Ben Katz / Mbed 2 deprecated Hobbyking_Cheetah_F334

Dependencies:   CANnucleo FastPWM3 mbed

Fork of Hobbyking_Cheetah_Compact by Ben Katz

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers foc.cpp Source File

foc.cpp

00001 
00002 #include "foc.h"
00003 #include "mbed.h"
00004 #include "hw_config.h"
00005 #include "math.h"
00006 #include "math_ops.h"
00007 #include "motor_config.h"
00008 #include "current_controller_config.h"
00009 #include "FastMath.h"
00010 using namespace FastMath;
00011 
00012 
00013 void abc( float theta, float d, float q, float *a, float *b, float *c){
00014     ///Phase current amplitude = lengh of dq vector///
00015     ///i.e. iq = 1, id = 0, peak phase current of 1///
00016 
00017     *a = d*FastCos(-theta) + q*FastSin(-theta);
00018     *b = d*FastCos((2.0f*PI/3.0f)-theta) + q*FastSin((2.0f*PI/3.0f)-theta);
00019     *c =  d*FastCos((-2.0f*PI/3.0f)-theta) + q*FastSin((-2.0f*PI/3.0f)-theta);
00020     }
00021     
00022 void dq0(float theta, float a, float b, float c, float *d, float *q){
00023     ///Phase current amplitude = lengh of dq vector///
00024     ///i.e. iq = 1, id = 0, peak phase current of 1///
00025     
00026     *d = (2.0f/3.0f)*(a*FastCos(-theta) + b*FastCos((2.0f*PI/3.0f)-theta) + c*FastCos((-2.0f*PI/3.0f)-theta));
00027     *q = (2.0f/3.0f)*(a*FastSin(-theta) + b*FastSin((2.0f*PI/3.0f)-theta) + c*FastSin((-2.0f*PI/3.0f)-theta));
00028     }
00029     
00030 void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){
00031     ///u,v,w amplitude = v_bus for full modulation depth///
00032     
00033     float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f;
00034     *dtc_u = fminf(fmaxf(((u - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX);
00035     *dtc_v = fminf(fmaxf(((v - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX);
00036     *dtc_w = fminf(fmaxf(((w - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX);
00037     
00038     }
00039 
00040 void zero_current(int *offset_1, int *offset_2){
00041     int adc1_offset = 0;
00042     int adc2_offset = 0;
00043     int n = 1024;
00044     for (int i = 0; i<n; i++){
00045         ADC1->CR  |= ADC_CR_ADSTART;  
00046         volatile int eoc;
00047         while(!eoc){
00048             eoc = ADC1->ISR & ADC_ISR_EOC;
00049             }
00050         adc2_offset += ADC2->DR;
00051         adc1_offset += ADC1->DR;
00052         }
00053     *offset_1 = adc1_offset/n;
00054     *offset_2 = adc2_offset/n;
00055     }
00056 
00057 void reset_foc(ControllerStruct *controller){
00058     controller->q_int = 0;
00059     controller->d_int = 0;
00060     }
00061 
00062 
00063 void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){
00064        
00065        controller->loop_count ++;
00066        controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);    //Calculate phase currents from ADC readings
00067        controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
00068        controller->i_a = -controller->i_b - controller->i_c;
00069        
00070        
00071        dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q);    //dq0 transform on currents
00072        
00073        ///Controller///
00074        float i_d_error = controller->i_d_ref - controller->i_d;
00075        float i_q_error = controller->i_q_ref - controller->i_q;
00076        //float v_d_ff = 2.0f*(2*controller->i_d_ref*R_PHASE);   //feed-forward voltage
00077        //float v_q_ff = 2.0f*(2*controller->i_q_ref*R_PHASE + controller->dtheta_elec*WB*0.8165f);
00078        controller->d_int += i_d_error;   
00079        controller->q_int += i_q_error;
00080        
00081        //v_d_ff = 0;
00082        //v_q_ff = 0;
00083        
00084        limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q));
00085        //controller->d_int = fminf(fmaxf(controller->d_int, -D_INT_LIM), D_INT_LIM);
00086        //controller->q_int = fminf(fmaxf(controller->q_int, -Q_INT_LIM), Q_INT_LIM);
00087        
00088        
00089        controller->v_d = K_D*i_d_error + K_D*KI_D*controller->d_int;// + v_d_ff;  
00090        controller->v_q = K_Q*i_q_error + K_Q*KI_Q*controller->q_int;// + v_q_ff; 
00091        
00092        //controller->v_d = v_d_ff;
00093        //controller->v_q = v_q_ff; 
00094        
00095        limit_norm(&controller->v_d, &controller->v_q, controller->v_bus);
00096        
00097        abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages
00098        svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation
00099 
00100        //gpio->pwm_u->write(1.0f-controller->dtc_u);  //write duty cycles
00101        //gpio->pwm_v->write(1.0f-controller->dtc_v);
00102        //gpio->pwm_w->write(1.0f-controller->dtc_w);  
00103        
00104         //TIM1->CCR1 = 0x708*(1.0f-controller->dtc_u);
00105         //TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v);
00106         //TIM1->CCR3 = 0x708*(1.0f-controller->dtc_w);
00107        
00108        controller->theta_elec = theta;   //For some reason putting this at the front breaks thins
00109        
00110 
00111        //if(controller->loop_count >1000){
00112            //controller->i_q_ref = -controller->i_q_ref;
00113        //    controller->loop_count  = 0;
00114            
00115            //printf("%f\n\r", controller->dtheta_elec);
00116            //printf("%f\n\r", controller->theta_elec);
00117            //pc.printf("%f    %f    %f\n\r", controller->i_a, controller->i_b, controller->i_c);
00118            //pc.printf("%f    %f\n\r", controller->i_d, controller->i_q);
00119            //pc.printf("%d    %d\n\r", controller->adc1_raw, controller->adc2_raw);
00120         //    }
00121     }
00122 /*    
00123 void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){
00124     
00125     }
00126 */