Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed FastIO FastPWM USBDevice
FreescaleIAP/FreescaleIAP.cpp
- Committer:
- arnoz
- Date:
- 2021-10-01
- Revision:
- 116:7a67265d7c19
- Parent:
- 82:4f6209cb5c33
File content as of revision 116:7a67265d7c19:
// FreescaleIAP - custom version
//
// This is a simplified version of Erik Olieman's FreescaleIAP, a flash
// memory writer for Freescale boards. This version combines erase, write,
// and verify into a single API call. The caller only has to give us a
// buffer (of any length) to write, and the address to write it to, and
// we'll do the whole thing - essentially a memcpy() to flash.
//
// This version uses an assembler implementation of the core code that
// launches an FTFA command and waits for completion, to minimize the
// size of the code and to ensure that it's placed in RAM. The KL25Z
// flash controller prohibits any flash reads while an FTFA command is
// executing. This includes instruction fetches; any instruction fetch
// from flash while an FTFA command is running will fail, which will
// freeze the CPU. Placing the execute/wait code in RAM ensures that
// the wait loop itself won't trigger a fetch. It's also vital to disable
// interrupts while the execute/wait code is running, to ensure that we
// don't jump to an ISR in flash during the wait.
//
// Despite the dire warnings in the hardware reference manual about putting
// the FTFA execute/wait code in RAM, it doesn't actually appear to be
// necessary, as long as the wait loop is very small (in terms of machine
// code instruction count). In testing, Erik has found that a flash-resident
// version of the code is stable, and further found (by testing combinations
// of cache control settings via the platform control register, MCM_PLACR)
// that the stability comes from the loop fitting into CPU cache, which
// allows the loop to execute without any fetches taking place. Even so,
// I'm keeping the RAM version, out of an abundance of caution: just in
// case there are any rare or oddball conditions (interrupt timing, say)
// where the cache trick breaks. Putting the code in RAM seems pretty
// much guaranteed to work, whereas the cache trick seems somewhat to be
// relying on a happy accident, and I personally don't know the M0+
// architecture well enough to be able to convince myself that it really
// will work under all conditions. There doesn't seem to be any benefit
// to not using the assembler, either, as it's very simple code and takes
// up little RAM (about 40 bytes).
#include "FreescaleIAP.h"
//#define IAPDEBUG
// assembly interface
extern "C" {
// Execute the current FTFA command and wait for completion.
// This is an assembler implementation that runs entirely in RAM,
// to ensure strict compliance with the prohibition on reading
// flash (for instruction fetches or any other reason) during FTFA
// execution.
void iapExecAndWait();
}
enum FCMD {
Read1s = 0x01,
ProgramCheck = 0x02,
ReadResource = 0x03,
ProgramLongword = 0x06,
EraseSector = 0x09,
Read1sBlock = 0x40,
ReadOnce = 0x41,
ProgramOnce = 0x43,
EraseAll = 0x44,
VerifyBackdoor = 0x45
};
// Get the size of the flash memory on the device
uint32_t FreescaleIAP::flashSize(void)
{
uint32_t retval = (SIM->FCFG2 & 0x7F000000u) >> (24-13);
if (SIM->FCFG2 & (1<<23)) // Possible second flash bank
retval += (SIM->FCFG2 & 0x007F0000u) >> (16-13);
return retval;
}
// Check if an error occurred
static FreescaleIAP::IAPCode checkError(void)
{
if (FTFA->FSTAT & FTFA_FSTAT_FPVIOL_MASK) {
#ifdef IAPDEBUG
printf("IAP: Protection violation\r\n");
#endif
return FreescaleIAP::ProtectionError;
}
if (FTFA->FSTAT & FTFA_FSTAT_ACCERR_MASK) {
#ifdef IAPDEBUG
printf("IAP: Flash access error\r\n");
#endif
return FreescaleIAP::AccessError;
}
if (FTFA->FSTAT & FTFA_FSTAT_RDCOLERR_MASK) {
#ifdef IAPDEBUG
printf("IAP: Collision error\r\n");
#endif
return FreescaleIAP::CollisionError;
}
if (FTFA->FSTAT & FTFA_FSTAT_MGSTAT0_MASK) {
#ifdef IAPDEBUG
printf("IAP: Runtime error\r\n");
#endif
return FreescaleIAP::RuntimeError;
}
return FreescaleIAP::Success;
}
// check for proper address alignment
static bool checkAlign(int address)
{
bool retval = address & 0x03;
#ifdef IAPDEBUG
if (retval)
printf("IAP: Alignment violation\r\n");
#endif
return retval;
}
// clear errors in the FTFA
static void clearErrors()
{
// wait for any previous command to complete
while (!(FTFA->FSTAT & FTFA_FSTAT_CCIF_MASK)) ;
// clear the error bits
if (FTFA->FSTAT & (FTFA_FSTAT_ACCERR_MASK | FTFA_FSTAT_FPVIOL_MASK))
