Laatste versie van Arnoud, Data wordt geplot

Dependencies:   FastPWM MODSERIAL QEI mbed

Committer:
AppelSab
Date:
Wed Oct 31 10:44:10 2018 +0000
Revision:
0:755bc7c0f555
Child:
1:7afdfab34bf7
Demomodus werkt tm punt 2;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
AppelSab 0:755bc7c0f555 1 #include "mbed.h"
AppelSab 0:755bc7c0f555 2 #include "FastPWM.h"
AppelSab 0:755bc7c0f555 3 #include "MODSERIAL.h"
AppelSab 0:755bc7c0f555 4 #include "QEI.h"
AppelSab 0:755bc7c0f555 5 #include "math.h"
AppelSab 0:755bc7c0f555 6
AppelSab 0:755bc7c0f555 7 // --------------------------------------------------
AppelSab 0:755bc7c0f555 8 // ----------------- SET UP -------------------------
AppelSab 0:755bc7c0f555 9 QEI Encoder1(D11, D10, NC, 4200) ; // Encoder motor 1, (pin 1A, pin 1B, counts/rev)
AppelSab 0:755bc7c0f555 10 QEI Encoder2(D9, D8, NC, 4200) ; // Encoder motor 2, (pin 2A, pin 2B, counts/rev)
AppelSab 0:755bc7c0f555 11 DigitalOut directionM1(D4);
AppelSab 0:755bc7c0f555 12 DigitalOut directionM2(D7);
AppelSab 0:755bc7c0f555 13 FastPWM motor1_pwm(D5);
AppelSab 0:755bc7c0f555 14 FastPWM motor2_pwm(D6);
AppelSab 0:755bc7c0f555 15 MODSERIAL pc(USBTX, USBRX);
AppelSab 0:755bc7c0f555 16
AppelSab 0:755bc7c0f555 17 // Tickers
AppelSab 0:755bc7c0f555 18 Ticker Demo;
AppelSab 0:755bc7c0f555 19 Ticker Write;
AppelSab 0:755bc7c0f555 20
AppelSab 0:755bc7c0f555 21 // ---------------------------------------------------
AppelSab 0:755bc7c0f555 22 // ----------------- GLOBAL VARIABLES ----------------
AppelSab 0:755bc7c0f555 23 volatile int counts1;
AppelSab 0:755bc7c0f555 24 volatile int counts2;
AppelSab 0:755bc7c0f555 25 volatile double theta1;
AppelSab 0:755bc7c0f555 26 volatile double theta2;
AppelSab 0:755bc7c0f555 27 const double pi = 3.14159265359;
AppelSab 0:755bc7c0f555 28 volatile double error1;
AppelSab 0:755bc7c0f555 29 volatile double error2;
AppelSab 0:755bc7c0f555 30 double point1x = 200.0;
AppelSab 0:755bc7c0f555 31 double point1y = 200.0;
AppelSab 0:755bc7c0f555 32 double point2x = 350.0;
AppelSab 0:755bc7c0f555 33 double point2y = 200.0;
AppelSab 0:755bc7c0f555 34 double point3x = 350.0;
AppelSab 0:755bc7c0f555 35 double point3y = 0.0;
AppelSab 0:755bc7c0f555 36 double point4x = 200.0;
AppelSab 0:755bc7c0f555 37 double point4y = 0.0;
AppelSab 0:755bc7c0f555 38 int track;
AppelSab 0:755bc7c0f555 39 const double x0 = 80.0; //zero x position after homing
AppelSab 0:755bc7c0f555 40 const double y0 = 141.0; //zero y position after homing
AppelSab 0:755bc7c0f555 41 volatile double setpointx = x0;
AppelSab 0:755bc7c0f555 42 volatile double setpointy = y0;
AppelSab 0:755bc7c0f555 43 volatile double U1;
AppelSab 0:755bc7c0f555 44 volatile double U2;
AppelSab 0:755bc7c0f555 45
AppelSab 0:755bc7c0f555 46 // Inverse Kinematics
AppelSab 0:755bc7c0f555 47 volatile double q1_diff;
AppelSab 0:755bc7c0f555 48 volatile double q2_diff;
AppelSab 0:755bc7c0f555 49 double sq = 2.0; //to square numbers
AppelSab 0:755bc7c0f555 50 const double L1 = 250.0; //length of the first link
AppelSab 0:755bc7c0f555 51 const double L3 = 350.0; //length of the second link
AppelSab 0:755bc7c0f555 52
AppelSab 0:755bc7c0f555 53 // Reference angles of the starting position
