766 break;
jmar7 0:e8167f37725c 767 case 8:
jmar7 0:e8167f37725c 768 mRes = magSensitivity[1];
jmar7 0:e8167f37725c 769 break;
jmar7 0:e8167f37725c 770 case 12:
jmar7 0:e8167f37725c 771 mRes = magSensitivity[2];
jmar7 0:e8167f37725c 772 break;
jmar7 0:e8167f37725c 773 case 16:
jmar7 0:e8167f37725c 774 mRes = magSensitivity[3];
jmar7 0:e8167f37725c 775 break;
jmar7 0:e8167f37725c 776 }
jmar7 0:e8167f37725c 777
jmar7 0:e8167f37725c 778 }
jmar7 0:e8167f37725c 779
jmar7 0:e8167f37725c 780 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
jmar7 0:e8167f37725c 781 h_lactive activeLow, pp_od pushPull)
jmar7 0:e8167f37725c 782 {
jmar7 0:e8167f37725c 783 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
jmar7 0:e8167f37725c 784 // those two values.
jmar7 0:e8167f37725c 785 // [generator] should be an OR'd list of values from the interrupt_generators enum
jmar7 0:e8167f37725c 786 xgWriteByte(interrupt, generator);
jmar7 0:e8167f37725c 787
jmar7 0:e8167f37725c 788 // Configure CTRL_REG8
jmar7 0:e8167f37725c 789 uint8_t temp;
jmar7 0:e8167f37725c 790 temp = xgReadByte(CTRL_REG8);
jmar7 0:e8167f37725c 791
jmar7 0:e8167f37725c 792 if (activeLow) temp |= (1<<5);
jmar7 0:e8167f37725c 793 else temp &= ~(1<<5);
jmar7 0:e8167f37725c 794
jmar7 0:e8167f37725c 795 if (pushPull) temp &= ~(1<<4);
jmar7 0:e8167f37725c 796 else temp |= (1<<4);
jmar7 0:e8167f37725c 797
jmar7 0:e8167f37725c 798 xgWriteByte(CTRL_REG8, temp);
jmar7 0:e8167f37725c 799 }
jmar7 0:e8167f37725c 800
jmar7 0:e8167f37725c 801 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
jmar7 0:e8167f37725c 802 {
jmar7 0:e8167f37725c 803 uint8_t temp = 0;
jmar7 0:e8167f37725c 804
jmar7 0:e8167f37725c 805 temp = threshold & 0x7F;
jmar7 0:e8167f37725c 806 if (sleepOn) temp |= (1<<7);
jmar7 0:e8167f37725c 807 xgWriteByte(ACT_THS, temp);
jmar7 0:e8167f37725c 808
jmar7 0:e8167f37725c 809 xgWriteByte(ACT_DUR, duration);
jmar7 0:e8167f37725c 810 }
jmar7 0:e8167f37725c 811
jmar7 0:e8167f37725c 812 uint8_t LSM9DS1::getInactivity()
jmar7 0:e8167f37725c 813 {
jmar7 0:e8167f37725c 814 uint8_t temp = xgReadByte(STATUS_REG_0);
jmar7 0:e8167f37725c 815 temp &= (0x10);
jmar7 0:e8167f37725c 816 return temp;
jmar7 0:e8167f37725c 817 }
jmar7 0:e8167f37725c 818
jmar7 0:e8167f37725c 819 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
jmar7 0:e8167f37725c 820 {
jmar7 0:e8167f37725c 821 // Use variables from accel_interrupt_generator, OR'd together to create
jmar7 0:e8167f37725c 822 // the [generator]value.
jmar7 0:e8167f37725c 823 uint8_t temp = generator;
jmar7 0:e8167f37725c 824 if (andInterrupts) temp |= 0x80;
jmar7 0:e8167f37725c 825 xgWriteByte(INT_GEN_CFG_XL, temp);
jmar7 0:e8167f37725c 826 }
jmar7 0:e8167f37725c 827
jmar7 0:e8167f37725c 828 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
jmar7 0:e8167f37725c 829 {
jmar7 0:e8167f37725c 830 // Write threshold value to INT_GEN_THS_?_XL.
