Updated TFC library to be compatible with the recent hardware changes. Currently only CCD1, Servo1, Motor1, and Motor2 are interfaced.

Dependencies:   mbed

Dependents:   TFC-TEST_UPDATED_HW

Fork of FRDM-TFC by Eli Hughes

Committer:
emh203
Date:
Wed Jul 17 19:30:14 2013 +0000
Revision:
1:6f37253dab87
Child:
3:23cce037011f
Pulled in code from the TFC library.  This will now be the official spot for FRDM-TFC Code

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emh203 1:6f37253dab87 1 #include "mbed.h"
emh203 1:6f37253dab87 2 #include "TFC.h"
emh203 1:6f37253dab87 3
emh203 1:6f37253dab87 4 #define FTM1_CLK_PRESCALE 6// Prescale Selector value - see comments in Status Control (SC) section for more details
emh203 1:6f37253dab87 5 #define SERVO_DEFAULT_PERIOD (float)(.020) // Desired Frequency of PWM Signal - Here 50Hz => 20ms period
emh203 1:6f37253dab87 6 // use these to dial in servo steering to your particular servo
emh203 1:6f37253dab87 7 #define SERVO_MIN_PULSE_WIDTH_DEFAULT (float)(.0005) // The number here should be be *pulse width* in seconds to move servo to its left limit
emh203 1:6f37253dab87 8 #define SERVO_MAX_PULSE_WIDTH_DEFAULT (float)(.002) // The number here should be be *pulse width* in seconds to move servo to its left limit
emh203 1:6f37253dab87 9
emh203 1:6f37253dab87 10
emh203 1:6f37253dab87 11 #define FTM0_CLOCK (SystemCoreClock/2)
emh203 1:6f37253dab87 12 #define FTM0_CLK_PRESCALE (0) // Prescale Selector value - see comments in Status Control (SC) section for more details
emh203 1:6f37253dab87 13 #define FTM0_DEFAULT_SWITCHING_FREQUENCY (4000.0)
emh203 1:6f37253dab87 14
emh203 1:6f37253dab87 15 #define ADC_MAX_CODE (4095)
emh203 1:6f37253dab87 16
emh203 1:6f37253dab87 17 #define TAOS_CLK_HIGH PTE->PSOR = (1<<1)
emh203 1:6f37253dab87 18 #define TAOS_CLK_LOW PTE->PCOR = (1<<1)
emh203 1:6f37253dab87 19 #define TAOS_SI_HIGH PTD->PSOR = (1<<7)
emh203 1:6f37253dab87 20 #define TAOS_SI_LOW PTD->PCOR = (1<<7)
emh203 1:6f37253dab87 21
emh203 1:6f37253dab87 22 #define ADC_STATE_INIT 0
emh203 1:6f37253dab87 23 #define ADC_STATE_CAPTURE_POT_0 1
emh203 1:6f37253dab87 24 #define ADC_STATE_CAPTURE_POT_1 2
emh203 1:6f37253dab87 25 #define ADC_STATE_CAPTURE_BATTERY_LEVEL 3
emh203 1:6f37253dab87 26 #define ADC_STATE_CAPTURE_LINE_SCAN 4
emh203 1:6f37253dab87 27
emh203 1:6f37253dab87 28
emh203 1:6f37253dab87 29 #define TFC_POT_0_ADC_CHANNEL 13
emh203 1:6f37253dab87 30 #define TFC_POT_1_ADC_CHANNEL 12
emh203 1:6f37253dab87 31 #define TFC_BAT_SENSE_CHANNEL 4
emh203 1:6f37253dab87 32 #define TFC_LINESCAN0_ADC_CHANNEL 6
emh203 1:6f37253dab87 33 #define TFC_LINESCAN1_ADC_CHANNEL 7
emh203 1:6f37253dab87 34
emh203 1:6f37253dab87 35
emh203 1:6f37253dab87 36 #define ADC0_irq_no 57
emh203 1:6f37253dab87 37 #define ADC1_irq_no 58
emh203 1:6f37253dab87 38
emh203 1:6f37253dab87 39 #define ADC0_CHANA 19 // set to desired ADC0 channel trigger A
emh203 1:6f37253dab87 40 #define ADC0_CHANB 20 // set to desired ADC0 channel trigger B
emh203 1:6f37253dab87 41