AppelSab 0:755bc7c0f555 54 double q2_0 = pi + acos((pow(x0,sq)+pow(y0,sq)-pow(L1,sq)-pow(L3,sq))/(2.0*L1*L3));
AppelSab 0:755bc7c0f555 55 double q1_0 = atan(y0/x0)+acos((-pow(L3,sq)+pow(L1,sq)+pow(x0,sq)+pow(y0,sq))/(2.0*L1*sqrt(pow(x0,sq)+pow(y0,sq))));
AppelSab 0:755bc7c0f555 56 double q2_0_enc = q2_0 + q1_0;
AppelSab 0:755bc7c0f555 57
AppelSab 0:755bc7c0f555 58 // --------------------------------------------------------------------
AppelSab 0:755bc7c0f555 59 // ---------------Read out encoders------------------------------------
AppelSab 0:755bc7c0f555 60 // --------------------------------------------------------------------
AppelSab 0:755bc7c0f555 61 double counts2angle1()
AppelSab 0:755bc7c0f555 62 {
AppelSab 0:755bc7c0f555 63 counts1 = Encoder1.getPulses(); // Counts of outputshaft of motor 1
AppelSab 0:755bc7c0f555 64 theta1 = -(double(counts1)/4200) * 2*pi; // Angle of outputshaft of motor 1
AppelSab 0:755bc7c0f555 65 return theta1;
AppelSab 0:755bc7c0f555 66 }
AppelSab 0:755bc7c0f555 67
AppelSab 0:755bc7c0f555 68 double counts2angle2()
AppelSab 0:755bc7c0f555 69 {
AppelSab 0:755bc7c0f555 70 counts2 = Encoder2.getPulses(); // Counts of outputshaft of motor 2
AppelSab 0:755bc7c0f555 71 theta2 = (double(counts2)/4200) * 2*pi; // Angle of outputshaft of motor 2
AppelSab 0:755bc7c0f555 72 return theta2;
AppelSab 0:755bc7c0f555 73 }
AppelSab 0:755bc7c0f555 74
AppelSab 0:755bc7c0f555 75 // -------------------------------------------------------------------------
AppelSab 0:755bc7c0f555 76 // -------------- Determine Setpoints --------------------------------------
AppelSab 0:755bc7c0f555 77 // -------------------------------------------------------------------------
AppelSab 0:755bc7c0f555 78 double determinedemosetx(double setpointx, double setpointy)
AppelSab 0:755bc7c0f555 79 {
AppelSab 0:755bc7c0f555 80
AppelSab 0:755bc7c0f555 81
AppelSab 0:755bc7c0f555 82
AppelSab 0:755bc7c0f555 83
AppelSab 0:755bc7c0f555 84
AppelSab 0:755bc7c0f555 85 /*
AppelSab 0:755bc7c0f555 86 // Van punt 3 naar punt 4.
AppelSab 0:755bc7c0f555 87 if (setpointy >= point3y - 0.3 && setpointx >= point3x - 0.3 && setpointy <= point3y + 0.3 && setpointx <= point3x + 0.3)
AppelSab 0:755bc7c0f555 88 {
AppelSab 0:755bc7c0f555 89 setpointx = setpointx - 0.1; // Van punt 1 naar punt 2 op dezelfde y blijven.
AppelSab 0:755bc7c0f555 90 track = 34;
AppelSab 0:755bc7c0f555 91 }
AppelSab 0:755bc7c0f555 92 if (setpointy > point3y && track == 34)
AppelSab 0:755bc7c0f555 93 {
AppelSab 0:755bc7c0f555 94 setpointx = setpointx - 0.1;
AppelSab 0:755bc7c0f555 95 }
AppelSab 0:755bc7c0f555 96
AppelSab 0:755bc7c0f555 97 if (setpointy >= point4y - 0.3 && setpointx >= point4x - 0.3 && setpointy <= point4y + 0.3 && setpointx <= point4x + 0.3)
AppelSab 0:755bc7c0f555 98 {
AppelSab 0:755bc7c0f555 99 setpointx = 80.0;
AppelSab 0:755bc7c0f555 100 }
AppelSab 0:755bc7c0f555 101 */
AppelSab 0:755bc7c0f555 102 return setpointx;
AppelSab 0:755bc7c0f555 103 }
AppelSab 0:755bc7c0f555 104
AppelSab 0:755bc7c0f555 105 double determinedemosety(double &setpointx, double &setpointy)
AppelSab 0:755bc7c0f555 106 {
AppelSab 0:755bc7c0f555 107 // Van reference positie naar punt 1.