jmar7 0:e8167f37725c 831 // axis will be 0, 1, or 2 (x, y, z respectively)
jmar7 0:e8167f37725c 832 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
jmar7 0:e8167f37725c 833
jmar7 0:e8167f37725c 834 // Write duration and wait to INT_GEN_DUR_XL
jmar7 0:e8167f37725c 835 uint8_t temp;
jmar7 0:e8167f37725c 836 temp = (duration & 0x7F);
jmar7 0:e8167f37725c 837 if (wait) temp |= 0x80;
jmar7 0:e8167f37725c 838 xgWriteByte(INT_GEN_DUR_XL, temp);
jmar7 0:e8167f37725c 839 }
jmar7 0:e8167f37725c 840
jmar7 0:e8167f37725c 841 uint8_t LSM9DS1::getAccelIntSrc()
jmar7 0:e8167f37725c 842 {
jmar7 0:e8167f37725c 843 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
jmar7 0:e8167f37725c 844
jmar7 0:e8167f37725c 845 // Check if the IA_XL (interrupt active) bit is set
jmar7 0:e8167f37725c 846 if (intSrc & (1<<6))
jmar7 0:e8167f37725c 847 {
jmar7 0:e8167f37725c 848 return (intSrc & 0x3F);
jmar7 0:e8167f37725c 849 }
jmar7 0:e8167f37725c 850
jmar7 0:e8167f37725c 851 return 0;
jmar7 0:e8167f37725c 852 }
jmar7 0:e8167f37725c 853
jmar7 0:e8167f37725c 854 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
jmar7 0:e8167f37725c 855 {
jmar7 0:e8167f37725c 856 // Use variables from accel_interrupt_generator, OR'd together to create
jmar7 0:e8167f37725c 857 // the [generator]value.
jmar7 0:e8167f37725c 858 uint8_t temp = generator;
jmar7 0:e8167f37725c 859 if (aoi) temp |= 0x80;
jmar7 0:e8167f37725c 860 if (latch) temp |= 0x40;
jmar7 0:e8167f37725c 861 xgWriteByte(INT_GEN_CFG_G, temp);
jmar7 0:e8167f37725c 862 }
jmar7 0:e8167f37725c 863
jmar7 0:e8167f37725c 864 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
jmar7 0:e8167f37725c 865 {
jmar7 0:e8167f37725c 866 uint8_t buffer[2];
jmar7 0:e8167f37725c 867 buffer[0] = (threshold & 0x7F00) >> 8;
jmar7 0:e8167f37725c 868 buffer[1] = (threshold & 0x00FF);
jmar7 0:e8167f37725c 869 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
jmar7 0:e8167f37725c 870 // axis will be 0, 1, or 2 (x, y, z respectively)
jmar7 0:e8167f37725c 871 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
jmar7 0:e8167f37725c 872 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
jmar7 0:e8167f37725c 873
jmar7 0:e8167f37725c 874 // Write duration and wait to INT_GEN_DUR_XL
jmar7 0:e8167f37725c 875 uint8_t temp;
jmar7 0:e8167f37725c 876 temp = (duration & 0x7F);
jmar7 0:e8167f37725c 877 if (wait) temp |= 0x80;
jmar7 0:e8167f37725c 878 xgWriteByte(INT_GEN_DUR_G, temp);
jmar7 0:e8167f37725c 879 }
jmar7 0:e8167f37725c 880
jmar7 0:e8167f37725c 881 uint8_t LSM9DS1::getGyroIntSrc()
jmar7 0:e8167f37725c 882 {
jmar7 0:e8167f37725c 883 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
jmar7 0:e8167f37725c 884
jmar7 0:e8167f37725c 885 // Check if the IA_G (interrupt active) bit is set
jmar7 0:e8167f37725c 886 if (intSrc & (1<<6))
jmar7 0:e8167f37725c 887 {
jmar7 0:e8167f37725c 888 return (intSrc & 0x3F);
jmar7 0:e8167f37725c 889 }
jmar7 0:e8167f37725c 890
jmar7 0:e8167f37725c 891 return 0;
jmar7 0:e8167f37725c 892 }
jmar7 0:e8167f37725c 893
jmar7 0:e8167f37725c 894 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
jmar7 0:e8167f37725c 895 {
jmar7 0:e8167f37725c 896 // Mask out non-generator bits (0-4)
jmar7 0:e8167f37725c 897 uint8_t config = (generator & 0xE0);
jmar7 0:e8167f37725c 898 // IEA bit is 0 for active-low, 1 for active-high.
