Nicolas Borla / Mbed OS BBR_1Ebene
Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers Thread.cpp Source File

Thread.cpp

00001 /* mbed Microcontroller Library
00002  * Copyright (c) 2006-2012 ARM Limited
00003  *
00004  * Permission is hereby granted, free of charge, to any person obtaining a copy
00005  * of this software and associated documentation files (the "Software"), to deal
00006  * in the Software without restriction, including without limitation the rights
00007  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
00008  * copies of the Software, and to permit persons to whom the Software is
00009  * furnished to do so, subject to the following conditions:
00010  *
00011  * The above copyright notice and this permission notice shall be included in
00012  * all copies or substantial portions of the Software.
00013  *
00014  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
00015  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
00016  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
00017  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
00018  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00019  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
00020  * SOFTWARE.
00021  */
00022 #include "rtos/Thread.h"
00023 
00024 #include "mbed.h"
00025 #include "rtos/rtos_idle.h"
00026 #include "mbed_assert.h"
00027 
00028 #define ALIGN_UP(pos, align) ((pos) % (align) ? (pos) +  ((align) - (pos) % (align)) : (pos))
00029 MBED_STATIC_ASSERT(ALIGN_UP(0, 8) == 0, "ALIGN_UP macro error");
00030 MBED_STATIC_ASSERT(ALIGN_UP(1, 8) == 8, "ALIGN_UP macro error");
00031 
00032 #define ALIGN_DOWN(pos, align) ((pos) - ((pos) % (align)))
00033 MBED_STATIC_ASSERT(ALIGN_DOWN(7, 8) == 0, "ALIGN_DOWN macro error");
00034 MBED_STATIC_ASSERT(ALIGN_DOWN(8, 8) == 8, "ALIGN_DOWN macro error");
00035 
00036 static void (*terminate_hook)(osThreadId_t id) = 0;
00037 extern "C" void thread_terminate_hook(osThreadId_t id)
00038 {
00039     if (terminate_hook != (void (*)(osThreadId_t))NULL) {
00040         terminate_hook(id);
00041     }
00042 }
00043 
00044 namespace rtos {
00045 
00046 #ifndef MBED_TZ_DEFAULT_ACCESS
00047 #define MBED_TZ_DEFAULT_ACCESS   0
00048 #endif
00049 
00050 void Thread::constructor(uint32_t tz_module, osPriority priority,
00051         uint32_t stack_size, unsigned char *stack_mem, const char *name) {
00052 
00053     const uintptr_t unaligned_mem = reinterpret_cast<uintptr_t>(stack_mem);
00054     const uintptr_t aligned_mem = ALIGN_UP(unaligned_mem, 8);
00055     const uint32_t offset = aligned_mem - unaligned_mem;
00056     const uint32_t aligned_size = ALIGN_DOWN(stack_size - offset, 8);
00057 
00058     _tid = 0;
00059     _dynamic_stack = (stack_mem == NULL);
00060     _finished = false;
00061     memset(&_obj_mem, 0, sizeof(_obj_mem));
00062     memset(&_attr, 0, sizeof(_attr));
00063     _attr.priority = priority;
00064     _attr.stack_size = aligned_size;
00065     _attr.name = name ? name : "application_unnamed_thread";
00066     _attr.stack_mem = reinterpret_cast<uint32_t*>(aligned_mem);
00067     _attr.tz_module = tz_module;
00068 }
00069 
00070 void Thread::constructor(osPriority priority,
