Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: SPIne CH_Communicatuin_Test CH_Communicatuin_Test2 MCP_SPIne ... more
Fork of mbed-dev-f303 by
Diff: targets/TARGET_STM/TARGET_STM32F4/serial_device.c
- Revision:
- 167:e84263d55307
- Child:
- 168:9672193075cf
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/TARGET_STM/TARGET_STM32F4/serial_device.c Wed Jun 21 17:46:44 2017 +0100
@@ -0,0 +1,926 @@
+/* mbed Microcontroller Library
+ *******************************************************************************
+ * Copyright (c) 2015, STMicroelectronics
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *******************************************************************************
+ */
+
+#include "mbed_assert.h"
+#include "serial_api.h"
+#include "serial_api_hal.h"
+
+#if DEVICE_SERIAL
+
+#include "cmsis.h"
+#include "pinmap.h"
+#include <string.h>
+#include "PeripheralPins.h"
+#include "mbed_error.h"
+
+#define UART_NUM (8)
+static uint32_t serial_irq_ids[UART_NUM] = {0};
+UART_HandleTypeDef uart_handlers[UART_NUM];
+
+static uart_irq_handler irq_handler;
+
+int stdio_uart_inited = 0;
+serial_t stdio_uart;
+
+void serial_init(serial_t *obj, PinName tx, PinName rx)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+
+ // Determine the UART to use (UART_1, UART_2, ...)
+ UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
+ UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
+
+ // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
+ obj_s->uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
+ MBED_ASSERT(obj_s->uart != (UARTName)NC);
+
+ // Enable USART clock
+ switch (obj_s->uart) {
+ case UART_1:
+ __HAL_RCC_USART1_FORCE_RESET();
+ __HAL_RCC_USART1_RELEASE_RESET();
+ __HAL_RCC_USART1_CLK_ENABLE();
+ obj_s->index = 0;
+ break;
+
+ case UART_2:
+ __HAL_RCC_USART2_FORCE_RESET();
+ __HAL_RCC_USART2_RELEASE_RESET();
+ __HAL_RCC_USART2_CLK_ENABLE();
+ obj_s->index = 1;
+ break;
+#if defined(USART3_BASE)
+ case UART_3:
+ __HAL_RCC_USART3_FORCE_RESET();
+ __HAL_RCC_USART3_RELEASE_RESET();
+ __HAL_RCC_USART3_CLK_ENABLE();
+ obj_s->index = 2;
+ break;
+#endif
+#if defined(UART4_BASE)
+ case UART_4:
+ __HAL_RCC_UART4_FORCE_RESET();
+ __HAL_RCC_UART4_RELEASE_RESET();
+ __HAL_RCC_UART4_CLK_ENABLE();
+ obj_s->index = 3;
+ break;
+#endif
+#if defined(UART5_BASE)
+ case UART_5:
+ __HAL_RCC_UART5_FORCE_RESET();
+ __HAL_RCC_UART5_RELEASE_RESET();
+ __HAL_RCC_UART5_CLK_ENABLE();
+ obj_s->index = 4;
+ break;
+#endif
+#if defined(USART6_BASE)
+ case UART_6:
+ __HAL_RCC_USART6_FORCE_RESET();
+ __HAL_RCC_USART6_RELEASE_RESET();
+ __HAL_RCC_USART6_CLK_ENABLE();
+ obj_s->index = 5;
+ break;
+#endif
+#if defined(UART7_BASE)
+ case UART_7:
+ __HAL_RCC_UART7_FORCE_RESET();
+ __HAL_RCC_UART7_RELEASE_RESET();
+ __HAL_RCC_UART7_CLK_ENABLE();
+ obj_s->index = 6;
+ break;
+#endif
+#if defined(UART8_BASE)
+ case UART_8:
+ __HAL_RCC_UART8_FORCE_RESET();
+ __HAL_RCC_UART8_RELEASE_RESET();
+ __HAL_RCC_UART8_CLK_ENABLE();
+ obj_s->index = 7;
+ break;
+#endif
+ }
+
+ // Configure the UART pins
+ pinmap_pinout(tx, PinMap_UART_TX);
+ pinmap_pinout(rx, PinMap_UART_RX);
+
+ if (tx != NC) {
+ pin_mode(tx, PullUp);
+ }
+ if (rx != NC) {
+ pin_mode(rx, PullUp);
+ }
+
+ // Configure UART
+ obj_s->baudrate = 9600;
+ obj_s->databits = UART_WORDLENGTH_8B;