jmar7 0:e8167f37725c 899 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
jmar7 0:e8167f37725c 900 // IEL bit is 0 for latched, 1 for not-latched
jmar7 0:e8167f37725c 901 if (!latch) config |= (1<<1);
jmar7 0:e8167f37725c 902 // As long as we have at least 1 generator, enable the interrupt
jmar7 0:e8167f37725c 903 if (generator != 0) config |= (1<<0);
jmar7 0:e8167f37725c 904
jmar7 0:e8167f37725c 905 mWriteByte(INT_CFG_M, config);
jmar7 0:e8167f37725c 906 }
jmar7 0:e8167f37725c 907
jmar7 0:e8167f37725c 908 void LSM9DS1::configMagThs(uint16_t threshold)
jmar7 0:e8167f37725c 909 {
jmar7 0:e8167f37725c 910 // Write high eight bits of [threshold] to INT_THS_H_M
jmar7 0:e8167f37725c 911 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
jmar7 0:e8167f37725c 912 // Write low eight bits of [threshold] to INT_THS_L_M
jmar7 0:e8167f37725c 913 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
jmar7 0:e8167f37725c 914 }
jmar7 0:e8167f37725c 915
jmar7 0:e8167f37725c 916 uint8_t LSM9DS1::getMagIntSrc()
jmar7 0:e8167f37725c 917 {
jmar7 0:e8167f37725c 918 uint8_t intSrc = mReadByte(INT_SRC_M);
jmar7 0:e8167f37725c 919
jmar7 0:e8167f37725c 920 // Check if the INT (interrupt active) bit is set
jmar7 0:e8167f37725c 921 if (intSrc & (1<<0))
jmar7 0:e8167f37725c 922 {
jmar7 0:e8167f37725c 923 return (intSrc & 0xFE);
jmar7 0:e8167f37725c 924 }
jmar7 0:e8167f37725c 925
jmar7 0:e8167f37725c 926 return 0;
jmar7 0:e8167f37725c 927 }
jmar7 0:e8167f37725c 928
jmar7 0:e8167f37725c 929 void LSM9DS1::sleepGyro(bool enable)
jmar7 0:e8167f37725c 930 {
jmar7 0:e8167f37725c 931 uint8_t temp = xgReadByte(CTRL_REG9);
jmar7 0:e8167f37725c 932 if (enable) temp |= (1<<6);
jmar7 0:e8167f37725c 933 else temp &= ~(1<<6);
jmar7 0:e8167f37725c 934 xgWriteByte(CTRL_REG9, temp);
jmar7 0:e8167f37725c 935 }
jmar7 0:e8167f37725c 936
jmar7 0:e8167f37725c 937 void LSM9DS1::enableFIFO(bool enable)
jmar7 0:e8167f37725c 938 {
jmar7 0:e8167f37725c 939 uint8_t temp = xgReadByte(CTRL_REG9);
jmar7 0:e8167f37725c 940 if (enable) temp |= (1<<1);
jmar7 0:e8167f37725c 941 else temp &= ~(1<<1);
jmar7 0:e8167f37725c 942 xgWriteByte(CTRL_REG9, temp);
jmar7 0:e8167f37725c 943 }
jmar7 0:e8167f37725c 944
jmar7 0:e8167f37725c 945 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
jmar7 0:e8167f37725c 946 {
jmar7 0:e8167f37725c 947 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
jmar7 0:e8167f37725c 948 // limit it to the maximum.