emh203 1:6f37253dab87 42 #define ADC1_CHANA 20 // set to desired ADC1 channel trigger A 20 defaults to potentiometer in TWRK60
emh203 1:6f37253dab87 43 #define ADC1_CHANB 20 // set to desired ADC1 channel trigger B
emh203 1:6f37253dab87 44
emh203 1:6f37253dab87 45 #define ADC0_DLYA 0x2000 // ADC0 trigger A delay
emh203 1:6f37253dab87 46 #define ADC0_DLYB 0x4000 // ADC0 trigger B delay
emh203 1:6f37253dab87 47 #define ADC1_DLYA 0x6000 // ADC1 trigger A delay
emh203 1:6f37253dab87 48 #define ADC1_DLYB 0x7fff // ADC1 trigger B delay
emh203 1:6f37253dab87 49
emh203 1:6f37253dab87 50
emh203 1:6f37253dab87 51 #define ADC0A_DONE 0x01
emh203 1:6f37253dab87 52 #define ADC0B_DONE 0x02
emh203 1:6f37253dab87 53 #define ADC1A_DONE 0x04
emh203 1:6f37253dab87 54 #define ADC1B_DONE 0x08
emh203 1:6f37253dab87 55
emh203 1:6f37253dab87 56
emh203 1:6f37253dab87 57 // Bit shifting of bitfiled is already taken into account so
emh203 1:6f37253dab87 58 // bitfiled values are always represented as relative to their position.
emh203 1:6f37253dab87 59
emh203 1:6f37253dab87 60 /************************* #Defines ******************************************/
emh203 1:6f37253dab87 61
emh203 1:6f37253dab87 62 #define A 0x0
emh203 1:6f37253dab87 63 #define B 0x1
emh203 1:6f37253dab87 64
emh203 1:6f37253dab87 65 /////// NOTE: the following defines relate to the ADC register definitions
emh203 1:6f37253dab87 66 /////// and the content follows the reference manual, using the same symbols.
emh203 1:6f37253dab87 67
emh203 1:6f37253dab87 68
emh203 1:6f37253dab87 69 //// ADCSC1 (register)
emh203 1:6f37253dab87 70
emh203 1:6f37253dab87 71 // Conversion Complete (COCO) mask
emh203 1:6f37253dab87 72 #define COCO_COMPLETE ADC_SC1_COCO_MASK
emh203 1:6f37253dab87 73 #define COCO_NOT 0x00
emh203 1:6f37253dab87 74
emh203 1:6f37253dab87 75 // ADC interrupts: enabled, or disabled.
emh203 1:6f37253dab87 76 #define AIEN_ON ADC_SC1_AIEN_MASK
emh203 1:6f37253dab87 77 #define AIEN_OFF 0x00
emh203 1:6f37253dab87 78
emh203 1:6f37253dab87 79 // Differential or Single ended ADC input
emh203 1:6f37253dab87 80 #define DIFF_SINGLE 0x00
emh203 1:6f37253dab87 81 #define DIFF_DIFFERENTIAL ADC_SC1_DIFF_MASK
emh203 1:6f37253dab87 82
emh203 1:6f37253dab87 83 //// ADCCFG1
emh203 1:6f37253dab87 84
emh203 1:6f37253dab87 85 // Power setting of ADC
emh203 1:6f37253dab87 86 #define ADLPC_LOW ADC_CFG1_ADLPC_MASK
emh203 1:6f37253dab87 87 #define ADLPC_NORMAL 0x00
emh203 1:6f37253dab87 88
emh203 1:6f37253dab87 89 // Clock divisor
emh203 1:6f37253dab87 90 #define ADIV_1 0x00
emh203 1:6f37253dab87 91 #define ADIV_2 0x01
emh203 1:6f37253dab87 92 #define ADIV_4 0x02
emh203 1:6f37253dab87 93 #define ADIV_8 0x03
emh203 1:6f37253dab87 94
emh203 1:6f37253dab87 95 // Long samle time, or Short sample time
emh203 1:6f37253dab87 96 #define ADLSMP_LONG ADC_CFG1_ADLSMP_MASK
emh203 1:6f37253dab87 97 #define ADLSMP_SHORT 0x00
emh203 1:6f37253dab87 98
emh203 1:6f37253dab87 99 // How many bits for the conversion? 8, 12, 10, or 16 (single ended).