+ obj_s->stopbits = UART_STOPBITS_1;
+ obj_s->parity = UART_PARITY_NONE;
+
+#if DEVICE_SERIAL_FC
+ obj_s->hw_flow_ctl = UART_HWCONTROL_NONE;
+#endif
+
+ obj_s->pin_tx = tx;
+ obj_s->pin_rx = rx;
+
+ init_uart(obj);
+
+ // For stdio management
+ if (obj_s->uart == STDIO_UART) {
+ stdio_uart_inited = 1;
+ memcpy(&stdio_uart, obj, sizeof(serial_t));
+ }
+}
+
+void serial_free(serial_t *obj)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+
+ // Reset UART and disable clock
+ switch (obj_s->index) {
+ case 0:
+ __HAL_RCC_USART1_FORCE_RESET();
+ __HAL_RCC_USART1_RELEASE_RESET();
+ __HAL_RCC_USART1_CLK_DISABLE();
+ break;
+ case 1:
+ __HAL_RCC_USART2_FORCE_RESET();
+ __HAL_RCC_USART2_RELEASE_RESET();
+ __HAL_RCC_USART2_CLK_DISABLE();
+ break;
+#if defined(USART3_BASE)
+ case 2:
+ __HAL_RCC_USART3_FORCE_RESET();
+ __HAL_RCC_USART3_RELEASE_RESET();
+ __HAL_RCC_USART3_CLK_DISABLE();
+ break;
+#endif
+#if defined(UART4_BASE)
+ case 3:
+ __HAL_RCC_UART4_FORCE_RESET();
+ __HAL_RCC_UART4_RELEASE_RESET();
+ __HAL_RCC_UART4_CLK_DISABLE();
+ break;
+#endif
+#if defined(UART5_BASE)
+ case 4:
+ __HAL_RCC_UART5_FORCE_RESET();
+ __HAL_RCC_UART5_RELEASE_RESET();
+ __HAL_RCC_UART5_CLK_DISABLE();
+ break;
+#endif
+#if defined(USART6_BASE)
+ case 5:
+ __HAL_RCC_USART6_FORCE_RESET();
+ __HAL_RCC_USART6_RELEASE_RESET();
+ __HAL_RCC_USART6_CLK_DISABLE();
+ break;
+#endif
+#if defined(UART7_BASE)
+ case 6:
+ __HAL_RCC_UART7_FORCE_RESET();
+ __HAL_RCC_UART7_RELEASE_RESET();
+ __HAL_RCC_UART7_CLK_DISABLE();
+ break;
+#endif
+#if defined(UART8_BASE)
+ case 7:
+ __HAL_RCC_UART8_FORCE_RESET();
+ __HAL_RCC_UART8_RELEASE_RESET();
+ __HAL_RCC_UART8_CLK_DISABLE();
+ break;
+#endif
+ }
+
+ // Configure GPIOs
+ pin_function(obj_s->pin_tx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+ pin_function(obj_s->pin_rx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+
+ serial_irq_ids[obj_s->index] = 0;
+}
+
+void serial_baud(serial_t *obj, int baudrate)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+
+ obj_s->baudrate = baudrate;
+ init_uart(obj);
+}
+
+/******************************************************************************
+ * INTERRUPTS HANDLING
+ ******************************************************************************/
+
+static void uart_irq(int id)
+{
+ UART_HandleTypeDef * huart = &uart_handlers[id];
+
+ if (serial_irq_ids[id] != 0) {
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
+ if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET) {
+ irq_handler(serial_irq_ids[id], TxIrq);
+ __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
+ }
+ }
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) {
+ if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE) != RESET) {
+ irq_handler(serial_irq_ids[id], RxIrq);
+ __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_RXNE);
+ }
+ }
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
+ if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
+ volatile uint32_t tmpval = huart->Instance->DR; // Clear ORE flag
+ }
+ }
+ }
+}
+
+static void uart1_irq(void)
+{
+ uart_irq(0);
+}
+
+static void uart2_irq(void)
+{
+ uart_irq(1);
+}
+
+#if defined(USART3_BASE)
+static void uart3_irq(void)
+{
+ uart_irq(2);
+}
+#endif
+
+#if defined(UART4_BASE)
+static void uart4_irq(void)
+{
+ uart_irq(3);
+}
