Ben Katz / Mbed 2 deprecated Hobbyking_Cheetah_F334

Dependencies:   CANnucleo FastPWM3 mbed

Fork of Hobbyking_Cheetah_Compact by Ben Katz

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers PositionSensor.cpp Source File

PositionSensor.cpp

00001 
00002 #include "mbed.h"
00003 #include "PositionSensor.h"
00004 //#include <math.h>
00005 
00006 PositionSensorMA700::PositionSensorMA700(int CPR, float offset, int ppairs){
00007     //_CPR = CPR;
00008     _CPR = CPR;
00009     _ppairs = ppairs;
00010     _offset = offset;
00011     rotations = 0;
00012     spi = new SPI(PC_12, PC_11, PC_10);
00013     spi->format(16, 0);
00014     cs = new DigitalOut(PA_15);
00015     cs->write(1);
00016     MechOffset = 0;
00017 
00018     }
00019     
00020 void PositionSensorMA700::Sample(){
00021     
00022     
00023     }
00024 
00025 int PositionSensorMA700::GetRawPosition(){
00026         cs->write(0);
00027     int response = spi->write(0)>>4;
00028     cs->write(1);
00029     return response;
00030     }
00031     
00032 
00033 float PositionSensorMA700::GetMechPosition(){
00034     cs->write(0);
00035     int response = spi->write(0)>>4;
00036     cs->write(1);
00037     if(response - old_counts > _CPR/4){
00038         rotations -= 1;
00039         }
00040     else if (response - old_counts < -_CPR/4){
00041         rotations += 1;
00042         }
00043     old_counts = response;
00044     MechPosition = (6.28318530718f * ((float) response+(_CPR*rotations)))/ (float)_CPR;
00045     //return MechPosition - MechOffset;
00046     return MechPosition;
00047     }
00048 
00049 float PositionSensorMA700::GetElecPosition(){
00050     cs->write(0);
00051     int response = spi->write(0)>>4;
00052     cs->write(1);
00053     float elec = ((6.28318530718f/(float)_CPR) * (float) ((_ppairs*response)%_CPR)) - _offset;
00054     if(elec < 0) elec += 6.28318530718f;
00055     return elec;
00056     }
00057 
00058 float PositionSensorMA700::GetMechVelocity(){
00059     return 0;
00060     }
00061 
00062 void PositionSensorMA700::ZeroPosition(){
00063     rotations = 0;
00064     MechOffset = GetMechPosition();
00065     }
00066     
00067 PositionSensorAM5147::PositionSensorAM5147(int CPR, float offset, int ppairs){
00068     //_CPR = CPR;
00069     _CPR = CPR;
00070     _ppairs = ppairs;
00071     ElecOffset = offset;
00072     rotations = 0;
00073     spi = new SPI(PC_12, PC_11, PC_10);
00074     spi->format(16, 1);
00075     spi->frequency(5000000);
00076     cs = new DigitalOut(PA_15);
00077     cs->write(1);
00078     readAngleCmd = 0xffff;
00079     MechOffset = 0;
00080     modPosition = 0;
00081     oldModPosition = 0;
00082     oldVel = 0;
00083     }
00084     
00085 void PositionSensorAM5147::Sample(){
00086     cs->write(0);
00087     int angle = spi->write(readAngleCmd);
00088     angle &= 0x3FFF;    //Extract last 14 bits
00089     cs->write(1);
00090     raw = angle;
00091     if(angle - old_counts > _CPR/4){
00092         rotations -= 1;
00093         }
00094     else if (angle - old_counts < -_CPR/4){
00095         rotations += 1;
00096         }
00097     
00098     old_counts = angle;
00099     oldModPosition = modPosition;
00100     modPosition = ((6.28318530718f * ((float) angle))/ (float)_CPR);
00101     position = (6.28318530718f * ((float) angle+(_CPR*rotations)))/ (float)_CPR;
00102     MechPosition = position - MechOffset;
00103     float elec = ((6.28318530718f/(float)_CPR) * (float) ((_ppairs*angle)%_CPR)) - ElecOffset;
00104     if(elec < 0) elec += 6.28318530718f;
00105     ElecPosition = elec;
00106     
00107     float vel;
00108     if(modPosition<.1f && oldModPosition>6.1f){
00109         vel = (modPosition - oldModPosition + 6.28318530718f)*40000.0f;
