auto-measurements

Dependencies:   FastPWM3 mbed-dev

Fork of Hobbyking_Cheetah_Compact by Ben Katz

Revision:
34:47a55f96fbc4
Parent:
28:8c7e29f719c5
--- a/Calibration/calibration.cpp	Wed Aug 30 18:10:27 2017 +0000
+++ b/Calibration/calibration.cpp	Mon Oct 02 00:55:39 2017 +0000
@@ -6,6 +6,13 @@
 #include "foc.h"
 #include "PreferenceWriter.h"
 #include "user_config.h"
+#include "math.h"
+#include "math_ops.h"
+
+void measure_rl(int n, GPIOStruct *gpio, ControllerStruct *controller, PreferenceWriter *prefs){
+    
+    
+    }
 
 void order_phases(PositionSensor *ps, GPIOStruct *gpio, ControllerStruct *controller, PreferenceWriter *prefs){   
     
@@ -14,7 +21,7 @@
     printf("\n\r Checking phase ordering\n\r");
     float theta_ref = 0;
     float theta_actual = 0;
-    float v_d = .25;                                                             //Put all volts on the D-Axis
+    float v_d = 2.0;                                                             //Put all volts on the D-Axis
     float v_q = 0.0;
     float v_u, v_v, v_w = 0;
     float dtc_u, dtc_v, dtc_w = .5;
@@ -22,33 +29,33 @@
     
     ///Set voltage angle to zero, wait for rotor position to settle
     abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);                                 //inverse dq0 transform on voltages
-    svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                            //space vector modulation
+    svm(V_BUS, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                            //space vector modulation
+    TIM1->CCR3 = (PWM_ARR)*(0.5f);                                        // Set duty cycles
+    TIM1->CCR2 = (PWM_ARR)*(0.5f);
+    TIM1->CCR1 = (PWM_ARR)*(0.5f);
+    wait_us(100);
     for(int i = 0; i<20000; i++){
-        TIM1->CCR3 = (PWM_ARR>>1)*(1.0f-dtc_u);                                        // Set duty cycles
-        TIM1->CCR2 = (PWM_ARR>>1)*(1.0f-dtc_v);
-        TIM1->CCR1 = (PWM_ARR>>1)*(1.0f-dtc_w);
-        wait_us(100);
+        wait_us(50);
+        TIM1->CCR3 = (PWM_ARR)*(1.0f-dtc_u);                                        // Set duty cycles
+        TIM1->CCR2 = (PWM_ARR)*(1.0f-dtc_v);
+        TIM1->CCR1 = (PWM_ARR)*(1.0f-dtc_w);
         }
+        
+    
     //ps->ZeroPosition();
     ps->Sample(); 
     wait_us(1000);
     //float theta_start = ps->GetMechPosition();                                  //get initial rotor position
     float theta_start;
-    controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);    //Calculate phase currents from ADC readings
-    controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
-    controller->i_a = -controller->i_b - controller->i_c;
-    dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q);    //dq0 transform on currents
-    float current = sqrt(pow(controller->i_d, 2) + pow(controller->i_q, 2));
-    printf("\n\rCurrent\n\r");
-    printf("%f    %f   %f\n\r\n\r", controller->i_d, controller->i_q, current);
+    
     /// Rotate voltage angle
-    while(theta_ref < 4*PI){                                                    //rotate for 2 electrical cycles
+    while(theta_ref < 4.0f*PI){                                                    //rotate for 2 electrical cycles
         abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);                             //inverse dq0 transform on voltages
-        svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                        //space vector modulation
+        svm(V_BUS, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                        //space vector modulation
         wait_us(100);
-        TIM1->CCR3 = (PWM_ARR>>1)*(1.0f-dtc_u);                                        //Set duty cycles
-        TIM1->CCR2 = (PWM_ARR>>1)*(1.0f-dtc_v);
-        TIM1->CCR1 = (PWM_ARR>>1)*(1.0f-dtc_w);
+        TIM1->CCR3 = (PWM_ARR)*(1.0f-dtc_u);                                        //Set duty cycles
+        TIM1->CCR2 = (PWM_ARR)*(1.0f-dtc_v);
+        TIM1->CCR1 = (PWM_ARR)*(1.0f-dtc_w);
        ps->Sample();                                                            //sample position sensor
        theta_actual = ps->GetMechPosition();
        if(theta_ref==0){theta_start = theta_actual;}
@@ -61,6 +68,9 @@
         }
     float theta_end = ps->GetMechPosition();
     int direction = (theta_end - theta_start)>0;
+    float ratio = abs(4.0f*PI/(theta_end-theta_start));
+    int pole_pairs = (int) roundf(ratio);
+        
     printf("Theta Start:   %f    Theta End:  %f\n\r", theta_start, theta_end);
     printf("Direction:  %d\n\r", direction);
     if(direction){printf("Phasing correct\n\r");}
@@ -86,7 +96,7 @@
     int raw_b[n] = {0};
     float theta_ref = 0;
     float theta_actual = 0;
-    float v_d = .25;                                                             // Put volts on the D-Axis
+    float v_d = 2.0f;                                                             // Put volts on the D-Axis
     float v_q = 0.0;
     float v_u, v_v, v_w = 0;
     float dtc_u, dtc_v, dtc_w = .5;
@@ -94,39 +104,34 @@
         