emh203 1:6f37253dab87 100 #define MODE_8 0x00
emh203 1:6f37253dab87 101 #define MODE_12 0x01
emh203 1:6f37253dab87 102 #define MODE_10 0x02
emh203 1:6f37253dab87 103 #define MODE_16 0x03
emh203 1:6f37253dab87 104
emh203 1:6f37253dab87 105
emh203 1:6f37253dab87 106
emh203 1:6f37253dab87 107 // ADC Input Clock Source choice? Bus clock, Bus clock/2, "altclk", or the
emh203 1:6f37253dab87 108 // ADC's own asynchronous clock for less noise
emh203 1:6f37253dab87 109 #define ADICLK_BUS 0x00
emh203 1:6f37253dab87 110 #define ADICLK_BUS_2 0x01
emh203 1:6f37253dab87 111 #define ADICLK_ALTCLK 0x02
emh203 1:6f37253dab87 112 #define ADICLK_ADACK 0x03
emh203 1:6f37253dab87 113
emh203 1:6f37253dab87 114 //// ADCCFG2
emh203 1:6f37253dab87 115
emh203 1:6f37253dab87 116 // Select between B or A channels
emh203 1:6f37253dab87 117 #define MUXSEL_ADCB ADC_CFG2_MUXSEL_MASK
emh203 1:6f37253dab87 118 #define MUXSEL_ADCA 0x00
emh203 1:6f37253dab87 119
emh203 1:6f37253dab87 120 // Ansync clock output enable: enable, or disable the output of it
emh203 1:6f37253dab87 121 #define ADACKEN_ENABLED ADC_CFG2_ADACKEN_MASK
emh203 1:6f37253dab87 122 #define ADACKEN_DISABLED 0x00
emh203 1:6f37253dab87 123
emh203 1:6f37253dab87 124 // High speed or low speed conversion mode
emh203 1:6f37253dab87 125 #define ADHSC_HISPEED ADC_CFG2_ADHSC_MASK
emh203 1:6f37253dab87 126 #define ADHSC_NORMAL 0x00
emh203 1:6f37253dab87 127
emh203 1:6f37253dab87 128 // Long Sample Time selector: 20, 12, 6, or 2 extra clocks for a longer sample time
emh203 1:6f37253dab87 129 #define ADLSTS_20 0x00
emh203 1:6f37253dab87 130 #define ADLSTS_12 0x01
emh203 1:6f37253dab87 131 #define ADLSTS_6 0x02
emh203 1:6f37253dab87 132 #define ADLSTS_2 0x03
emh203 1:6f37253dab87 133
emh203 1:6f37253dab87 134 ////ADCSC2
emh203 1:6f37253dab87 135
emh203 1:6f37253dab87 136 // Read-only status bit indicating conversion status
emh203 1:6f37253dab87 137 #define ADACT_ACTIVE ADC_SC2_ADACT_MASK
emh203 1:6f37253dab87 138 #define ADACT_INACTIVE 0x00
emh203 1:6f37253dab87 139
emh203 1:6f37253dab87 140 // Trigger for starting conversion: Hardware trigger, or software trigger.
emh203 1:6f37253dab87 141 // For using PDB, the Hardware trigger option is selected.
