Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: CANnucleo FastPWM3 mbed
Fork of Hobbyking_Cheetah_Compact by
foc.cpp
00001 00002 #include "foc.h" 00003 #include "mbed.h" 00004 #include "hw_config.h" 00005 #include "math.h" 00006 #include "math_ops.h" 00007 #include "motor_config.h" 00008 #include "current_controller_config.h" 00009 #include "FastMath.h" 00010 using namespace FastMath; 00011 00012 00013 void abc( float theta, float d, float q, float *a, float *b, float *c){ 00014 ///Phase current amplitude = lengh of dq vector/// 00015 ///i.e. iq = 1, id = 0, peak phase current of 1/// 00016 00017 *a = d*FastCos(-theta) + q*FastSin(-theta); 00018 *b = d*FastCos((2.0f*PI/3.0f)-theta) + q*FastSin((2.0f*PI/3.0f)-theta); 00019 *c = d*FastCos((-2.0f*PI/3.0f)-theta) + q*FastSin((-2.0f*PI/3.0f)-theta); 00020 } 00021 00022 void dq0(float theta, float a, float b, float c, float *d, float *q){ 00023 ///Phase current amplitude = lengh of dq vector/// 00024 ///i.e. iq = 1, id = 0, peak phase current of 1/// 00025 00026 *d = (2.0f/3.0f)*(a*FastCos(-theta) + b*FastCos((2.0f*PI/3.0f)-theta) + c*FastCos((-2.0f*PI/3.0f)-theta)); 00027 *q = (2.0f/3.0f)*(a*FastSin(-theta) + b*FastSin((2.0f*PI/3.0f)-theta) + c*FastSin((-2.0f*PI/3.0f)-theta)); 00028 } 00029 00030 void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){ 00031 ///u,v,w amplitude = v_bus for full modulation depth/// 00032 00033 float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f; 00034 *dtc_u = fminf(fmaxf(((u - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX); 00035 *dtc_v = fminf(fmaxf(((v - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX); 00036 *dtc_w = fminf(fmaxf(((w - v_offset)*0.5f/v_bus + 0.5f), DTC_MIN), DTC_MAX); 00037 00038 } 00039 00040 void zero_current(int *offset_1, int *offset_2){ 00041 int adc1_offset = 0; 00042 int adc2_offset = 0; 00043 int n = 1024; 00044 for (int i = 0; i<n; i++){ 00045 ADC1->CR |= ADC_CR_ADSTART; 00046 volatile int eoc; 00047 while(!eoc){ 00048 eoc = ADC1->ISR & ADC_ISR_EOC; 00049 } 00050 adc2_offset += ADC2->DR; 00051 adc1_offset += ADC1->DR; 00052 } 00053 *offset_1 = adc1_offset/n; 00054 *offset_2 = adc2_offset/n; 00055 } 00056 00057 void reset_foc(ControllerStruct *controller){ 00058 controller->q_int = 0; 00059 controller->d_int = 0; 00060 } 00061 00062 00063 void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){ 00064 00065 controller->loop_count ++; 00066 controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); //Calculate phase currents from ADC readings 00067 controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); 00068 controller->i_a = -controller->i_b - controller->i_c; 00069 00070 00071 dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents 00072 00073 ///Controller/// 00074 float i_d_error = controller->i_d_ref - controller->i_d; 00075 float i_q_error = controller->i_q_ref - controller->i_q; 00076 //float v_d_ff = 2.0f*(2*controller->i_d_ref*R_PHASE); //feed-forward voltage 00077 //float v_q_ff = 2.0f*(2*controller->i_q_ref*R_PHASE + controller->dtheta_elec*WB*0.8165f); 00078 controller->d_int += i_d_error; 00079 controller->q_int += i_q_error; 00080 00081 //v_d_ff = 0; 00082 //v_q_ff = 0; 00083 00084 limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q)); 00085 //controller->d_int = fminf(fmaxf(controller->d_int, -D_INT_LIM), D_INT_LIM); 00086 //controller->q_int = fminf(fmaxf(controller->q_int, -Q_INT_LIM), Q_INT_LIM); 00087 00088 00089 controller->v_d = K_D*i_d_error + K_D*KI_D*controller->d_int;// + v_d_ff; 00090 controller->v_q = K_Q*i_q_error + K_Q*KI_Q*controller->q_int;// + v_q_ff; 00091 00092 //controller->v_d = v_d_ff; 00093 //controller->v_q = v_q_ff; 00094 00095 limit_norm(&controller->v_d, &controller->v_q, controller->v_bus); 00096 00097 abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages 00098 svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation 00099 00100 //gpio->pwm_u->write(1.0f-controller->dtc_u); //write duty cycles 00101 //gpio->pwm_v->write(1.0f-controller->dtc_v); 00102 //gpio->pwm_w->write(1.0f-controller->dtc_w); 00103 00104 //TIM1->CCR1 = 0x708*(1.0f-controller->dtc_u); 00105 //TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v); 00106 //TIM1->CCR3 = 0x708*(1.0f-controller->dtc_w); 00107 00108 controller->theta_elec = theta; //For some reason putting this at the front breaks thins 00109 00110 00111 //if(controller->loop_count >1000){ 00112 //controller->i_q_ref = -controller->i_q_ref; 00113 // controller->loop_count = 0; 00114 00115 //printf("%f\n\r", controller->dtheta_elec); 00116 //printf("%f\n\r", controller->theta_elec); 00117 //pc.printf("%f %f %f\n\r", controller->i_a, controller->i_b, controller->i_c); 00118 //pc.printf("%f %f\n\r", controller->i_d, controller->i_q); 00119 //pc.printf("%d %d\n\r", controller->adc1_raw, controller->adc2_raw); 00120 // } 00121 } 00122 /* 00123 void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){ 00124 00125 } 00126 */
Generated on Tue Aug 2 2022 05:17:53 by
