Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/TARGET_NXP/TARGET_LPC176X/spi_api.c
- Committer:
- AnnaBridge
- Date:
- 2017-08-31
- Revision:
- 173:7d866c31b3c5
- Parent:
- 171:19eb464bc2be
File content as of revision 173:7d866c31b3c5:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include <math.h> #include "spi_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" static const PinMap PinMap_SPI_SCLK[] = { {P0_7 , SPI_1, 2}, {P0_15, SPI_0, 2}, {P1_20, SPI_0, 3}, {P1_31, SPI_1, 2}, {NC , NC , 0} }; static const PinMap PinMap_SPI_MOSI[] = { {P0_9 , SPI_1, 2}, {P0_13, SPI_1, 2}, {P0_18, SPI_0, 2}, {P1_24, SPI_0, 3}, {NC , NC , 0} }; static const PinMap PinMap_SPI_MISO[] = { {P0_8 , SPI_1, 2}, {P0_12, SPI_1, 2}, {P0_17, SPI_0, 2}, {P1_23, SPI_0, 3}, {NC , NC , 0} }; static const PinMap PinMap_SPI_SSEL[] = { {P0_6 , SPI_1, 2}, {P0_11, SPI_1, 2}, {P0_16, SPI_0, 2}, {P1_21, SPI_0, 3}, {NC , NC , 0} }; static inline int ssp_disable(spi_t *obj); static inline int ssp_enable(spi_t *obj); void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // determine the SPI to use SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK); SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL); SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso); SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel); obj->spi = (LPC_SSP_TypeDef*)pinmap_merge(spi_data, spi_cntl); MBED_ASSERT((int)obj->spi != NC); // enable power and clocking switch ((int)obj->spi) { case SPI_0: LPC_SC->PCONP |= 1 << 21; break; case SPI_1: LPC_SC->PCONP |= 1 << 10; break; } // pin out the spi pins pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); if (ssel != NC) { pinmap_pinout(ssel, PinMap_SPI_SSEL); } } void spi_free(spi_t *obj) {} void spi_format(spi_t *obj, int bits, int mode, int slave) { ssp_disable(obj); MBED_ASSERT(((bits >= 4) && (bits <= 16)) && (mode >= 0 && mode <= 3)); int polarity = (mode & 0x2) ? 1 : 0; int phase = (mode & 0x1) ? 1 : 0; // set it up int DSS = bits - 1; // DSS (data select size) int SPO = (polarity) ? 1 : 0; // SPO - clock out polarity int SPH = (phase) ? 1 : 0; // SPH - clock out phase int FRF = 0; // FRF (frame format) = SPI uint32_t tmp = obj->spi->CR0; tmp &= ~(0x00FF); // Clear DSS, FRF, CPOL and CPHA [7:0] tmp |= DSS << 0 | FRF << 4 | SPO << 6 | SPH << 7; obj->spi->CR0 = tmp; tmp = obj->spi->CR1; tmp &= ~(0xD); tmp |= 0 << 0 // LBM - loop back mode - off | ((slave) ? 1 : 0) << 2 // MS - master slave mode, 1 = slave | 0 << 3; // SOD - slave output disable - na obj->spi->CR1 = tmp; ssp_enable(obj); } void spi_frequency(spi_t *obj, int hz) { ssp_disable(obj); // setup the spi clock diveder to /1 switch ((int)obj->spi) { case SPI_0: LPC_SC->PCLKSEL1 &= ~(3 << 10); LPC_SC->PCLKSEL1 |= (1 << 10); break; case SPI_1: LPC_SC->PCLKSEL0 &= ~(3 << 20); LPC_SC->PCLKSEL0 |= (1 << 20); break; } uint32_t PCLK = SystemCoreClock; int prescaler; for (prescaler = 2; prescaler <= 254; prescaler += 2) { int prescale_hz = PCLK / prescaler; // calculate the divider int divider = floor(((float)prescale_hz / (float)hz) + 0.5f); // check we can support the divider if (divider < 256) { // prescaler obj->spi->CPSR = prescaler; // divider obj->spi->CR0 &= ~(0xFF00); // Clear SCR: Serial clock rate [15:8] obj->spi->CR0 |= (divider - 1) << 8; ssp_enable(obj); return; } } error("Couldn't setup requested SPI frequency"); } static inline int ssp_disable(spi_t *obj) { return obj->spi->CR1 &= ~(1 << 1); } static inline int ssp_enable(spi_t *obj) { return obj->spi->CR1 |= (1 << 1); } static inline int ssp_readable(spi_t *obj) { return obj->spi->SR & (1 << 2); } static inline int ssp_writeable(spi_t *obj) { return obj->spi->SR & (1 << 1); } static inline void ssp_write(spi_t *obj, int value) { while (!ssp_writeable(obj)); obj->spi->DR = value; } static inline int ssp_read(spi_t *obj) { while (!ssp_readable(obj)); return obj->spi->DR; } static inline int ssp_busy(spi_t *obj) { return (obj->spi->SR & (1 << 4)) ? (1) : (0); } int spi_master_write(spi_t *obj, int value) { ssp_write(obj, value); return ssp_read(obj); } int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, char write_fill) { int total = (tx_length > rx_length) ? tx_length : rx_length; for (int i = 0; i < total; i++) { char out = (i < tx_length) ? tx_buffer[i] : write_fill; char in = spi_master_write(obj, out); if (i < rx_length) { rx_buffer[i] = in; } } return total; } int spi_slave_receive(spi_t *obj) { return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0); } int spi_slave_read(spi_t *obj) { return obj->spi->DR; } void spi_slave_write(spi_t *obj, int value) { while (ssp_writeable(obj) == 0) ; obj->spi->DR = value; } int spi_busy(spi_t *obj) { return ssp_busy(obj); }