emh203 1:6f37253dab87 142 #define ADTRG_HW ADC_SC2_ADTRG_MASK
emh203 1:6f37253dab87 143 #define ADTRG_SW 0x00
emh203 1:6f37253dab87 144
emh203 1:6f37253dab87 145 // ADC Compare Function Enable: Disabled, or Enabled.
emh203 1:6f37253dab87 146 #define ACFE_DISABLED 0x00
emh203 1:6f37253dab87 147 #define ACFE_ENABLED ADC_SC2_ACFE_MASK
emh203 1:6f37253dab87 148
emh203 1:6f37253dab87 149 // Compare Function Greater Than Enable: Greater, or Less.
emh203 1:6f37253dab87 150 #define ACFGT_GREATER ADC_SC2_ACFGT_MASK
emh203 1:6f37253dab87 151 #define ACFGT_LESS 0x00
emh203 1:6f37253dab87 152
emh203 1:6f37253dab87 153 // Compare Function Range Enable: Enabled or Disabled.
emh203 1:6f37253dab87 154 #define ACREN_ENABLED ADC_SC2_ACREN_MASK
emh203 1:6f37253dab87 155 #define ACREN_DISABLED 0x00
emh203 1:6f37253dab87 156
emh203 1:6f37253dab87 157 // DMA enable: enabled or disabled.
emh203 1:6f37253dab87 158 #define DMAEN_ENABLED ADC_SC2_DMAEN_MASK
emh203 1:6f37253dab87 159 #define DMAEN_DISABLED 0x00
emh203 1:6f37253dab87 160
emh203 1:6f37253dab87 161 // Voltage Reference selection for the ADC conversions
emh203 1:6f37253dab87 162 // (***not*** the PGA which uses VREFO only).
emh203 1:6f37253dab87 163 // VREFH and VREFL (0) , or VREFO (1).
emh203 1:6f37253dab87 164
emh203 1:6f37253dab87 165 #define REFSEL_EXT 0x00
emh203 1:6f37253dab87 166 #define REFSEL_ALT 0x01
emh203 1:6f37253dab87 167 #define REFSEL_RES 0x02 /* reserved */
emh203 1:6f37253dab87 168 #define REFSEL_RES_EXT 0x03 /* reserved but defaults to Vref */
emh203 1:6f37253dab87 169
emh203 1:6f37253dab87 170 ////ADCSC3
emh203 1:6f37253dab87 171
emh203 1:6f37253dab87 172 // Calibration begin or off
emh203 1:6f37253dab87 173 #define CAL_BEGIN ADC_SC3_CAL_MASK
emh203 1:6f37253dab87 174 #define CAL_OFF 0x00
emh203 1:6f37253dab87 175
emh203 1:6f37253dab87 176 // Status indicating Calibration failed, or normal success
emh203 1:6f37253dab87 177 #define CALF_FAIL ADC_SC3_CALF_MASK
emh203 1:6f37253dab87 178 #define CALF_NORMAL 0x00
emh203 1:6f37253dab87 179
emh203 1:6f37253dab87 180 // ADC to continously convert, or do a sinle conversion
emh203 1:6f37253dab87 181 #define ADCO_CONTINUOUS ADC_SC3_ADCO_MASK
emh203 1:6f37253dab87 182 #define ADCO_SINGLE 0x00
emh203 1:6f37253dab87 183
emh203 1:6f37253dab87 184 // Averaging enabled in the ADC, or not.
emh203 1:6f37253dab87 185 #define AVGE_ENABLED ADC_SC3_AVGE_MASK
emh203 1:6f37253dab87 186 #define AVGE_DISABLED 0x00
emh203 1:6f37253dab87 187
emh203 1:6f37253dab87 188 // How many to average prior to "interrupting" the MCU? 4, 8, 16, or 32
emh203 1:6f37253dab87 189 #define AVGS_4 0x00
emh203 1:6f37253dab87 190 #define AVGS_8 0x01
emh203 1:6f37253dab87 191 #define AVGS_16 0x02
emh203 1:6f37253dab87 192 #define AVGS_32 0x03
emh203 1:6f37253dab87 193
emh203 1:6f37253dab87 194 ////PGA
emh203 1:6f37253dab87 195
emh203 1:6f37253dab87 196 // PGA enabled or not?