jmar7 0:e8167f37725c 949 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
jmar7 0:e8167f37725c 950 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
jmar7 0:e8167f37725c 951 }
jmar7 0:e8167f37725c 952
jmar7 0:e8167f37725c 953 uint8_t LSM9DS1::getFIFOSamples()
jmar7 0:e8167f37725c 954 {
jmar7 0:e8167f37725c 955 return (xgReadByte(FIFO_SRC) & 0x3F);
jmar7 0:e8167f37725c 956 }
jmar7 0:e8167f37725c 957
jmar7 0:e8167f37725c 958 void LSM9DS1::constrainScales()
jmar7 0:e8167f37725c 959 {
jmar7 0:e8167f37725c 960 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
jmar7 0:e8167f37725c 961 (settings.gyro.scale != 2000))
jmar7 0:e8167f37725c 962 {
jmar7 0:e8167f37725c 963 settings.gyro.scale = 245;
jmar7 0:e8167f37725c 964 }
jmar7 0:e8167f37725c 965
jmar7 0:e8167f37725c 966 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
jmar7 0:e8167f37725c 967 (settings.accel.scale != 8) && (settings.accel.scale != 16))
jmar7 0:e8167f37725c 968 {
jmar7 0:e8167f37725c 969 settings.accel.scale = 2;
jmar7 0:e8167f37725c 970 }
jmar7 0:e8167f37725c 971
jmar7 0:e8167f37725c 972 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
jmar7 0:e8167f37725c 973 (settings.mag.scale != 12) && (settings.mag.scale != 16))
jmar7 0:e8167f37725c 974 {
jmar7 0:e8167f37725c 975 settings.mag.scale = 4;
jmar7 0:e8167f37725c 976 }
jmar7 0:e8167f37725c 977 }
jmar7 0:e8167f37725c 978
jmar7 0:e8167f37725c 979 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
jmar7 0:e8167f37725c 980 {
jmar7 0:e8167f37725c 981 // Whether we're using I2C or SPI, write a byte using the
jmar7 0:e8167f37725c 982 // gyro-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 983 if (settings.device.commInterface == IMU_MODE_I2C) {
jmar7 0:e8167f37725c 984 I2CwriteByte(_xgAddress, subAddress, data);
jmar7 0:e8167f37725c 985 } else if (settings.device.commInterface == IMU_MODE_SPI) {
jmar7 0:e8167f37725c 986 SPIwriteByte(_xgAddress, subAddress, data);
jmar7 0:e8167f37725c 987 }
jmar7 0:e8167f37725c 988 }
jmar7 0:e8167f37725c 989
jmar7 0:e8167f37725c 990 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
jmar7 0:e8167f37725c 991 {
jmar7 0:e8167f37725c 992 // Whether we're using I2C or SPI, write a byte using the
jmar7 0:e8167f37725c 993 // accelerometer-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 994 if (settings.device.commInterface == IMU_MODE_I2C)
jmar7 0:e8167f37725c 995 return I2CwriteByte(_mAddress, subAddress, data);
jmar7 0:e8167f37725c 996 else if (settings.device.commInterface == IMU_MODE_SPI)
jmar7 0:e8167f37725c 997 return SPIwriteByte(_mAddress, subAddress, data);
jmar7 0:e8167f37725c 998 }
jmar7 0:e8167f37725c 999
jmar7 0:e8167f37725c 1000 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
jmar7 0:e8167f37725c 1001 {
jmar7 0:e8167f37725c 1002 // Whether we're using I2C or SPI, read a byte using the
jmar7 0:e8167f37725c 1003 // gyro-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 1004 if (settings.device.commInterface == IMU_MODE_I2C)
jmar7 0:e8167f37725c 1005 return I2CreadByte(_xgAddress, subAddress);
jmar7 0:e8167f37725c 1006 else if (settings.device.commInterface == IMU_MODE_SPI)
jmar7 0:e8167f37725c 1007 return SPIreadByte(_xgAddress, subAddress);
cduck 2:6036e7916c7a 1008 else
cduck 2:6036e7916c7a 1009 return 0;
jmar7 0:e8167f37725c 1010 }
jmar7 0:e8167f37725c 1011
jmar7 0:e8167f37725c 1012 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
jmar7 0:e8167f37725c 1013 {
jmar7 0:e8167f37725c 1014 // Whether we're using I2C or SPI, read multiple bytes using the
jmar7 0:e8167f37725c 1015 // gyro-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 1016 if (settings.device.commInterface == IMU_MODE_I2C) {