     ///Set voltage angle to zero, wait for rotor position to settle
     abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);                                 // inverse dq0 transform on voltages
-    svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                            // space vector modulation
+    svm(V_BUS, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                            // space vector modulation
     for(int i = 0; i<40000; i++){
-        TIM1->CCR3 = (PWM_ARR>>1)*(1.0f-dtc_u);                                        // Set duty cycles
+        TIM1->CCR3 = (PWM_ARR)*(1.0f-dtc_u);                                        // Set duty cycles
         if(PHASE_ORDER){                                   
-            TIM1->CCR2 = (PWM_ARR>>1)*(1.0f-dtc_v);
-            TIM1->CCR1 = (PWM_ARR>>1)*(1.0f-dtc_w);
+            TIM1->CCR2 = (PWM_ARR)*(1.0f-dtc_v);
+            TIM1->CCR1 = (PWM_ARR)*(1.0f-dtc_w);
             }
         else{
-            TIM1->CCR1 = (PWM_ARR>>1)*(1.0f-dtc_v);
-            TIM1->CCR2 = (PWM_ARR>>1)*(1.0f-dtc_w);
+            TIM1->CCR1 = (PWM_ARR)*(1.0f-dtc_v);
+            TIM1->CCR2 = (PWM_ARR)*(1.0f-dtc_w);
             }
         wait_us(100);
         }
     ps->Sample();   
-    controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);    //Calculate phase currents from ADC readings
-    controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
-    controller->i_a = -controller->i_b - controller->i_c;
-    dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q);    //dq0 transform on currents
-    float current = sqrt(pow(controller->i_d, 2) + pow(controller->i_q, 2));
     printf(" Current Angle : Rotor Angle : Raw Encoder \n\r\n\r");
     for(int i = 0; i<n; i++){                                                   // rotate forwards
        for(int j = 0; j<n2; j++){   
         theta_ref += delta;
        abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);                              // inverse dq0 transform on voltages
-       svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                         // space vector modulation
-        TIM1->CCR3 = (PWM_ARR>>1)*(1.0f-dtc_u);
+       svm(V_BUS, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                         // space vector modulation
+        TIM1->CCR3 = (PWM_ARR)*(1.0f-dtc_u);
         if(PHASE_ORDER){                                                        // Check phase ordering
-            TIM1->CCR2 = (PWM_ARR>>1)*(1.0f-dtc_v);                                    // Set duty cycles
-            TIM1->CCR1 = (PWM_ARR>>1)*(1.0f-dtc_w);
+            TIM1->CCR2 = (PWM_ARR)*(1.0f-dtc_v);                                    // Set duty cycles
+            TIM1->CCR1 = (PWM_ARR)*(1.0f-dtc_w);
             }
         else{
-            TIM1->CCR1 = (PWM_ARR>>1)*(1.0f-dtc_v);
-            TIM1->CCR2 = (PWM_ARR>>1)*(1.0f-dtc_w);
+            TIM1->CCR1 = (PWM_ARR)*(1.0f-dtc_v);
+            TIM1->CCR2 = (PWM_ARR)*(1.0f-dtc_w);
             }
             wait_us(100);
             ps->Sample();
@@ -143,15 +148,15 @@