emh203 1:6f37253dab87 197 #define PGAEN_ENABLED ADC_PGA_PGAEN_MASK
emh203 1:6f37253dab87 198 #define PGAEN_DISABLED 0x00
emh203 1:6f37253dab87 199
emh203 1:6f37253dab87 200 // Chopper stabilization of the amplifier, or not.
emh203 1:6f37253dab87 201 #define PGACHP_CHOP ADC_PGA_PGACHP_MASK
emh203 1:6f37253dab87 202 #define PGACHP_NOCHOP 0x00
emh203 1:6f37253dab87 203
emh203 1:6f37253dab87 204 // PGA in low power mode, or normal mode.
emh203 1:6f37253dab87 205 #define PGALP_LOW ADC_PGA_PGALP_MASK
emh203 1:6f37253dab87 206 #define PGALP_NORMAL 0x00
emh203 1:6f37253dab87 207
emh203 1:6f37253dab87 208 // Gain of PGA. Selectable from 1 to 64.
emh203 1:6f37253dab87 209 #define PGAG_1 0x00
emh203 1:6f37253dab87 210 #define PGAG_2 0x01
emh203 1:6f37253dab87 211 #define PGAG_4 0x02
emh203 1:6f37253dab87 212 #define PGAG_8 0x03
emh203 1:6f37253dab87 213 #define PGAG_16 0x04
emh203 1:6f37253dab87 214 #define PGAG_32 0x05
emh203 1:6f37253dab87 215 #define PGAG_64 0x06
emh203 1:6f37253dab87 216
emh203 1:6f37253dab87 217
emh203 1:6f37253dab87 218 #define ADC_STATE_INIT 0
emh203 1:6f37253dab87 219 #define ADC_STATE_CAPTURE_POT_0 1
emh203 1:6f37253dab87 220 #define ADC_STATE_CAPTURE_POT_1 2
emh203 1:6f37253dab87 221 #define ADC_STATE_CAPTURE_BATTERY_LEVEL 3
emh203 1:6f37253dab87 222 #define ADC_STATE_CAPTURE_LINE_SCAN 4
emh203 1:6f37253dab87 223
emh203 1:6f37253dab87 224
emh203 1:6f37253dab87 225 /////////// The above values fit into the structure below to select ADC/PGA
emh203 1:6f37253dab87 226 /////////// configuration desired:
emh203 1:6f37253dab87 227
emh203 1:6f37253dab87 228 typedef struct adc_cfg {
emh203 1:6f37253dab87 229 uint8_t CONFIG1;
emh203 1:6f37253dab87 230 uint8_t CONFIG2;
emh203 1:6f37253dab87 231 uint16_t COMPARE1;
emh203 1:6f37253dab87 232 uint16_t COMPARE2;
emh203 1:6f37253dab87 233 uint8_t STATUS2;
emh203 1:6f37253dab87 234 uint8_t STATUS3;
emh203 1:6f37253dab87 235 uint8_t STATUS1A;
emh203 1:6f37253dab87 236 uint8_t STATUS1B;
emh203 1:6f37253dab87 237 uint32_t PGA;
emh203 1:6f37253dab87 238 } *tADC_ConfigPtr, tADC_Config ;
emh203 1:6f37253dab87 239
emh203 1:6f37253dab87 240
emh203 1:6f37253dab87 241 #define CAL_BLK_NUMREC 18
emh203 1:6f37253dab87 242
emh203 1:6f37253dab87 243 typedef struct adc_cal {
emh203 1:6f37253dab87 244
emh203 1:6f37253dab87 245 uint16_t OFS;
emh203 1:6f37253dab87 246 uint16_t PG;
emh203 1:6f37253dab87 247 uint16_t MG;
emh203 1:6f37253dab87 248 uint8_t CLPD;
emh203 1:6f37253dab87 249 uint8_t CLPS;
emh203 1:6f37253dab87 250 uint16_t CLP4;
emh203 1:6f37253dab87 251 uint16_t CLP3;
emh203 1:6f37253dab87 252 uint8_t CLP2;
emh203 1:6f37253dab87 253 uint8_t CLP1;