00071         uint32_t stack_size, unsigned char *stack_mem, const char *name) {
00072     constructor(MBED_TZ_DEFAULT_ACCESS, priority, stack_size, stack_mem, name);
00073 }
00074 
00075 void Thread::constructor(Callback<void()> task,
00076         osPriority priority, uint32_t stack_size, unsigned char *stack_mem, const char *name) {
00077     constructor(MBED_TZ_DEFAULT_ACCESS, priority, stack_size, stack_mem, name);
00078 
00079     switch (start(task)) {
00080         case osErrorResource:
00081             error("OS ran out of threads!\n");
00082             break;
00083         case osErrorParameter:
00084             error("Thread already running!\n");
00085             break;
00086         case osErrorNoMemory:
00087             error("Error allocating the stack memory\n");
00088         default:
00089             break;
00090     }
00091 }
00092 
00093 osStatus Thread::start(Callback<void()> task) {
00094     _mutex.lock();
00095 
00096     if ((_tid != 0) || _finished) {
00097         _mutex.unlock();
00098         return osErrorParameter;
00099     }
00100 
00101     if (_attr.stack_mem == NULL) {
00102         _attr.stack_mem = new uint32_t[_attr.stack_size/sizeof(uint32_t)];
00103         MBED_ASSERT(_attr.stack_mem != NULL);
00104     }
00105 
00106     //Fill the stack with a magic word for maximum usage checking
00107     for (uint32_t i = 0; i < (_attr.stack_size / sizeof(uint32_t)); i++) {
00108         ((uint32_t *)_attr.stack_mem)[i] = 0xE25A2EA5;
00109     }
00110 
00111     memset(&_obj_mem, 0, sizeof(_obj_mem));
00112     _attr.cb_size = sizeof(_obj_mem);
00113     _attr.cb_mem = &_obj_mem;
00114     _task = task;
00115     _tid = osThreadNew(Thread::_thunk, this, &_attr);
00116     if (_tid == NULL) {
00117         if (_dynamic_stack) {
00118             delete[] (uint32_t *)(_attr.stack_mem);
00119             _attr.stack_mem = (uint32_t*)NULL;
00120         }
00121         _mutex.unlock();
00122         _join_sem.release();
00123         return osErrorResource;
00124     }
00125 
00126     _mutex.unlock();
00127     return osOK;
00128 }
00129 
00130 osStatus Thread::terminate() {
00131     osStatus_t ret = osOK;
00132     _mutex.lock();
00133 
00134     // Set the Thread's tid to NULL and
00135     // release the semaphore before terminating
00136     // since this thread could be terminating itself
00137     osThreadId_t local_id = _tid;
00138     _join_sem.release();
00139     _tid = (osThreadId_t)NULL;
00140     if (!_finished) {
00141         _finished = true;
00142         // if local_id == 0 Thread was not started in first place
00143         // and does not have to be terminated
00144         if (local_id != 0) {
00145             ret = osThreadTerminate(local_id);
00146         }
00147     }
00148     _mutex.unlock();
00149     return ret;
00150 }
00151 
00152 osStatus Thread::join() {
00153     int32_t ret = _join_sem.wait();
00154     if (ret < 0) {
00155         return osError;
00156     }
00157 
00158     // The semaphore has been released so this thread is being
00159     // terminated or has been terminated. Once the mutex has
00160     // been locked it is ensured that the thread is deleted.