AppelSab 0:755bc7c0f555 108 if(setpointy < point1y){
AppelSab 0:755bc7c0f555 109 setpointy = setpointy + 0.2;
AppelSab 0:755bc7c0f555 110 }
AppelSab 0:755bc7c0f555 111
AppelSab 0:755bc7c0f555 112 if (setpointx < point1x){
AppelSab 0:755bc7c0f555 113 setpointx = setpointx + 0.1;
AppelSab 0:755bc7c0f555 114 }
AppelSab 0:755bc7c0f555 115
AppelSab 0:755bc7c0f555 116 // Van punt 1 naar punt 2.
AppelSab 0:755bc7c0f555 117 if (setpointy >= point1y - 0.3 && setpointx >= point1x - 0.3 && setpointy <= point1y + 0.3 && setpointx <= point1x + 0.3){
AppelSab 0:755bc7c0f555 118 setpointx = setpointx + 0.1;
AppelSab 0:755bc7c0f555 119 setpointy = point2y; // Van punt 1 naar punt 2 op dezelfde y blijven.
AppelSab 0:755bc7c0f555 120 track = 12;
AppelSab 0:755bc7c0f555 121 }
AppelSab 0:755bc7c0f555 122 if (setpointx < point2x && track == 12){
AppelSab 0:755bc7c0f555 123 setpointx = setpointx + 0.2;
AppelSab 0:755bc7c0f555 124 setpointy = point2y;
AppelSab 0:755bc7c0f555 125 }
AppelSab 0:755bc7c0f555 126
AppelSab 0:755bc7c0f555 127 // Van punt 2 naar punt 3.
AppelSab 0:755bc7c0f555 128 if (setpointx >= (point2x-0.2))
AppelSab 0:755bc7c0f555 129 {
AppelSab 0:755bc7c0f555 130 setpointx = point3x;
AppelSab 0:755bc7c0f555 131 setpointy = setpointy - 0.2;
AppelSab 0:755bc7c0f555 132 track = 23;
AppelSab 0:755bc7c0f555 133 }
AppelSab 0:755bc7c0f555 134 if (setpointy > point3y && track == 23)
AppelSab 0:755bc7c0f555 135 {
AppelSab 0:755bc7c0f555 136 setpointx = point3x; // Van punt 1 naar punt 2 op dezelfde y blijven.
AppelSab 0:755bc7c0f555 137 setpointy = setpointy - 0.2;
AppelSab 0:755bc7c0f555 138 track = 23;
AppelSab 0:755bc7c0f555 139 }
AppelSab 0:755bc7c0f555 140
AppelSab 0:755bc7c0f555 141
AppelSab 0:755bc7c0f555 142 /*
AppelSab 0:755bc7c0f555 143 // Van punt 3 naar punt 4.
AppelSab 0:755bc7c0f555 144 if (setpointy >= point3y - 0.3 && setpointx >= point3x - 0.3 && setpointy <= point3y + 0.3 && setpointx <= point3x + 0.3)
AppelSab 0:755bc7c0f555 145 {
AppelSab 0:755bc7c0f555 146 setpointy = setpointy;
AppelSab 0:755bc7c0f555 147 track = 34;
AppelSab 0:755bc7c0f555 148 }
AppelSab 0:755bc7c0f555 149 if (setpointy > point3y && track == 34)
AppelSab 0:755bc7c0f555 150 {
AppelSab 0:755bc7c0f555 151 setpointy = setpointy;
AppelSab 0:755bc7c0f555 152 }
AppelSab 0:755bc7c0f555 153
AppelSab 0:755bc7c0f555 154
AppelSab 0:755bc7c0f555 155 if (setpointy >= point4y - 0.3 && setpointx >= point4x - 0.3 && setpointy <= point4y + 0.3 && setpointx <= point4x + 0.3)
AppelSab 0:755bc7c0f555 156 {
AppelSab 0:755bc7c0f555 157 setpointy = 141.0;
AppelSab 0:755bc7c0f555 158 }
AppelSab 0:755bc7c0f555 159 */
AppelSab 0:755bc7c0f555 160 return setpointy;
AppelSab 0:755bc7c0f555 161
AppelSab 0:755bc7c0f555 162 }
AppelSab 0:755bc7c0f555 163
AppelSab 0:755bc7c0f555 164 // -----------------------------------------------------------------
AppelSab 0:755bc7c0f555 165 // --------------------------- PI controllers ----------------------
AppelSab 0:755bc7c0f555 166 // -----------------------------------------------------------------
AppelSab 0:755bc7c0f555 167 double PI_controller1(double error1)