00110         }
00111     else if(modPosition>6.1f && oldModPosition<0.1f){
00112         vel = (modPosition - oldModPosition - 6.28318530718f)*40000.0f;
00113         }
00114     else{
00115         vel = (modPosition-oldModPosition)*40000.0f;
00116     }    
00117     
00118     int n = 16;
00119     float sum = vel;
00120     for (int i = 1; i < (n); i++){
00121         velVec[n - i] = velVec[n-i-1];
00122         sum += velVec[n-i];
00123         }
00124     velVec[0] = vel;
00125     MechVelocity =  sum/(float)n;
00126     ElecVelocity = MechVelocity*_ppairs;
00127     }
00128 
00129 int PositionSensorAM5147::GetRawPosition(){
00130     return raw;
00131     }
00132     
00133 float PositionSensorAM5147::GetMechPosition(){
00134     return MechPosition;
00135     }
00136 
00137 float PositionSensorAM5147::GetElecPosition(){
00138     return ElecPosition;
00139     }
00140 
00141 float PositionSensorAM5147::GetMechVelocity(){
00142     return MechVelocity;
00143     }
00144 
00145 void PositionSensorAM5147::ZeroPosition(){
00146     rotations = 0;
00147     MechOffset = GetMechPosition();
00148     }
00149     
00150     
00151 PositionSensorEncoder::PositionSensorEncoder(int CPR, float offset, int ppairs) {
00152     _ppairs = ppairs;
00153     _CPR = CPR;
00154     _offset = offset;
00155     MechPosition = 0;
00156     out_old = 0;
00157     oldVel = 0;
00158     
00159     
00160     // Enable clock for GPIOA
00161     __GPIOA_CLK_ENABLE(); //equivalent from hal_rcc.h
00162  
00163     GPIOA->MODER   |= GPIO_MODER_MODER6_1 | GPIO_MODER_MODER7_1 ;           //PA6 & PA7 as Alternate Function   /*!< GPIO port mode register,               Address offset: 0x00      */
00164     GPIOA->OTYPER  |= GPIO_OTYPER_OT_6 | GPIO_OTYPER_OT_7 ;                 //PA6 & PA7 as Inputs               /*!< GPIO port output type register,        Address offset: 0x04      */
00165     GPIOA->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR6 | GPIO_OSPEEDER_OSPEEDR7 ;     //Low speed                         /*!< GPIO port output speed register,       Address offset: 0x08      */
00166     GPIOA->PUPDR   |= GPIO_PUPDR_PUPDR6_1 | GPIO_PUPDR_PUPDR7_1 ;           //Pull Down                         /*!< GPIO port pull-up/pull-down register,  Address offset: 0x0C      */
00167     GPIOA->AFR[0]  |= 0x22000000 ;                                          //AF02 for PA6 & PA7                /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
00168     GPIOA->AFR[1]  |= 0x00000000 ;                                          //nibbles here refer to gpio8..15   /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
00169    
00170     // configure TIM3 as Encoder input
00171     // Enable clock for TIM3
00172     __TIM3_CLK_ENABLE();
00173  
00174     TIM3->CR1   = 0x0001;     // CEN(Counter ENable)='1'     < TIM control register 1
00175     TIM3->SMCR  = TIM_ENCODERMODE_TI12;     // SMS='011' (Encoder mode 3)  < TIM slave mode control register
00176     TIM3->CCMR1 = 0x1111;     // CC1S='01' CC2S='01'         < TIM capture/compare mode register 1, maximum digital filtering
00177     TIM3->CCMR2 = 0x0000;     //                             < TIM capture/compare mode register 2
00178     TIM3->CCER  = 0x0011;     // CC1P CC2P                   < TIM capture/compare enable register
00179     TIM3->PSC   = 0x0000;     // Prescaler = (0+1)           < TIM prescaler
00180     TIM3->ARR   = CPR-1; // reload at 0xfffffff         < TIM auto-reload register
00181   
00182     TIM3->CNT = 0x000;  //reset the counter before we use it  
00183     
00184     // Extra Timer for velocity measurement
00185     
00186     __TIM2_CLK_ENABLE();
00187     TIM3->CR2 = 0x030;  //MMS = 101