        for(int j = 0; j<n2; j++){
        theta_ref -= delta;
        abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);                              // inverse dq0 transform on voltages
-       svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                         // space vector modulation
-        TIM1->CCR3 = (PWM_ARR>>1)*(1.0f-dtc_u);
+       svm(V_BUS, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                         // space vector modulation
+        TIM1->CCR3 = (PWM_ARR)*(1.0f-dtc_u);
         if(PHASE_ORDER){
-            TIM1->CCR2 = (PWM_ARR>>1)*(1.0f-dtc_v);
-            TIM1->CCR1 = (PWM_ARR>>1)*(1.0f-dtc_w);
+            TIM1->CCR2 = (PWM_ARR)*(1.0f-dtc_v);
+            TIM1->CCR1 = (PWM_ARR)*(1.0f-dtc_w);
             }
         else{
-            TIM1->CCR1 = (PWM_ARR>>1)*(1.0f-dtc_v);
-            TIM1->CCR2 = (PWM_ARR>>1)*(1.0f-dtc_w);
+            TIM1->CCR1 = (PWM_ARR)*(1.0f-dtc_v);
+            TIM1->CCR2 = (PWM_ARR)*(1.0f-dtc_w);
             }
             wait_us(100);
             ps->Sample();
@@ -183,7 +188,6 @@
         float error[n] = {0};
         const int window = 128;
         float error_filt[n] = {0};
-        float cogging_current[window] = {0};
         float mean = 0;
         for (int i = 0; i<n; i++){                                              //Average the forward and back directions
             error[i] = 0.5f*(error_f[i] + error_b[n-i-1]);
@@ -197,9 +201,7 @@
                     ind -= n;}
                 error_filt[i] += error[ind]/(float)window;
                 }
-            if(i<window){
-                cogging_current[i] = current*sinf((error[i] - error_filt[i])*NPP);
-                }
+
             //printf("%.4f   %4f    %.4f   %.4f\n\r", error[i], error_filt[i], error_f[i], error_b[i]);
             mean += error_filt[i]/n;
             }
@@ -207,19 +209,18 @@
         
         
         printf("\n\r Encoder non-linearity compensation table\n\r");
-        printf(" Sample Number : Lookup Index : Lookup Value : Cogging Current Lookup\n\r\n\r");
+        printf(" Sample Number : Lookup Index : Lookup Value\n\r\n\r");
         for (int i = 0; i<n_lut; i++){                                          // build lookup table
             int ind = (raw_offset>>7) + i;
             if(ind > (n_lut-1)){ 
                 ind -= n_lut;
                 }
             lut[ind] = (int) ((error_filt[i*NPP] - mean)*(float)(ps->GetCPR())/(2.0f*PI));
-            printf("%d   %d   %d   %f\n\r", i, ind, lut[ind],  cogging_current[i]);
+            printf("%d   %d   %d\n\r", i, ind, lut[ind]);
             wait(.001);
             }
             
         ps->WriteLUT(lut);                                                      // write lookup table to position sensor object
-        //memcpy(controller->cogging, cogging_current, sizeof(controller->cogging));  //compensation doesn't actually work yet....
         memcpy(&ENCODER_LUT, lut, sizeof(lut));                                 // copy the lookup table to the flash array
         printf("\n\rEncoder Electrical Offset (rad) %f\n\r",  offset);