00161     _mutex.lock();
00162     MBED_ASSERT(NULL == _tid);
00163     _mutex.unlock();
00164 
00165     // Release sem so any other threads joining this thread wake up
00166     _join_sem.release();
00167     return osOK;
00168 }
00169 
00170 osStatus Thread::set_priority(osPriority priority) {
00171     osStatus_t ret;
00172     _mutex.lock();
00173 
00174     ret = osThreadSetPriority(_tid, priority);
00175 
00176     _mutex.unlock();
00177     return ret;
00178 }
00179 
00180 osPriority Thread::get_priority() {
00181     osPriority_t ret;
00182     _mutex.lock();
00183 
00184     ret = osThreadGetPriority(_tid);
00185 
00186     _mutex.unlock();
00187     return ret;
00188 }
00189 
00190 int32_t Thread::signal_set(int32_t flags) {
00191     return osThreadFlagsSet(_tid, flags);
00192 }
00193 
00194 Thread::State Thread::get_state() {
00195     uint8_t state = osThreadTerminated;
00196 
00197     _mutex.lock();
00198 
00199     if (_tid != NULL) {
00200 #if defined(MBED_OS_BACKEND_RTX5)
00201         state = _obj_mem.state;
00202 #else
00203         state = osThreadGetState(_tid);
00204 #endif
00205     }
00206 
00207     _mutex.unlock();
00208 
00209     State user_state;
00210 
00211     switch(state) {
00212         case osThreadInactive:
00213             user_state = Inactive;
00214             break;
00215         case osThreadReady:
00216             user_state = Ready;
00217             break;
00218         case osThreadRunning:
00219             user_state = Running;
00220             break;
00221 #if defined(MBED_OS_BACKEND_RTX5)
00222         case osRtxThreadWaitingDelay:
00223             user_state = WaitingDelay;
00224             break;
00225         case osRtxThreadWaitingJoin:
00226             user_state = WaitingJoin;
00227             break;
00228         case osRtxThreadWaitingThreadFlags:
00229             user_state = WaitingThreadFlag;
00230             break;
00231         case osRtxThreadWaitingEventFlags:
00232             user_state = WaitingEventFlag;
00233             break;
00234         case osRtxThreadWaitingMutex:
00235             user_state = WaitingMutex;
00236             break;
00237         case osRtxThreadWaitingSemaphore:
00238             user_state = WaitingSemaphore;
00239             break;
00240         case osRtxThreadWaitingMemoryPool:
00241             user_state = WaitingMemoryPool;
00242             break;
00243         case osRtxThreadWaitingMessageGet:
00244             user_state = WaitingMessageGet;
00245             break;
00246         case osRtxThreadWaitingMessagePut:
00247             user_state = WaitingMessagePut;
00248             break;
00249 #endif
00250         case osThreadTerminated:
00251         default:
00252             user_state = Deleted;
00253             break;
00254     }
00255 
00256     return user_state;
00257 }
00258 
00259 uint32_t Thread::stack_size() {
00260     uint32_t size = 0;
00261     _mutex.lock();
00262 
00263     if (_tid != NULL) {
00264         size = osThreadGetStackSize(_tid);
00265     }
00266 
00267     _mutex.unlock();
00268     return size;
00269 }
00270 
00271 uint32_t Thread::free_stack() {
00272     uint32_t size = 0;
00273     _mutex.lock();
00274 
00275 #if defined(MBED_OS_BACKEND_RTX5)
00276     if (_tid != NULL) {
00277         os_thread_t *thread = (os_thread_t *)_tid;
00278         size = (uint32_t)thread->sp - (uint32_t)thread->stack_mem;
00279     }
00280 #endif
00281 
00282     _mutex.unlock();
00283     return size;
00284 }
00285 
00286 uint32_t Thread::used_stack() {
00287     uint32_t size = 0;
00288     _mutex.lock();
00289 
00290 #if defined(MBED_OS_BACKEND_RTX5)
00291     if (_tid != NULL) {
00292         os_thread_t *thread = (os_thread_t *)_tid;
00293         size = ((uint32_t)thread->stack_mem + thread->stack_size) - thread->sp;
00294     }
00295 #endif
00296 
00297     _mutex.unlock();
00298     return size;
00299 }
00300 
00301 uint32_t Thread::max_stack() {
00302     uint32_t size = 0;
00303     _mutex.lock();
00304 
00305     if (_tid != NULL) {
00306 #if defined(MBED_OS_BACKEND_RTX5)
00307         os_thread_t *thread = (os_thread_t *)_tid;
00308         uint32_t high_mark = 0;
00309         while (((uint32_t *)(thread->stack_mem))[high_mark] == 0xE25A2EA5)