emh203 1:6f37253dab87 254 uint8_t CLP0;
emh203 1:6f37253dab87 255 uint8_t dummy;
emh203 1:6f37253dab87 256 uint8_t CLMD;
emh203 1:6f37253dab87 257 uint8_t CLMS;
emh203 1:6f37253dab87 258 uint16_t CLM4;
emh203 1:6f37253dab87 259 uint16_t CLM3;
emh203 1:6f37253dab87 260 uint8_t CLM2;
emh203 1:6f37253dab87 261 uint8_t CLM1;
emh203 1:6f37253dab87 262 uint8_t CLM0;
emh203 1:6f37253dab87 263 } tADC_Cal_Blk ;
emh203 1:6f37253dab87 264
emh203 1:6f37253dab87 265 typedef struct ADC_MemMap {
emh203 1:6f37253dab87 266 uint32_t SC1[2]; /**< ADC Status and Control Registers 1, array offset: 0x0, array step: 0x4 */
emh203 1:6f37253dab87 267 uint32_t CFG1; /**< ADC Configuration Register 1, offset: 0x8 */
emh203 1:6f37253dab87 268 uint32_t CFG2; /**< ADC Configuration Register 2, offset: 0xC */
emh203 1:6f37253dab87 269 uint32_t R[2]; /**< ADC Data Result Register, array offset: 0x10, array step: 0x4 */
emh203 1:6f37253dab87 270 uint32_t CV1; /**< Compare Value Registers, offset: 0x18 */
emh203 1:6f37253dab87 271 uint32_t CV2; /**< Compare Value Registers, offset: 0x1C */
emh203 1:6f37253dab87 272 uint32_t SC2; /**< Status and Control Register 2, offset: 0x20 */
emh203 1:6f37253dab87 273 uint32_t SC3; /**< Status and Control Register 3, offset: 0x24 */
emh203 1:6f37253dab87 274 uint32_t OFS; /**< ADC Offset Correction Register, offset: 0x28 */
emh203 1:6f37253dab87 275 uint32_t PG; /**< ADC Plus-Side Gain Register, offset: 0x2C */
emh203 1:6f37253dab87 276 uint32_t MG; /**< ADC Minus-Side Gain Register, offset: 0x30 */
emh203 1:6f37253dab87 277 uint32_t CLPD; /**< ADC Plus-Side General Calibration Value Register, offset: 0x34 */
emh203 1:6f37253dab87 278 uint32_t CLPS; /**< ADC Plus-Side General Calibration Value Register, offset: 0x38 */
emh203 1:6f37253dab87 279 uint32_t CLP4; /**< ADC Plus-Side General Calibration Value Register, offset: 0x3C */
emh203 1:6f37253dab87 280 uint32_t CLP3; /**< ADC Plus-Side General Calibration Value Register, offset: 0x40 */
emh203 1:6f37253dab87 281 uint32_t CLP2; /**< ADC Plus-Side General Calibration Value Register, offset: 0x44 */
emh203 1:6f37253dab87 282 uint32_t CLP1; /**< ADC Plus-Side General Calibration Value Register, offset: 0x48 */
emh203 1:6f37253dab87 283 uint32_t CLP0; /**< ADC Plus-Side General Calibration Value Register, offset: 0x4C */
emh203 1:6f37253dab87 284 uint8_t RESERVED_0[4];
emh203 1:6f37253dab87 285 uint32_t CLMD; /**< ADC Minus-Side General Calibration Value Register, offset: 0x54 */
emh203 1:6f37253dab87 286 uint32_t CLMS; /**< ADC Minus-Side General Calibration Value Register, offset: 0x58 */
emh203 1:6f37253dab87 287 uint32_t CLM4; /**< ADC Minus-Side General Calibration Value Register, offset: 0x5C */
