GPS to Pulga

Dependencies:   Si1133 BME280

Revision:
24:595155aa83c3
Parent:
23:7f1c9c1a4c57
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/source/BMX160.txt	Fri Jan 03 09:28:20 2020 +0000
@@ -0,0 +1,139 @@
+
+/* defines the axis for acc */
+#define ACC_NOOF_AXIS       3
+#define GYR_NOOF_AXIS       2
+ 
+/* bmi160 slave address */
+#define BMI160_ADDR         ((0x69)<<1)
+ 
+#define RAD_DEG           57.29577951
+
+I2C i2c(p13, p15);
+
+int16_t acc_sample_buffer[ACC_NOOF_AXIS] = {0x5555, 0x5555, 0x5555};
+int16_t gyr_sample_buffer[GYR_NOOF_AXIS] = {0x5555, 0x5555};
+
+double acc_result_buffer[ACC_NOOF_AXIS] = {0x5555, 0x5555, 0x5555};
+double gyr_result_buffer[GYR_NOOF_AXIS] = {0x5555, 0x5555};
+
+double accel_ang_x, accel_ang_y;
+double tiltx, tilty;
+double tiltx_prev, tilty_prev;
+ 
+char i2c_reg_buffer[2] = {0};
+
+void BMX160_config(void){
+     
+     i2c.frequency(20000);
+    
+        /*Reset BMI160*/
+        i2c_reg_buffer[0] = 0x7E;
+        i2c_reg_buffer[1] = 0xB6;    
+        i2c.write(BMI160_ADDR, i2c_reg_buffer, sizeof(i2c_reg_buffer), false);
+        wait_ms(200);
+        printf("BMI160 Resetado\n\r");
+    
+        /*Habilita o Acelerometro*/
+        i2c_reg_buffer[0] = 0x7E;
+        i2c_reg_buffer[1] = 0x11; //PMU Normal   
+        i2c.write(BMI160_ADDR, i2c_reg_buffer, sizeof(i2c_reg_buffer), false);
+        printf("Acc Habilitado\n\r");
+    
+        /*Habilita o Giroscopio*/
+        i2c_reg_buffer[0] = 0x7E;
+        i2c_reg_buffer[1] = 0x15;  //PMU Normal 
+        i2c.write(BMI160_ADDR, i2c_reg_buffer, sizeof(i2c_reg_buffer), false);
+        printf("Gyr Habilitado\n\r");
+    
+        /*Config o Data Rate ACC em 1600Hz*/
+        i2c_reg_buffer[0] = 0x40;
+        i2c_reg_buffer[1] = 0x2C;    
+        i2c.write(BMI160_ADDR, i2c_reg_buffer, sizeof(i2c_reg_buffer), false);
+        printf("Data Rate ACC Selecionado a 1600Hz\n\r");
+    
+        /*Config o Data Rate GYR em 1600Hz*/
+        i2c_reg_buffer[0] = 0x42;
+        i2c_reg_buffer[1] = 0x2C;    
+        i2c.write(BMI160_ADDR, i2c_reg_buffer, sizeof(i2c_reg_buffer), false);
+        printf("Data Rate GYR Selecionado a 1600Hz\n\r");
+    
+        /*Config o Range GYR em 250º/s*/
+        i2c_reg_buffer[0] = 0x43;
+        i2c_reg_buffer[1] = 0x03;    
+        i2c.write(BMI160_ADDR, i2c_reg_buffer, sizeof(i2c_reg_buffer), false);
+        printf("Range GYR Selecionado a 250deg/s\n\r"); 
+    
+        wait(0.1);
+        
+        printf("BMI160 Configurado\n\r");
+    }
+    
+    
+   void  BMX160_read_acc(void){
+                
+            i2c.frequency(20000);
+      
+            /*Le os Registradores do Acelerometro*/
+            i2c_reg_buffer[0] = 0x12;
+            i2c.write(BMI160_ADDR, i2c_reg_buffer, 1, true);
+            i2c.read(BMI160_ADDR, (char *)&acc_sample_buffer, sizeof(acc_sample_buffer), false);
+            
+            /*Ajusta dados brutos Acelerometro em unidades de g */
+            acc_result_buffer[0] = (acc_sample_buffer[0]/16384.0);
+            acc_result_buffer[1] = (acc_sample_buffer[1]/16384.0);
+            acc_result_buffer[2] = (acc_sample_buffer[2]/16384.0);
+    
+        }
+    
+    void BMX160_read_gyr (void){
+            
+                        i2c.frequency(20000);
+                         
+            /*Le os Registradores do Giroscopio*/
+            i2c_reg_buffer[0] = 0x0C;
+            i2c.write(BMI160_ADDR, i2c_reg_buffer, 1, true);
+            i2c.read(BMI160_ADDR, (char *)&gyr_sample_buffer, sizeof(gyr_sample_buffer), false);
+        
+            /*Ajusta dados Brutos do Giroscopio em unidades de deg/s */
+            gyr_result_buffer[0] = (gyr_sample_buffer[0]/131.2);
+            gyr_result_buffer[1] = (gyr_sample_buffer[1]/131.2);
+            
+        }
+        
+        void BMX160_print(void){
+                
+            int32_t float_to_32;
+                
+            BMX160_read_acc();
+            BMX160_read_gyr();
+                
+            /*Calcula os Angulos de Inclinacao com valor do Acelerometro*/
+            accel_ang_x=atan(acc_result_buffer[0]/sqrt(pow(acc_result_buffer[1],2) + pow(acc_result_buffer[2],2)))*RAD_DEG;
+            accel_ang_y=atan(acc_result_buffer[1]/sqrt(pow(acc_result_buffer[0],2) + pow(acc_result_buffer[2],2)))*RAD_DEG;
+       
+        
+            /*Calcula os Angulos de Rotacao com valor do Giroscopio e aplica filtro complementar realizando a fusao*/
+            tiltx = (0.98*(tiltx_prev+(gyr_result_buffer[0]*0.001)))+(0.02*(accel_ang_x));
+            tilty = (0.98*(tilty_prev+(gyr_result_buffer[1]*0.001)))+(0.02*(accel_ang_y));
+        
+        
+            /*Imprime os dados ACC pre-formatados*/
+            printf("Acc: %.3f,%.3f\n\r",tiltx, tilty);  
+            
+            float_to_32 = tiltx * 100 + 127;
+            float_to_32 = (float_to_32 < 0 ? 0 : float_to_32); 
+            
+            sens00 = (float_to_32 > 255 ? 255 : float_to_32);
+
+            
+            
+            float_to_32 = 0;
+            
+            float_to_32 = tilty * 100 + 127;
+            float_to_32 = (float_to_32 < 0 ? 0 : float_to_32); 
+            sens01 = (float_to_32 > 255 ? 255 : float_to_32);
+
+            //imuz = acc_result_buffer[2];
+            
+        
+            }           
\ No newline at end of file