AppelSab 0:755bc7c0f555 168 {
AppelSab 0:755bc7c0f555 169 static double error_integral1 = 0;
AppelSab 0:755bc7c0f555 170
AppelSab 0:755bc7c0f555 171 // Proportional part
AppelSab 0:755bc7c0f555 172 double Kp1 = 3.95; // Kp (proportionele controller, nu nog een random waarde)
AppelSab 0:755bc7c0f555 173 double u_p1 = Kp1*error1; // Voltage dat naar de motor gestuurd wordt (volgt uit error en Kp)
AppelSab 0:755bc7c0f555 174
AppelSab 0:755bc7c0f555 175 // Integral part
AppelSab 0:755bc7c0f555 176 double Ki1 = 6.0; // Ki (Integrale deel vd controller, nu nog een random waarde)
AppelSab 0:755bc7c0f555 177 double Ts1 = 0.005; // Sample tijd, net zo vaak als de controller wordt aangeroepen (200 Hz, statemachine)
AppelSab 0:755bc7c0f555 178 error_integral1 = error_integral1 + error1 * Ts1;
AppelSab 0:755bc7c0f555 179 double u_i1 = Ki1 * error_integral1;
AppelSab 0:755bc7c0f555 180
AppelSab 0:755bc7c0f555 181 // Sum
AppelSab 0:755bc7c0f555 182 U1 = u_p1 + u_i1;
AppelSab 0:755bc7c0f555 183
AppelSab 0:755bc7c0f555 184 // Return
AppelSab 0:755bc7c0f555 185 return U1;
AppelSab 0:755bc7c0f555 186 }
AppelSab 0:755bc7c0f555 187 double PI_controller2(double error2)
AppelSab 0:755bc7c0f555 188 {
AppelSab 0:755bc7c0f555 189 static double error_integral2 = 0;
AppelSab 0:755bc7c0f555 190
AppelSab 0:755bc7c0f555 191 // Proportional part
AppelSab 0:755bc7c0f555 192 double Kp2 = 3.95; // Kp (proportionele controller, nu nog een random waarde)
AppelSab 0:755bc7c0f555 193 double u_p2 = Kp2*error2; // Voltage dat naar de motor gestuurd wordt (volgt uit error en Kp)
AppelSab 0:755bc7c0f555 194
AppelSab 0:755bc7c0f555 195 // Integral part
AppelSab 0:755bc7c0f555 196 double Ki2 = 6.0; // Ki (Integrale deel vd controller, nu nog een random waarde)
AppelSab 0:755bc7c0f555 197 double Ts2 = 0.005; // Sample tijd, net zo vaak als de controller wordt aangeroepen (200 Hz, statemachine)
AppelSab 0:755bc7c0f555 198 error_integral2 = error_integral2 + error2 * Ts2;
AppelSab 0:755bc7c0f555 199 double u_i2 = Ki2 * error_integral2;
AppelSab 0:755bc7c0f555 200
AppelSab 0:755bc7c0f555 201 // Sum +
AppelSab 0:755bc7c0f555 202 U2 = u_p2 + u_i2;
AppelSab 0:755bc7c0f555 203
AppelSab 0:755bc7c0f555 204 // Return
AppelSab 0:755bc7c0f555 205 return U2;
AppelSab 0:755bc7c0f555 206 }
AppelSab 0:755bc7c0f555 207 // ------------------------------------------------------------
AppelSab 0:755bc7c0f555 208 // ------------ Inverse Kinematics ----------------------------
AppelSab 0:755bc7c0f555 209 // ------------------------------------------------------------
AppelSab 0:755bc7c0f555 210 double makeAngleq1(double x, double y){
AppelSab 0:755bc7c0f555 211 double q1 = atan(y/x)+acos((-pow(L3,sq)+pow(L1,sq)+pow(x,sq)+pow(y,sq))/(2.0*L1*sqrt(pow(x,sq)+pow(y,sq)))); //angle of the first joint in the setpoint configuration
AppelSab 0:755bc7c0f555 212 q1_diff = -2.0*(q1-q1_0); //the actual amount of radians that the motor has to turn in total to reach the setpoint
AppelSab 0:755bc7c0f555 213 return q1_diff;
AppelSab 0:755bc7c0f555 214 }
AppelSab 0:755bc7c0f555 215