+#endif
+
+#if defined(UART5_BASE)
+static void uart5_irq(void)
+{
+ uart_irq(4);
+}
+#endif
+
+#if defined(USART6_BASE)
+static void uart6_irq(void)
+{
+ uart_irq(5);
+}
+#endif
+
+#if defined(UART7_BASE)
+static void uart7_irq(void)
+{
+ uart_irq(6);
+}
+#endif
+
+#if defined(UART8_BASE)
+static void uart8_irq(void)
+{
+ uart_irq(7);
+}
+#endif
+
+void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+
+ irq_handler = handler;
+ serial_irq_ids[obj_s->index] = id;
+}
+
+void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+ IRQn_Type irq_n = (IRQn_Type)0;
+ uint32_t vector = 0;
+
+ switch (obj_s->index) {
+ case 0:
+ irq_n = USART1_IRQn;
+ vector = (uint32_t)&uart1_irq;
+ break;
+
+ case 1:
+ irq_n = USART2_IRQn;
+ vector = (uint32_t)&uart2_irq;
+ break;
+#if defined(USART3_BASE)
+ case 2:
+ irq_n = USART3_IRQn;
+ vector = (uint32_t)&uart3_irq;
+ break;
+#endif
+#if defined(UART4_BASE)
+ case 3:
+ irq_n = UART4_IRQn;
+ vector = (uint32_t)&uart4_irq;
+ break;
+#endif
+#if defined(UART5_BASE)
+ case 4:
+ irq_n = UART5_IRQn;
+ vector = (uint32_t)&uart5_irq;
+ break;
+#endif
+#if defined(USART6_BASE)
+ case 5:
+ irq_n = USART6_IRQn;
+ vector = (uint32_t)&uart6_irq;
+ break;
+#endif
+#if defined(UART7_BASE)
+ case 6:
+ irq_n = UART7_IRQn;
+ vector = (uint32_t)&uart7_irq;
+ break;
+#endif
+#if defined(UART8_BASE)
+ case 7:
+ irq_n = UART8_IRQn;
+ vector = (uint32_t)&uart8_irq;
+ break;
+#endif
+ }
+
+ if (enable) {
+ if (irq == RxIrq) {
+ __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
+ } else { // TxIrq
+ __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
+ }
+ NVIC_SetVector(irq_n, vector);
+ NVIC_EnableIRQ(irq_n);
+
+ } else { // disable
+ int all_disabled = 0;
+ if (irq == RxIrq) {
+ __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
+ // Check if TxIrq is disabled too
+ if ((huart->Instance->CR1 & USART_CR1_TXEIE) == 0) {
+ all_disabled = 1;
+ }
+ } else { // TxIrq
+ __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
+ // Check if RxIrq is disabled too
+ if ((huart->Instance->CR1 & USART_CR1_RXNEIE) == 0) {
+ all_disabled = 1;
+ }
+ }
+
+ if (all_disabled) {
+ NVIC_DisableIRQ(irq_n);
+ }
+ }
+}
+
+/******************************************************************************
+ * READ/WRITE
+ ******************************************************************************/
+
+int serial_getc(serial_t *obj)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+
+ while (!serial_readable(obj));
+ return (int)(huart->Instance->DR & 0x1FF);
+}
+
+void serial_putc(serial_t *obj, int c)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+
+ while (!serial_writable(obj));
+ huart->Instance->DR = (uint32_t)(c & 0x1FF);
+}
+
+void serial_clear(serial_t *obj)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+
+ huart->TxXferCount = 0;
+ huart->RxXferCount = 0;
+}
+
+void serial_break_set(serial_t *obj)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+
+ HAL_LIN_SendBreak(huart);
+}
+
+#if DEVICE_SERIAL_ASYNCH
+
+/******************************************************************************
+ * LOCAL HELPER FUNCTIONS
+ ******************************************************************************/
+
+/**
+ * Configure the TX buffer for an asynchronous write serial transaction
+ *
+ * @param obj The serial object.
