Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
ik.cpp
00001 /* Inverse kinetics, Nick Moriarty May 2014 00002 This code is provided under the terms of the MIT license. 00003 The MIT License (MIT) 00004 Copyright (c) 2014 Nick Moriarty 00005 Permission is hereby granted, free of charge, to any person obtaining a copy 00006 of this software and associated documentation files (the "Software"), to deal 00007 in the Software without restriction, including without limitation the rights 00008 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 00009 copies of the Software, and to permit persons to whom the Software is 00010 furnished to do so, subject to the following conditions: 00011 The above copyright notice and this permission notice shall be included in 00012 all copies or substantial portions of the Software. 00013 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 00014 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 00015 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 00016 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 00017 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 00018 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 00019 SOFTWARE. 00020 */ 00021 #include "math.h" 00022 #include "ik.h" 00023 #include "config.h" 00024 00025 const float PI=3.14159265359; 00026 00027 // Get polar coords from cartesian ones 00028 void cart2polar(float a, float b, float& r, float& theta) 00029 { 00030 // Determine magnitude of cartesian coords 00031 r = sqrt(a*a + b*b); 00032 00033 // Don't try to calculate zero-magnitude vectors' angles 00034 if(r == 0) return; 00035 00036 float c = a / r; 00037 float s = b / r; 00038 00039 // Safety! 00040 if(s > 1) s = 1; 00041 if(c > 1) c = 1; 00042 if(s < -1) s = -1; 00043 if(c < -1) c = -1; 00044 00045 // Calculate angle in 0..PI 00046 theta = acos(c); 00047 00048 // Convert to full range 00049 if(s < 0) theta *= -1; 00050 } 00051 00052 // Get angle from a triangle using cosine rule 00053 bool cosangle(float opp, float adj1, float adj2, float& theta) 00054 { 00055 // Cosine rule: 00056 // C^2 = A^2 + B^2 - 2*A*B*cos(angle_AB) 00057 // cos(angle_AB) = (A^2 + B^2 - C^2)/(2*A*B) 00058 // C is opposite 00059 // A, B are adjacent 00060 float den = 2*adj1*adj2; 00061 00062 if(den==0) return false; 00063 float c = (adj1*adj1 + adj2*adj2 - opp*opp)/den; 00064 00065 if(c>1 || c<-1) return false; 00066 00067 theta = acos(c); 00068 00069 return true; 00070 } 00071 00072 // Solve angles! 00073 bool solve(float x, float y, float z, float& a0, float& a1, float& a2) 00074 { 00075 // Solve top-down view 00076 float r, th0; 00077 cart2polar(y, x, r, th0); 00078 00079 // Account for the wrist length! 00080 r -= L3; 00081 00082 // In arm plane, convert to polar 00083 float ang_P, R; 00084 cart2polar(r, z, R, ang_P); 00085 00086 // Solve arm inner angles as required 00087 float B, C; 00088 if(!cosangle(L2, L1, R, B)) return false; 00089 if(!cosangle(R, L1, L2, C)) return false; 00090 00091 // Solve for servo angles from horizontal 00092 a0 = th0; 00093 a1 = ang_P + B; 00094 a2 = C + a1 - PI; 00095 00096 return true; 00097 }
Generated on Tue Jul 12 2022 11:35:54 by
1.7.2