jmar7 0:e8167f37725c 1017 I2CreadBytes(_xgAddress, subAddress, dest, count);
jmar7 0:e8167f37725c 1018 } else if (settings.device.commInterface == IMU_MODE_SPI) {
jmar7 0:e8167f37725c 1019 SPIreadBytes(_xgAddress, subAddress, dest, count);
jmar7 0:e8167f37725c 1020 }
jmar7 0:e8167f37725c 1021 }
jmar7 0:e8167f37725c 1022
jmar7 0:e8167f37725c 1023 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
jmar7 0:e8167f37725c 1024 {
jmar7 0:e8167f37725c 1025 // Whether we're using I2C or SPI, read a byte using the
jmar7 0:e8167f37725c 1026 // accelerometer-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 1027 if (settings.device.commInterface == IMU_MODE_I2C)
jmar7 0:e8167f37725c 1028 return I2CreadByte(_mAddress, subAddress);
jmar7 0:e8167f37725c 1029 else if (settings.device.commInterface == IMU_MODE_SPI)
jmar7 0:e8167f37725c 1030 return SPIreadByte(_mAddress, subAddress);
cduck 2:6036e7916c7a 1031 else
cduck 2:6036e7916c7a 1032 return 0;
jmar7 0:e8167f37725c 1033 }
jmar7 0:e8167f37725c 1034
jmar7 0:e8167f37725c 1035 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
jmar7 0:e8167f37725c 1036 {
jmar7 0:e8167f37725c 1037 // Whether we're using I2C or SPI, read multiple bytes using the
jmar7 0:e8167f37725c 1038 // accelerometer-specific I2C address or SPI CS pin.
jmar7 0:e8167f37725c 1039 if (settings.device.commInterface == IMU_MODE_I2C)
jmar7 0:e8167f37725c 1040 I2CreadBytes(_mAddress, subAddress, dest, count);
jmar7 0:e8167f37725c 1041 else if (settings.device.commInterface == IMU_MODE_SPI)
jmar7 0:e8167f37725c 1042 SPIreadBytes(_mAddress, subAddress, dest, count);
jmar7 0:e8167f37725c 1043 }
jmar7 0:e8167f37725c 1044
jmar7 0:e8167f37725c 1045 void LSM9DS1::initSPI()
jmar7 0:e8167f37725c 1046 {
jmar7 1:87d535bf8c53 1047 /*
jmar7 0:e8167f37725c 1048 pinMode(_xgAddress, OUTPUT);
jmar7 0:e8167f37725c 1049 digitalWrite(_xgAddress, HIGH);
jmar7 0:e8167f37725c 1050 pinMode(_mAddress, OUTPUT);
jmar7 0:e8167f37725c 1051 digitalWrite(_mAddress, HIGH);
jmar7 0:e8167f37725c 1052
jmar7 0:e8167f37725c 1053 SPI.begin();
jmar7 0:e8167f37725c 1054 // Maximum SPI frequency is 10MHz, could divide by 2 here:
jmar7 0:e8167f37725c 1055 SPI.setClockDivider(SPI_CLOCK_DIV2);
jmar7 0:e8167f37725c 1056 // Data is read and written MSb first.
jmar7 0:e8167f37725c 1057 SPI.setBitOrder(MSBFIRST);
jmar7 0:e8167f37725c 1058 // Data is captured on rising edge of clock (CPHA = 0)
jmar7 0:e8167f37725c 1059 // Base value of the clock is HIGH (CPOL = 1)
jmar7 0:e8167f37725c 1060 SPI.setDataMode(SPI_MODE0);
jmar7 0:e8167f37725c 1061 */
jmar7 0:e8167f37725c 1062 }
jmar7 0:e8167f37725c 1063
jmar7 0:e8167f37725c 1064 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
jmar7 0:e8167f37725c 1065 {
jmar7 1:87d535bf8c53 1066 /*
jmar7 0:e8167f37725c 1067 digitalWrite(csPin, LOW); // Initiate communication
jmar7 0:e8167f37725c 1068
jmar7 0:e8167f37725c 1069 // If write, bit 0 (MSB) should be 0
jmar7 0:e8167f37725c 1070 // If single write, bit 1 should be 0
jmar7 0:e8167f37725c 1071 SPI.transfer(subAddress & 0x3F); // Send Address
jmar7 0:e8167f37725c 1072 SPI.transfer(data); // Send data
jmar7 0:e8167f37725c 1073
jmar7 0:e8167f37725c 1074 digitalWrite(csPin, HIGH); // Close communication
jmar7 0:e8167f37725c 1075 */
jmar7 0:e8167f37725c 1076 }
jmar7 0:e8167f37725c 1077
jmar7 0:e8167f37725c 1078 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
jmar7 0:e8167f37725c 1079 {
cduck 4:1345050179ad 1080 uint8_t temp = 0;
jmar7 0:e8167f37725c 1081 // Use the multiple read function to read 1 byte.