+ * @param tx The buffer for sending.
+ * @param tx_length The number of words to transmit.
+ */
+static void serial_tx_buffer_set(serial_t *obj, void *tx, int tx_length, uint8_t width)
+{
+ (void)width;
+
+ // Exit if a transmit is already on-going
+ if (serial_tx_active(obj)) {
+ return;
+ }
+
+ obj->tx_buff.buffer = tx;
+ obj->tx_buff.length = tx_length;
+ obj->tx_buff.pos = 0;
+}
+
+/**
+ * Configure the RX buffer for an asynchronous write serial transaction
+ *
+ * @param obj The serial object.
+ * @param tx The buffer for sending.
+ * @param tx_length The number of words to transmit.
+ */
+static void serial_rx_buffer_set(serial_t *obj, void *rx, int rx_length, uint8_t width)
+{
+ (void)width;
+
+ // Exit if a reception is already on-going
+ if (serial_rx_active(obj)) {
+ return;
+ }
+
+ obj->rx_buff.buffer = rx;
+ obj->rx_buff.length = rx_length;
+ obj->rx_buff.pos = 0;
+}
+
+/**
+ * Configure events
+ *
+ * @param obj The serial object
+ * @param event The logical OR of the events to configure
+ * @param enable Set to non-zero to enable events, or zero to disable them
+ */
+static void serial_enable_event(serial_t *obj, int event, uint8_t enable)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+
+ // Shouldn't have to enable interrupt here, just need to keep track of the requested events.
+ if (enable) {
+ obj_s->events |= event;
+ } else {
+ obj_s->events &= ~event;
+ }
+}
+
+
+/**
+* Get index of serial object TX IRQ, relating it to the physical peripheral.
+*
+* @param obj pointer to serial object
+* @return internal NVIC TX IRQ index of U(S)ART peripheral
+*/
+static IRQn_Type serial_get_irq_n(serial_t *obj)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+ IRQn_Type irq_n;
+
+ switch (obj_s->index) {
+#if defined(USART1_BASE)
+ case 0:
+ irq_n = USART1_IRQn;
+ break;
+#endif
+#if defined(USART2_BASE)
+ case 1:
+ irq_n = USART2_IRQn;
+ break;
+#endif
+#if defined(USART3_BASE)
+ case 2:
+ irq_n = USART3_IRQn;
+ break;
+#endif
+#if defined(UART4_BASE)
+ case 3:
+ irq_n = UART4_IRQn;
+ break;
+#endif
+#if defined(USART5_BASE)
+ case 4:
+ irq_n = UART5_IRQn;
+ break;
+#endif
+#if defined(USART6_BASE)
+ case 5:
+ irq_n = USART6_IRQn;
+ break;
+#endif
+#if defined(UART7_BASE)
+ case 6:
+ irq_n = UART7_IRQn;
+ break;
+#endif
+#if defined(UART8_BASE)
+ case 7:
+ irq_n = UART8_IRQn;
+ break;
+#endif
+ default:
+ irq_n = (IRQn_Type)0;
+ }
+
+ return irq_n;
+}
+
+/******************************************************************************
+ * MBED API FUNCTIONS
+ ******************************************************************************/
+
+/**
+ * Begin asynchronous TX transfer. The used buffer is specified in the serial
+ * object, tx_buff
+ *
+ * @param obj The serial object
+ * @param tx The buffer for sending
+ * @param tx_length The number of words to transmit
+ * @param tx_width The bit width of buffer word
+ * @param handler The serial handler
+ * @param event The logical OR of events to be registered
+ * @param hint A suggestion for how to use DMA with this transfer
+ * @return Returns number of data transfered, or 0 otherwise
+ */
+int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint)
+{
