machine learning ANN perlu bantuan

Dependencies:   mbed

Files at this revision

API Documentation at this revision

Comitter:
asyrofi
Date:
Sat Apr 14 04:32:05 2018 +0000
Commit message:
perlu bantuan;

Changed in this revision

main.cpp Show annotated file Show diff for this revision Revisions of this file
mbed.bld Show annotated file Show diff for this revision Revisions of this file
diff -r 000000000000 -r 482cc6c25690 main.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Sat Apr 14 04:32:05 2018 +0000
@@ -0,0 +1,255 @@
+#include <math.h>
+#include <mbed.h>
+Serial pc(USBTX, USBRX);
+const int PatternCount = 10;
+const int InputNodes = 7;
+const int HiddenNodes = 8;
+const int OutputNodes = 4;
+const float LearningRate = 0.3;
+const float Momentum = 0.9;
+const float InitialWeightMax = 0.5;
+const float Success = 0.0004;
+
+const byte Input[PatternCount][InputNodes] = {
+  { 1, 1, 1, 1, 1, 1, 0 },  // 0
+  { 0, 1, 1, 0, 0, 0, 0 },  // 1
+  { 1, 1, 0, 1, 1, 0, 1 },  // 2
+  { 1, 1, 1, 1, 0, 0, 1 },  // 3
+  { 0, 1, 1, 0, 0, 1, 1 },  // 4
+  { 1, 0, 1, 1, 0, 1, 1 },  // 5
+  { 0, 0, 1, 1, 1, 1, 1 },  // 6
+  { 1, 1, 1, 0, 0, 0, 0 },  // 7 
+  { 1, 1, 1, 1, 1, 1, 1 },  // 8
+  { 1, 1, 1, 0, 0, 1, 1 }   // 9
+}; 
+
+const byte Target[PatternCount][OutputNodes] = {
+  { 0, 0, 0, 0 },  
+  { 0, 0, 0, 1 }, 
+  { 0, 0, 1, 0 }, 
+  { 0, 0, 1, 1 }, 
+  { 0, 1, 0, 0 }, 
+  { 0, 1, 0, 1 }, 
+  { 0, 1, 1, 0 }, 
+  { 0, 1, 1, 1 }, 
+  { 1, 0, 0, 0 }, 
+  { 1, 0, 0, 1 } 
+};
+
+int i, j, p, q, r;
+int ReportEvery1000;
+int RandomizedIndex[PatternCount];
+long  TrainingCycle;
+float Rando;
+float Error;
+float Accum;
+
+
+float Hidden[HiddenNodes];
+float Output[OutputNodes];
+float HiddenWeights[InputNodes+1][HiddenNodes];
+float OutputWeights[HiddenNodes+1][OutputNodes];
+float HiddenDelta[HiddenNodes];
+float OutputDelta[OutputNodes];
+float ChangeHiddenWeights[InputNodes+1][HiddenNodes];
+float ChangeOutputWeights[HiddenNodes+1][OutputNodes];
+
+int main()
+{
+  pc.baud(9600);
+  randomSeed(analogRead(3));
+  ReportEvery1000 = 1;
+  for( p = 0 ; p < PatternCount ; p++ ) 
+  {    
+    RandomizedIndex[p] = p ;
+  }
+  
+  void loop ()
+  {
+
+
+
+    for( i = 0 ; i < HiddenNodes ; i++ ) 
+    {    
+        for( j = 0 ; j <= InputNodes ; j++ ) 
+        { 
+            ChangeHiddenWeights[j][i] = 0.0 ;
+            Rando = float(random(100))/100;
+            HiddenWeights[j][i] = 2.0 * ( Rando - 0.5 ) * InitialWeightMax ;
+        }
+    }
+
+    for( i = 0 ; i < OutputNodes ; i ++ ) 
+    {    
+        for( j = 0 ; j <= HiddenNodes ; j++ ) 
+        {
+            ChangeOutputWeights[j][i] = 0.0 ;  
+            Rando = float(random(100))/100;        
+            OutputWeights[j][i] = 2.0 * ( Rando - 0.5 ) * InitialWeightMax ;
+        }
+    }
+    pc.printf("Initial/Untrained Outputs: \n");
+    toTerminal();
+
+    for( TrainingCycle = 1 ; TrainingCycle < 2147483647 ; TrainingCycle++) 
+    {    
+
+        for( p = 0 ; p < PatternCount ; p++) 
+        {
+            q = random(PatternCount);
+            r = RandomizedIndex[p] ; 
+            RandomizedIndex[p] = RandomizedIndex[q] ; 
+            RandomizedIndex[q] = r ;
+        }
+        Error = 0.0 ;
+
+        for( q = 0 ; q < PatternCount ; q++ ) 
+        {    
+            p = RandomizedIndex[q];
+
+            for( i = 0 ; i < HiddenNodes ; i++ ) 
+            {    
+                Accum = HiddenWeights[InputNodes][i] ;
+                for( j = 0 ; j < InputNodes ; j++ ) 
+                {
+                    Accum += Input[p][j] * HiddenWeights[j][i] ;
+                }
+                Hidden[i] = 1.0/(1.0 + exp(-Accum)) ;
+            }
+
+
+            for( i = 0 ; i < OutputNodes ; i++ ) 
+            {    
+                Accum = OutputWeights[HiddenNodes][i] ;
+                for( j = 0 ; j < HiddenNodes ; j++ ) 
+                {
+                    Accum += Hidden[j] * OutputWeights[j][i] ;
+                }
+                Output[i] = 1.0/(1.0 + exp(-Accum)) ;   
+                OutputDelta[i] = (Target[p][i] - Output[i]) * Output[i] * (1.0 - Output[i]) ;   
+                Error += 0.5 * (Target[p][i] - Output[i]) * (Target[p][i] - Output[i]) ;