AppelSab 0:755bc7c0f555 216 double makeAngleq2(double x, double y){
AppelSab 0:755bc7c0f555 217 double q2 = -acos((pow(x,sq)+pow(y,sq)-pow(L1,sq)-pow(L3,sq))/(2.0*L1*L3)); //angle of the second joint in setpoint configuration
AppelSab 0:755bc7c0f555 218 double q1 = atan(y/x)+acos((-pow(L3,sq)+pow(L1,sq)+pow(x,sq)+pow(y,sq))/(2.0*L1*sqrt(pow(x,sq)+pow(y,sq)))); //angle of the first joint in the setpoint configuration
AppelSab 0:755bc7c0f555 219 double q2_motor = (pi - q2)+q1; //because q2 represents the angle at joint two and not at the motor a calculation has to be done
AppelSab 0:755bc7c0f555 220 q2_diff = (2.0*(q2_motor - q2_0_enc))/(2.0*pi); //the actual amount of radians that the motor has to turn in total to reach the setpoint
AppelSab 0:755bc7c0f555 221 return -q2_diff;
AppelSab 0:755bc7c0f555 222 }
AppelSab 0:755bc7c0f555 223
AppelSab 0:755bc7c0f555 224
AppelSab 0:755bc7c0f555 225 // -----------------------------------------------
AppelSab 0:755bc7c0f555 226 // ------------ RUN MOTORS -----------------------
AppelSab 0:755bc7c0f555 227 // -----------------------------------------------
AppelSab 0:755bc7c0f555 228 void motoraansturing()
AppelSab 0:755bc7c0f555 229 {
AppelSab 0:755bc7c0f555 230 setpointx = determinedemosetx(setpointx, setpointy);
AppelSab 0:755bc7c0f555 231 setpointy = determinedemosety(setpointx, setpointy);
AppelSab 0:755bc7c0f555 232 q1_diff = makeAngleq1(setpointx, setpointy);
AppelSab 0:755bc7c0f555 233 q2_diff = makeAngleq2(setpointx, setpointy);
AppelSab 0:755bc7c0f555 234
AppelSab 0:755bc7c0f555 235 theta2 = counts2angle2();
AppelSab 0:755bc7c0f555 236 error2 = q2_diff - theta2;
AppelSab 0:755bc7c0f555 237 theta1 = counts2angle1();
AppelSab 0:755bc7c0f555 238 error1 = q1_diff - theta1; // Setpoint error, te behalen setpoint minus de huidige positie van de as.
AppelSab 0:755bc7c0f555 239
AppelSab 0:755bc7c0f555 240 U1 = PI_controller1(error1); // Voltage dat naar de motor gestuurd wordt.
AppelSab 0:755bc7c0f555 241 U2 = PI_controller2(error2);
AppelSab 0:755bc7c0f555 242
AppelSab 0:755bc7c0f555 243 motor1_pwm.write(fabs(U1)); // Motor aansturen
AppelSab 0:755bc7c0f555 244 directionM1 = U1 > 0.0f; // Richting van de motor bepalen
AppelSab 0:755bc7c0f555 245 motor2_pwm.write(fabs(U2));
AppelSab 0:755bc7c0f555 246 directionM2 = U2 > 0.0f;
AppelSab 0:755bc7c0f555 247 }
AppelSab 0:755bc7c0f555 248
AppelSab 0:755bc7c0f555 249
AppelSab 0:755bc7c0f555 250 void rundemo()
AppelSab 0:755bc7c0f555 251 {
AppelSab 0:755bc7c0f555 252 motoraansturing();
AppelSab 0:755bc7c0f555 253 }
AppelSab 0:755bc7c0f555 254
AppelSab 0:755bc7c0f555 255
AppelSab 0:755bc7c0f555 256 int main()
AppelSab 0:755bc7c0f555 257 {
AppelSab 0:755bc7c0f555 258 pc.baud(115200);
AppelSab 0:755bc7c0f555 259 motor1_pwm.period_us(60); // Period is 60 microseconde
AppelSab 0:755bc7c0f555 260 motor2_pwm.period_us(60);
AppelSab 0:755bc7c0f555 261 Demo.attach(&rundemo, 0.005f);
AppelSab 0:755bc7c0f555 262
AppelSab 0:755bc7c0f555 263 while (true) {
AppelSab 0:755bc7c0f555 264
AppelSab 0:755bc7c0f555 265 }
AppelSab 0:755bc7c0f555 266 }