00188     
00189     TIM2->PSC = 0x03;
00190     //TIM2->CR2 |= TIM_CR2_TI1S;
00191     TIM2->SMCR = 0x24; //TS = 010 for ITR2, SMS = 100 (reset counter at edge)
00192     TIM2->CCMR1 = 0x3;// CC1S = 11, IC1 mapped on TRC
00193     
00194     //TIM2->CR2 |= TIM_CR2_TI1S;
00195     TIM2->CCER |= TIM_CCER_CC1P;
00196     //TIM2->CCER |= TIM_CCER_CC1NP;
00197     TIM2->CCER |= TIM_CCER_CC1E;
00198     
00199     
00200     TIM2->CR1 = 0x01;       //CEN
00201     
00202     TIM3->CR1   = 0x01;     // CEN
00203     ZPulse = new InterruptIn(PC_4);
00204     ZSense = new DigitalIn(PC_4);
00205     //ZPulse = new InterruptIn(PB_0);
00206     //ZSense = new DigitalIn(PB_0);
00207     ZPulse->enable_irq();
00208     ZPulse->rise(this, &PositionSensorEncoder::ZeroEncoderCount);
00209     //ZPulse->fall(this, &PositionSensorEncoder::ZeroEncoderCountDown);
00210     ZPulse->mode(PullDown);
00211     flag = 0;
00212 
00213     
00214     //ZTest = new DigitalOut(PC_2);
00215     //ZTest->write(1);
00216     }
00217     
00218 void PositionSensorEncoder::Sample(){
00219     
00220     }
00221 
00222  
00223 float PositionSensorEncoder::GetMechPosition() {        //returns rotor angle in radians.
00224     int raw = TIM3->CNT;
00225     float unsigned_mech = (6.28318530718f/(float)_CPR) * (float) ((raw)%_CPR);
00226     return (float) unsigned_mech;// + 6.28318530718f* (float) rotations;
00227 }
00228 
00229 float PositionSensorEncoder::GetElecPosition() {        //returns rotor electrical angle in radians.
00230     int raw = TIM3->CNT;
00231     float elec = ((6.28318530718f/(float)_CPR) * (float) ((_ppairs*raw)%_CPR)) - _offset;
00232     if(elec < 0) elec += 6.28318530718f;
00233     return elec;
00234 }
00235 
00236 
00237     
00238 float PositionSensorEncoder::GetMechVelocity(){
00239 
00240     float out = 0;
00241     float rawPeriod = TIM2->CCR1; //Clock Ticks
00242     int currentTime = TIM2->CNT;
00243     if(currentTime > 2000000){rawPeriod = currentTime;}
00244     float  dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f;    // +/- 1
00245     float meas = dir*180000000.0f*(6.28318530718f/(float)_CPR)/rawPeriod; 
00246     if(isinf(meas)){ meas = 1;}
00247     out = meas;
00248     //if(meas == oldVel){
00249      //   out = .9f*out_old;
00250      //   }
00251     
00252  
00253     oldVel = meas;
00254     out_old = out;
00255     int n = 16;
00256     float sum = out;
00257     for (int i = 1; i < (n); i++){
00258         velVec[n - i] = velVec[n-i-1];
00259         sum += velVec[n-i];
00260         }
00261     velVec[0] = out;
00262     return sum/(float)n;
00263     }
00264     
00265 float PositionSensorEncoder::GetElecVelocity(){
00266     return _ppairs*GetMechVelocity();
00267     }
00268     
00269 void PositionSensorEncoder::ZeroEncoderCount(void){
00270     if (ZSense->read() == 1 & flag == 0){
00271         if (ZSense->read() == 1){
00272             GPIOC->ODR ^= (1 << 4);   
00273             TIM3->CNT = 0x000;
00274             //state = !state;
00275             //ZTest->write(state);
00276             GPIOC->ODR ^= (1 << 4);
00277             //flag = 1;
00278         }
00279         }
00280     }
00281     
00282 void PositionSensorEncoder::ZeroEncoderCountDown(void){
00283     if (ZSense->read() == 0){
00284         if (ZSense->read() == 0){
00285             GPIOC->ODR ^= (1 << 4);
00286             flag = 0;
00287             float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f;
00288             if(dir != dir){
00289                 dir = dir;
00290                 rotations +=  dir;
00291                 }
00292 
00293             GPIOC->ODR ^= (1 << 4);
00294 
00295         }
00296         }
00297     }