+            }
+
+
+            for( i = 0 ; i < HiddenNodes ; i++ ) 
+            {    
+                Accum = 0.0 ;
+                for( j = 0 ; j < OutputNodes ; j++ ) 
+                {
+                    Accum += OutputWeights[i][j] * OutputDelta[j] ;
+                }
+                HiddenDelta[i] = Accum * Hidden[i] * (1.0 - Hidden[i]) ;
+            }
+
+
+
+
+            for( i = 0 ; i < HiddenNodes ; i++ ) 
+            {     
+                ChangeHiddenWeights[InputNodes][i] = LearningRate * HiddenDelta[i] + Momentum * ChangeHiddenWeights[InputNodes][i] ;
+                HiddenWeights[InputNodes][i] += ChangeHiddenWeights[InputNodes][i] ;
+                for( j = 0 ; j < InputNodes ; j++ ) 
+                { 
+                    ChangeHiddenWeights[j][i] = LearningRate * Input[p][j] * HiddenDelta[i] + Momentum * ChangeHiddenWeights[j][i];
+                    HiddenWeights[j][i] += ChangeHiddenWeights[j][i] ;
+                }
+            }
+
+
+            for( i = 0 ; i < OutputNodes ; i ++ ) 
+            {    
+                ChangeOutputWeights[HiddenNodes][i] = LearningRate * OutputDelta[i] + Momentum * ChangeOutputWeights[HiddenNodes][i] ;
+                OutputWeights[HiddenNodes][i] += ChangeOutputWeights[HiddenNodes][i] ;
+                for( j = 0 ; j < HiddenNodes ; j++ ) 
+                {
+                    ChangeOutputWeights[j][i] = LearningRate * Hidden[j] * OutputDelta[i] + Momentum * ChangeOutputWeights[j][i] ;
+                    OutputWeights[j][i] += ChangeOutputWeights[j][i] ;
+                }
+            }
+     }
+
+
+    ReportEvery1000 = ReportEvery1000 - 1;
+    if (ReportEvery1000 == 0)
+    { 
+      pc.printf ("TrainingCycle: ");
+      pc.printf ("%i",(int16_t)TrainingCycle);
+      pc.printf ("  Error = ");
+      pc.printf ("%i\n",(int16_t)Error, 5);
+
+      toTerminal();
+
+      if (TrainingCycle==1)
+      {
+        ReportEvery1000 = 999;
+      }
+        else
+      {
+        ReportEvery1000 = 1000;
+      }
+    }    
+
+    if( Error < Success ) break ;  
+  } 
+    pc.printf ("TrainingCycle: ");
+    pc.printf ("%i",(int16_t)TrainingCycle);
+    pc.printf ("  Error = ");
+    pc.printf ("%i\n",(int16_t)Error, 5);
+
+    toTerminal();
+
+    pc.printf ("Training Set Solved!\n");
+    pc.printf ("--------\n");   
+    ReportEvery1000 = 1;
+    }
+}  
+
+void toTerminal()
+{
+
+  for( p = 0 ; p < PatternCount ; p++ ) { 
+    pc.printf ("  Training Pattern: ");
+    pc.printf ("%i\n",(int16_t)p);      
+    pc.printf ("  Input ");
+    for( i = 0 ; i < InputNodes ; i++ ) {
+      pc.printf ("%i,%i",(int16_t)Input[p][i],(int16_t)DEC);
+      pc.printft (" ");
+    }
+    pc.printf ("  Target ");
+    for( i = 0 ; i < OutputNodes ; i++ ) {
+      pc.printf ("%i,%i",(int16_t)Input[p][i],(int16_t)DEC);
+      Serial.print (" ");
+    }
+/******************************************************************
+* Compute hidden layer activations
+******************************************************************/
+
+    for( i = 0 ; i < HiddenNodes ; i++ ) {    
+      Accum = HiddenWeights[InputNodes][i] ;
+      for( j = 0 ; j < InputNodes ; j++ ) {
+        Accum += Input[p][j] * HiddenWeights[j][i] ;
+      }
+      Hidden[i] = 1.0/(1.0 + exp(-Accum)) ;
+    }
+
+/******************************************************************
+* Compute output layer activations and calculate errors
+******************************************************************/
+
+    for( i = 0 ; i < OutputNodes ; i++ ) {    
+      Accum = OutputWeights[HiddenNodes][i] ;
+      for( j = 0 ; j < HiddenNodes ; j++ ) {
+        Accum += Hidden[j] * OutputWeights[j][i] ;
+      }
+      Output[i] = 1.0/(1.0 + exp(-Accum)) ; 
+    }
+    pc.printf ("  Output ");
+    for( i = 0 ; i < OutputNodes ; i++ ) {       
+      pc.printf ("%i",Output[i], 5);
+      pc.printf (" ");
+    }
+  }
+
+
+}
+
diff -r 000000000000 -r 482cc6c25690 mbed.bld
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mbed.bld	Sat Apr 14 04:32:05 2018 +0000
@@ -0,0 +1,1 @@
+http://mbed.org/users/mbed_official/code/mbed/builds/4f6c30876dfa
\ No newline at end of file