jmar7 0:e8167f37725c 1082 // Value is returned to `temp`.
jmar7 0:e8167f37725c 1083 SPIreadBytes(csPin, subAddress, &temp, 1);
jmar7 0:e8167f37725c 1084 return temp;
jmar7 0:e8167f37725c 1085 }
jmar7 0:e8167f37725c 1086
jmar7 0:e8167f37725c 1087 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
jmar7 0:e8167f37725c 1088 uint8_t * dest, uint8_t count)
jmar7 0:e8167f37725c 1089 {
jmar7 0:e8167f37725c 1090 // To indicate a read, set bit 0 (msb) of first byte to 1
jmar7 0:e8167f37725c 1091 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
jmar7 0:e8167f37725c 1092 // Mag SPI port is different. If we're reading multiple bytes,
jmar7 0:e8167f37725c 1093 // set bit 1 to 1. The remaining six bytes are the address to be read
jmar7 0:e8167f37725c 1094 if ((csPin == _mAddress) && count > 1)
jmar7 0:e8167f37725c 1095 rAddress |= 0x40;
jmar7 0:e8167f37725c 1096
jmar7 1:87d535bf8c53 1097 /*
jmar7 0:e8167f37725c 1098 digitalWrite(csPin, LOW); // Initiate communication
jmar7 0:e8167f37725c 1099 SPI.transfer(rAddress);
jmar7 0:e8167f37725c 1100 for (int i=0; i<count; i++)
jmar7 0:e8167f37725c 1101 {
jmar7 0:e8167f37725c 1102 dest[i] = SPI.transfer(0x00); // Read into destination array
jmar7 0:e8167f37725c 1103 }
jmar7 0:e8167f37725c 1104 digitalWrite(csPin, HIGH); // Close communication
jmar7 0:e8167f37725c 1105 */
jmar7 0:e8167f37725c 1106 }
jmar7 0:e8167f37725c 1107
jmar7 0:e8167f37725c 1108 void LSM9DS1::initI2C()
jmar7 0:e8167f37725c 1109 {
jmar7 1:87d535bf8c53 1110 /*
jmar7 0:e8167f37725c 1111 Wire.begin(); // Initialize I2C library
jmar7 0:e8167f37725c 1112 */
jmar7 0:e8167f37725c 1113
jmar7 0:e8167f37725c 1114 //already initialized in constructor!
jmar7 0:e8167f37725c 1115 }
jmar7 0:e8167f37725c 1116
jmar7 0:e8167f37725c 1117 // Wire.h read and write protocols
jmar7 0:e8167f37725c 1118 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
jmar7 0:e8167f37725c 1119 {
jmar7 1:87d535bf8c53 1120 /*
jmar7 0:e8167f37725c 1121 Wire.beginTransmission(address); // Initialize the Tx buffer
jmar7 0:e8167f37725c 1122 Wire.write(subAddress); // Put slave register address in Tx buffer
jmar7 0:e8167f37725c 1123 Wire.write(data); // Put data in Tx buffer
jmar7 0:e8167f37725c 1124 Wire.endTransmission(); // Send the Tx buffer
jmar7 0:e8167f37725c 1125 */
jmar7 0:e8167f37725c 1126 char temp_data[2] = {subAddress, data};
jmar7 0:e8167f37725c 1127 i2c.write(address, temp_data, 2);
jmar7 0:e8167f37725c 1128 }
jmar7 0:e8167f37725c 1129
jmar7 0:e8167f37725c 1130 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
jmar7 0:e8167f37725c 1131 {
jmar7 1:87d535bf8c53 1132 /*
jmar7 0:e8167f37725c 1133 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
jmar7 0:e8167f37725c 1134 uint8_t data; // `data` will store the register data
jmar7 0:e8167f37725c 1135
jmar7 0:e8167f37725c 1136 Wire.beginTransmission(address); // Initialize the Tx buffer
jmar7 0:e8167f37725c 1137 Wire.write(subAddress); // Put slave register address in Tx buffer
jmar7 0:e8167f37725c 1138 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
jmar7 0:e8167f37725c 1139 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
jmar7 0:e8167f37725c 1140 while ((Wire.available() < 1) && (timeout-- > 0))
jmar7 0:e8167f37725c 1141 delay(1);
jmar7 0:e8167f37725c 1142
jmar7 0:e8167f37725c 1143 if (timeout <= 0)
jmar7 0:e8167f37725c 1144 return 255; //! Bad! 255 will be misinterpreted as a good value.