+ // TODO: DMA usage is currently ignored
+ (void) hint;
+
+ // Check buffer is ok
+ MBED_ASSERT(tx != (void*)0);
+ MBED_ASSERT(tx_width == 8); // support only 8b width
+
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef * huart = &uart_handlers[obj_s->index];
+
+ if (tx_length == 0) {
+ return 0;
+ }
+
+ // Set up buffer
+ serial_tx_buffer_set(obj, (void *)tx, tx_length, tx_width);
+
+ // Set up events
+ serial_enable_event(obj, SERIAL_EVENT_TX_ALL, 0); // Clear all events
+ serial_enable_event(obj, event, 1); // Set only the wanted events
+
+ // Enable interrupt
+ IRQn_Type irq_n = serial_get_irq_n(obj);
+ NVIC_ClearPendingIRQ(irq_n);
+ NVIC_DisableIRQ(irq_n);
+ NVIC_SetPriority(irq_n, 1);
+ NVIC_SetVector(irq_n, (uint32_t)handler);
+ NVIC_EnableIRQ(irq_n);
+
+ // the following function will enable UART_IT_TXE and error interrupts
+ if (HAL_UART_Transmit_IT(huart, (uint8_t*)tx, tx_length) != HAL_OK) {
+ return 0;
+ }
+
+ return tx_length;
+}
+
+/**
+ * Begin asynchronous RX transfer (enable interrupt for data collecting)
+ * The used buffer is specified in the serial object, rx_buff
+ *
+ * @param obj The serial object
+ * @param rx The buffer for sending
+ * @param rx_length The number of words to transmit
+ * @param rx_width The bit width of buffer word
+ * @param handler The serial handler
+ * @param event The logical OR of events to be registered
+ * @param handler The serial handler
+ * @param char_match A character in range 0-254 to be matched
+ * @param hint A suggestion for how to use DMA with this transfer
+ */
+void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint)
+{
+ // TODO: DMA usage is currently ignored
+ (void) hint;
+
+ /* Sanity check arguments */
+ MBED_ASSERT(obj);
+ MBED_ASSERT(rx != (void*)0);
+ MBED_ASSERT(rx_width == 8); // support only 8b width
+
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+
+ serial_enable_event(obj, SERIAL_EVENT_RX_ALL, 0);
+ serial_enable_event(obj, event, 1);
+
+ // set CharMatch
+ obj->char_match = char_match;
+
+ serial_rx_buffer_set(obj, rx, rx_length, rx_width);
+
+ IRQn_Type irq_n = serial_get_irq_n(obj);
+ NVIC_ClearPendingIRQ(irq_n);
+ NVIC_DisableIRQ(irq_n);
+ NVIC_SetPriority(irq_n, 0);
+ NVIC_SetVector(irq_n, (uint32_t)handler);
+ NVIC_EnableIRQ(irq_n);
+
+ // following HAL function will enable the RXNE interrupt + error interrupts
+ HAL_UART_Receive_IT(huart, (uint8_t*)rx, rx_length);
+}
+
+/**
+ * Attempts to determine if the serial peripheral is already in use for TX
+ *
+ * @param obj The serial object
+ * @return Non-zero if the TX transaction is ongoing, 0 otherwise
+ */
+uint8_t serial_tx_active(serial_t *obj)
+{
+ MBED_ASSERT(obj);
+
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+
+ return ((HAL_UART_GetState(huart) == HAL_UART_STATE_BUSY_TX) ? 1 : 0);
+}
+
+/**
+ * Attempts to determine if the serial peripheral is already in use for RX
+ *
+ * @param obj The serial object
+ * @return Non-zero if the RX transaction is ongoing, 0 otherwise
+ */
+uint8_t serial_rx_active(serial_t *obj)
+{
+ MBED_ASSERT(obj);
+
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+
+ return ((HAL_UART_GetState(huart) == HAL_UART_STATE_BUSY_RX) ? 1 : 0);
+}
+