FTFA->FSTAT |= FTFA_FSTAT_ACCERR_MASK | FTFA_FSTAT_FPVIOL_MASK;
}
static FreescaleIAP::IAPCode eraseSector(int address)
{
#ifdef IAPDEBUG
printf("IAP: Erasing sector at %x\r\n", address);
#endif
// ensure proper alignment
if (checkAlign(address))
return FreescaleIAP::AlignError;
// clear errors
clearErrors();
// Set up the command
FTFA->FCCOB0 = EraseSector;
FTFA->FCCOB1 = (address >> 16) & 0xFF;
FTFA->FCCOB2 = (address >> 8) & 0xFF;
FTFA->FCCOB3 = address & 0xFF;
// execute
iapExecAndWait();
// check the result
return checkError();
}
static FreescaleIAP::IAPCode verifySectorErased(int address)
{
// Always verify in whole sectors. The
const unsigned int count = SECTOR_SIZE/4;
#ifdef IAPDEBUG
printf("IAP: Verify erased at %x, %d longwords (%d bytes)\r\n", address, count, count*4);
#endif
if (checkAlign(address))
return FreescaleIAP::AlignError;
// clear errors
clearErrors();
// Set up command
FTFA->FCCOB0 = Read1s;
FTFA->FCCOB1 = (address >> 16) & 0xFF;
FTFA->FCCOB2 = (address >> 8) & 0xFF;
FTFA->FCCOB3 = address & 0xFF;
FTFA->FCCOB4 = (count >> 8) & 0xFF;
FTFA->FCCOB5 = count & 0xFF;
FTFA->FCCOB6 = 0;
// execute
iapExecAndWait();
// check the result
FreescaleIAP::IAPCode retval = checkError();
if (retval == FreescaleIAP::RuntimeError) {
#ifdef IAPDEBUG
printf("IAP: Flash was not erased\r\n");
#endif
return FreescaleIAP::EraseError;
}
return retval;
}
// Write one sector. This always writes a full sector, even if the
// requested length is greater or less than the sector size:
//
// - if len > SECTOR_SIZE, we write the first SECTOR_SIZE bytes of the data
//
// - if len < SECTOR_SIZE, we write the data, then fill in the rest of the
// sector with 0xFF bytes ('1' bits)
//
static FreescaleIAP::IAPCode writeSector(int address, const uint8_t *p, int len)
{
#ifdef IAPDEBUG
printf("IAP: Writing sector at %x with length %d\r\n", address, len);
#endif
// program the sector, one longword (32 bits) at a time
for (int ofs = 0 ; ofs < SECTOR_SIZE ; ofs += 4, address += 4, p += 4, len -= 4)
{
// clear errors
clearErrors();
// Set up the command
FTFA->FCCOB0 = ProgramLongword;
FTFA->FCCOB1 = (address >> 16) & 0xFF;
FTFA->FCCOB2 = (address >> 8) & 0xFF;
FTFA->FCCOB3 = address & 0xFF;
// Load the longword to write. If we're past the end of the source
// data, write all '1' bits to the balance of the sector.
FTFA->FCCOB4 = len > 3 ? p[3] : 0xFF;
FTFA->FCCOB5 = len > 2 ? p[2] : 0xFF;
FTFA->FCCOB6 = len > 1 ? p[1] : 0xFF;
FTFA->FCCOB7 = len > 0 ? p[0] : 0xFF;
// execute
iapExecAndWait();
// check errors
FreescaleIAP::IAPCode status = checkError();
if (status != FreescaleIAP::Success)
return status;
}
// no problems
return FreescaleIAP::Success;
}
// Program a block of memory into flash.
FreescaleIAP::IAPCode FreescaleIAP::programFlash(
int address, const void *src, unsigned int length)
{
#ifdef IAPDEBUG
printf("IAP: Programming flash at %x with length %d\r\n", address, length);
#endif
// presume success
FreescaleIAP::IAPCode status = FreescaleIAP::Success;
// Show diagnostic LED colors while writing. I'm finally convinced this
// is well and truly 100% reliable now, but I've been wrong before, so
// we'll keep this for now. The idea is that if we freeze up, we'll at
// least know which stage we're at from the last color displayed.
extern void diagLED(int,int,int);
// try a few times if we fail to verify
for (int tries = 0 ; tries < 5 ; ++tries)
{
// Do the write one sector at a time
int curaddr = address;
const uint8_t *p = (const uint8_t *)src;
int rem = (int)length;
for ( ; rem > 0 ; curaddr += SECTOR_SIZE, p += SECTOR_SIZE, rem -= SECTOR_SIZE)
{
// erase the sector (red LED)
diagLED(1, 0, 0);
if ((status = eraseSector(curaddr)) != FreescaleIAP::Success)
break;
// verify that the sector is erased (yellow LED)
diagLED(1, 1, 0);
if ((status = verifySectorErased(curaddr)) != FreescaleIAP::Success)
break;
// write the data (white LED)
diagLED(1, 1, 1);
if ((status = writeSector(curaddr, p, rem)) != FreescaleIAP::Success)
break;
// back from write (purple LED)
diagLED(1, 0, 1);
}
// if we didn't encounter an FTFA error, verify the write
if (status == FreescaleIAP::Success)
{
// Verify the write. If it was successful, we're done.
if (memcmp((void *)address, src, length) == 0)
{
// LEDs to green on success
diagLED(0, 1, 0);
break;
}
// We have a mismatch between the flash data and the source.
// Flag the error and go back for another attempt.
status = FreescaleIAP::VerifyError;
diagLED(1, 0, 0);
}
}
// return the result
return status;
}