jmar7 0:e8167f37725c 1145
jmar7 0:e8167f37725c 1146 data = Wire.read(); // Fill Rx buffer with result
jmar7 0:e8167f37725c 1147 return data; // Return data read from slave register
jmar7 0:e8167f37725c 1148 */
jmar7 0:e8167f37725c 1149 char data;
jmar7 0:e8167f37725c 1150 char temp[1] = {subAddress};
jmar7 0:e8167f37725c 1151
jmar7 0:e8167f37725c 1152 i2c.write(address, temp, 1);
jmar7 0:e8167f37725c 1153 //i2c.write(address & 0xFE);
cduck 2:6036e7916c7a 1154 temp[0] = 0x00;
jmar7 0:e8167f37725c 1155 i2c.write(address, temp, 1);
jmar7 0:e8167f37725c 1156 //i2c.write( address | 0x01);
cduck 4:1345050179ad 1157 i2c.read(address, &data, 1);
jmar7 0:e8167f37725c 1158 return data;
jmar7 0:e8167f37725c 1159 }
jmar7 0:e8167f37725c 1160
jmar7 0:e8167f37725c 1161 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
jmar7 0:e8167f37725c 1162 {
jmar7 1:87d535bf8c53 1163 /*
jmar7 0:e8167f37725c 1164 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
jmar7 0:e8167f37725c 1165 Wire.beginTransmission(address); // Initialize the Tx buffer
jmar7 0:e8167f37725c 1166 // Next send the register to be read. OR with 0x80 to indicate multi-read.
jmar7 0:e8167f37725c 1167 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
jmar7 0:e8167f37725c 1168
jmar7 0:e8167f37725c 1169 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
jmar7 0:e8167f37725c 1170 uint8_t i = 0;
jmar7 0:e8167f37725c 1171 Wire.requestFrom(address, count); // Read bytes from slave register address
jmar7 0:e8167f37725c 1172 while ((Wire.available() < count) && (timeout-- > 0))
jmar7 0:e8167f37725c 1173 delay(1);
jmar7 0:e8167f37725c 1174 if (timeout <= 0)
jmar7 0:e8167f37725c 1175 return -1;
jmar7 0:e8167f37725c 1176
jmar7 0:e8167f37725c 1177 for (int i=0; i<count;)
jmar7 0:e8167f37725c 1178 {
jmar7 0:e8167f37725c 1179 if (Wire.available())
jmar7 0:e8167f37725c 1180 {
jmar7 0:e8167f37725c 1181 dest[i++] = Wire.read();
jmar7 0:e8167f37725c 1182 }
jmar7 0:e8167f37725c 1183 }
jmar7 0:e8167f37725c 1184 return count;
jmar7 0:e8167f37725c 1185 */
cduck 4:1345050179ad 1186 char temp = (char)subAddress;
cduck 4:1345050179ad 1187 i2c.write(address, &temp, 1);
cduck 4:1345050179ad 1188 i2c.read(address, (char*)dest, count);
cduck 4:1345050179ad 1189
jmar7 0:e8167f37725c 1190 return count;
jmar7 0:e8167f37725c 1191 }