+void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) {
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
+ __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
+ }
+}
+
+void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) {
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) {
+ volatile uint32_t tmpval = huart->Instance->DR; // Clear PE flag
+ } else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) {
+ volatile uint32_t tmpval = huart->Instance->DR; // Clear FE flag
+ } else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_NE) != RESET) {
+ volatile uint32_t tmpval = huart->Instance->DR; // Clear NE flag
+ } else if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
+ volatile uint32_t tmpval = huart->Instance->DR; // Clear ORE flag
+ }
+}
+
+/**
+ * The asynchronous TX and RX handler.
+ *
+ * @param obj The serial object
+ * @return Returns event flags if a TX/RX transfer termination condition was met or 0 otherwise
+ */
+int serial_irq_handler_asynch(serial_t *obj)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+
+ volatile int return_event = 0;
+ uint8_t *buf = (uint8_t*)(obj->rx_buff.buffer);
+ uint8_t i = 0;
+
+ // TX PART:
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_TC) != RESET) {
+ if (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET) {
+ // Return event SERIAL_EVENT_TX_COMPLETE if requested
+ if ((obj_s->events & SERIAL_EVENT_TX_COMPLETE ) != 0) {
+ return_event |= (SERIAL_EVENT_TX_COMPLETE & obj_s->events);
+ }
+ }
+ }
+
+ // Handle error events
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_PE) != RESET) {
+ if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
+ return_event |= (SERIAL_EVENT_RX_PARITY_ERROR & obj_s->events);
+ }
+ }
+
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_FE) != RESET) {
+ if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
+ return_event |= (SERIAL_EVENT_RX_FRAMING_ERROR & obj_s->events);
+ }
+ }
+
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) != RESET) {
+ if (__HAL_UART_GET_IT_SOURCE(huart, USART_IT_ERR) != RESET) {
+ return_event |= (SERIAL_EVENT_RX_OVERRUN_ERROR & obj_s->events);
+ }
+ }
+
+ HAL_UART_IRQHandler(huart);
+
+ // Abort if an error occurs
+ if (return_event & SERIAL_EVENT_RX_PARITY_ERROR ||
+ return_event & SERIAL_EVENT_RX_FRAMING_ERROR ||
+ return_event & SERIAL_EVENT_RX_OVERRUN_ERROR) {
+ return return_event;
+ }
+
+ //RX PART
+ if (huart->RxXferSize != 0) {
+ obj->rx_buff.pos = huart->RxXferSize - huart->RxXferCount;
+ }
+ if ((huart->RxXferCount == 0) && (obj->rx_buff.pos >= (obj->rx_buff.length - 1))) {
+ return_event |= (SERIAL_EVENT_RX_COMPLETE & obj_s->events);
+ }
+
+ // Check if char_match is present
+ if (obj_s->events & SERIAL_EVENT_RX_CHARACTER_MATCH) {
+ if (buf != NULL) {
+ for (i = 0; i < obj->rx_buff.pos; i++) {
+ if (buf[i] == obj->char_match) {
+ obj->rx_buff.pos = i;
+ return_event |= (SERIAL_EVENT_RX_CHARACTER_MATCH & obj_s->events);
+ serial_rx_abort_asynch(obj);
+ break;
+ }
+ }
+ }
+ }
+
+ return return_event;
+}
+
+/**
+ * Abort the ongoing TX transaction. It disables the enabled interupt for TX and
+ * flush TX hardware buffer if TX FIFO is used
+ *
+ * @param obj The serial object
+ */