00310             high_mark++;
00311         size = thread->stack_size - (high_mark * sizeof(uint32_t));
00312 #else
00313         size = osThreadGetStackSize(_tid) - osThreadGetStackSpace(_tid);
00314 #endif
00315     }
00316 
00317     _mutex.unlock();
00318     return size;
00319 }
00320 
00321 const char *Thread::get_name() {
00322     return _attr.name;
00323 }
00324 
00325 int32_t Thread::signal_clr(int32_t flags) {
00326     return osThreadFlagsClear(flags);
00327 }
00328 
00329 osEvent Thread::signal_wait(int32_t signals, uint32_t millisec) {
00330     uint32_t res;
00331     osEvent evt;
00332     uint32_t options = osFlagsWaitAll;
00333     if (signals == 0) {
00334         options = osFlagsWaitAny;
00335         signals = 0x7FFFFFFF;
00336     }
00337     res = osThreadFlagsWait(signals, options, millisec);
00338     if (res & osFlagsError) {
00339         switch (res) {
00340             case osFlagsErrorISR:
00341                 evt.status = osErrorISR;
00342                 break;
00343             case osFlagsErrorResource:
00344                 evt.status = osOK;
00345                 break;
00346             case osFlagsErrorTimeout:
00347                 evt.status = (osStatus)osEventTimeout;
00348                 break;
00349             case osFlagsErrorParameter:
00350             default:
00351                 evt.status = (osStatus)osErrorValue;
00352                 break;
00353         }
00354     } else {
00355         evt.status = (osStatus)osEventSignal;
00356         evt.value.signals = res;
00357     }
00358 
00359     return evt;
00360 }
00361 
00362 osStatus Thread::wait(uint32_t millisec) {
00363     return osDelay(millisec);
00364 }
00365 
00366 osStatus Thread::wait_until(uint64_t millisec) {
00367     // CMSIS-RTOS 2.1.0 and 2.1.1 differ in the time type, which we determine
00368     // by looking at the return type of osKernelGetTickCount. We assume
00369     // our header at least matches the implementation, so we don't try looking
00370     // at the run-time version report. (There's no compile-time version report)
00371     if (sizeof osKernelGetTickCount() == sizeof(uint64_t)) {
00372         // CMSIS-RTOS 2.1.0 has a 64-bit API. The corresponding RTX 5.2.0 can't
00373         // delay more than 0xfffffffe ticks, but there's no limit stated for
00374         // the generic API.
00375         return osDelayUntil(millisec);
00376     } else {
00377         // 64-bit time doesn't wrap (for half a billion years, at last)
00378         uint64_t now = Kernel::get_ms_count();
00379         // Report being late on entry
00380         if (now >= millisec) {
00381             return osErrorParameter;
00382         }
00383         // We're about to make a 32-bit delay call, so have at least this limit
00384         if (millisec - now > 0xFFFFFFFF) {
00385             return osErrorParameter;
00386         }
00387         // And this may have its own internal limit - we'll find out.
00388         // We hope/assume there's no problem with passing
00389         // osWaitForever = 0xFFFFFFFF - that value is only specified to have
00390         // special meaning for osSomethingWait calls.
00391         return osDelay(millisec - now);
00392     }
00393 }
00394 
00395 osStatus Thread::yield() {
00396     return osThreadYield();
00397 }
00398 
00399 osThreadId Thread::gettid() {
00400     return osThreadGetId();
00401 }
00402 
00403 void Thread::attach_idle_hook(void (*fptr)(void)) {
00404     rtos_attach_idle_hook (fptr);
00405 }
00406 
00407 void Thread::attach_terminate_hook(void (*fptr)(osThreadId_t id)) {
00408     terminate_hook = fptr;
00409 }
00410 
00411 Thread::~Thread() {
00412     // terminate is thread safe
00413     terminate();
00414     if (_dynamic_stack) {
00415         delete[] (uint32_t*)(_attr.stack_mem);
00416         _attr.stack_mem = (uint32_t*)NULL;
00417     }
00418 }
00419 
00420 void Thread::_thunk(void * thread_ptr)
00421 {
00422     Thread *t = (Thread*)thread_ptr;
00423     t->_task();
00424     t->_mutex.lock();
00425     t->_tid = (osThreadId)NULL;
00426     t->_finished = true;
00427     t->_join_sem.release();
00428     // rtos will release the mutex automatically
00429 }
00430 
00431 }