+void serial_tx_abort_asynch(serial_t *obj)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+
+ __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
+ __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
+
+ // clear flags
+ __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
+
+ // reset states
+ huart->TxXferCount = 0;
+ // update handle state
+ if(huart->gState == HAL_UART_STATE_BUSY_TX_RX) {
+ huart->gState = HAL_UART_STATE_BUSY_RX;
+ } else {
+ huart->gState = HAL_UART_STATE_READY;
+ }
+}
+
+/**
+ * Abort the ongoing RX transaction It disables the enabled interrupt for RX and
+ * flush RX hardware buffer if RX FIFO is used
+ *
+ * @param obj The serial object
+ */
+void serial_rx_abort_asynch(serial_t *obj)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+ UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
+
+ // disable interrupts
+ __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
+ __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
+ __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
+
+ // clear flags
+ __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_RXNE);
+ volatile uint32_t tmpval = huart->Instance->DR; // Clear errors flag
+
+ // reset states
+ huart->RxXferCount = 0;
+ // update handle state
+ if(huart->RxState == HAL_UART_STATE_BUSY_TX_RX) {
+ huart->RxState = HAL_UART_STATE_BUSY_TX;
+ } else {
+ huart->RxState = HAL_UART_STATE_READY;
+ }
+}
+
+#endif
+
+#if DEVICE_SERIAL_FC
+
+/**
+ * Set HW Control Flow
+ * @param obj The serial object
+ * @param type The Control Flow type (FlowControlNone, FlowControlRTS, FlowControlCTS, FlowControlRTSCTS)
+ * @param rxflow Pin for the rxflow
+ * @param txflow Pin for the txflow
+ */
+void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
+{
+ struct serial_s *obj_s = SERIAL_S(obj);
+
+ // Determine the UART to use (UART_1, UART_2, ...)
+ UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
+ UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
+
+ // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
+ obj_s->uart = (UARTName)pinmap_merge(uart_cts, uart_rts);
+ MBED_ASSERT(obj_s->uart != (UARTName)NC);
+
+ if(type == FlowControlNone) {
+ // Disable hardware flow control
+ obj_s->hw_flow_ctl = UART_HWCONTROL_NONE;
+ }
+ if (type == FlowControlRTS) {
+ // Enable RTS
+ MBED_ASSERT(uart_rts != (UARTName)NC);
+ obj_s->hw_flow_ctl = UART_HWCONTROL_RTS;
+ obj_s->pin_rts = rxflow;
+ // Enable the pin for RTS function
+ pinmap_pinout(rxflow, PinMap_UART_RTS);
+ }
+ if (type == FlowControlCTS) {
+ // Enable CTS
+ MBED_ASSERT(uart_cts != (UARTName)NC);
+ obj_s->hw_flow_ctl = UART_HWCONTROL_CTS;
+ obj_s->pin_cts = txflow;
+ // Enable the pin for CTS function
+ pinmap_pinout(txflow, PinMap_UART_CTS);
+ }
+ if (type == FlowControlRTSCTS) {
+ // Enable CTS & RTS
+ MBED_ASSERT(uart_rts != (UARTName)NC);
+ MBED_ASSERT(uart_cts != (UARTName)NC);
+ obj_s->hw_flow_ctl = UART_HWCONTROL_RTS_CTS;
+ obj_s->pin_rts = rxflow;
+ obj_s->pin_cts = txflow;
+ // Enable the pin for CTS function
+ pinmap_pinout(txflow, PinMap_UART_CTS);
+ // Enable the pin for RTS function
+ pinmap_pinout(rxflow, PinMap_UART_RTS);
+ }
+
+ init_uart(obj);
+}
+
+#endif
+
+#endif