emh203 1:6f37253dab87 288 uint32_t CLM3; /**< ADC Minus-Side General Calibration Value Register, offset: 0x60 */
emh203 1:6f37253dab87 289 uint32_t CLM2; /**< ADC Minus-Side General Calibration Value Register, offset: 0x64 */
emh203 1:6f37253dab87 290 uint32_t CLM1; /**< ADC Minus-Side General Calibration Value Register, offset: 0x68 */
emh203 1:6f37253dab87 291 uint32_t CLM0; /**< ADC Minus-Side General Calibration Value Register, offset: 0x6C */
emh203 1:6f37253dab87 292 } volatile *ADC_MemMapPtr;
emh203 1:6f37253dab87 293
emh203 1:6f37253dab87 294
emh203 1:6f37253dab87 295
emh203 1:6f37253dab87 296 /* ADC - Register accessors */
emh203 1:6f37253dab87 297 #define ADC_SC1_REG(base,index) ((base)->SC1[index])
emh203 1:6f37253dab87 298 #define ADC_CFG1_REG(base) ((base)->CFG1)
emh203 1:6f37253dab87 299 #define ADC_CFG2_REG(base) ((base)->CFG2)
emh203 1:6f37253dab87 300 #define ADC_R_REG(base,index) ((base)->R[index])
emh203 1:6f37253dab87 301 #define ADC_CV1_REG(base) ((base)->CV1)
emh203 1:6f37253dab87 302 #define ADC_CV2_REG(base) ((base)->CV2)
emh203 1:6f37253dab87 303 #define ADC_SC2_REG(base) ((base)->SC2)
emh203 1:6f37253dab87 304 #define ADC_SC3_REG(base) ((base)->SC3)
emh203 1:6f37253dab87 305 #define ADC_OFS_REG(base) ((base)->OFS)
emh203 1:6f37253dab87 306 #define ADC_PG_REG(base) ((base)->PG)
emh203 1:6f37253dab87 307 #define ADC_MG_REG(base) ((base)->MG)
emh203 1:6f37253dab87 308 #define ADC_CLPD_REG(base) ((base)->CLPD)
emh203 1:6f37253dab87 309 #define ADC_CLPS_REG(base) ((base)->CLPS)
emh203 1:6f37253dab87 310 #define ADC_CLP4_REG(base) ((base)->CLP4)
emh203 1:6f37253dab87 311 #define ADC_CLP3_REG(base) ((base)->CLP3)
emh203 1:6f37253dab87 312 #define ADC_CLP2_REG(base) ((base)->CLP2)
emh203 1:6f37253dab87 313 #define ADC_CLP1_REG(base) ((base)->CLP1)
emh203 1:6f37253dab87 314 #define ADC_CLP0_REG(base) ((base)->CLP0)
emh203 1:6f37253dab87 315 #define ADC_CLMD_REG(base) ((base)->CLMD)
emh203 1:6f37253dab87 316 #define ADC_CLMS_REG(base) ((base)->CLMS)
emh203 1:6f37253dab87 317 #define ADC_CLM4_REG(base) ((base)->CLM4)
emh203 1:6f37253dab87 318 #define ADC_CLM3_REG(base) ((base)->CLM3)
emh203 1:6f37253dab87 319 #define ADC_CLM2_REG(base) ((base)->CLM2)
emh203 1:6f37253dab87 320 #define ADC_CLM1_REG(base) ((base)->CLM1)
emh203 1:6f37253dab87 321 #define ADC_CLM0_REG(base) ((base)->CLM0)
emh203 1:6f37253dab87 322
emh203 1:6f37253dab87 323 #define ADC0_BASE_PTR ((ADC_MemMapPtr)0x4003B000u)
emh203 1:6f37253dab87 324 /** Array initializer of ADC peripheral base pointers */
emh203 1:6f37253dab87 325 #define ADC_BASE_PTRS { ADC0_BASE_PTR }
emh203 1:6f37253dab87 326
emh203 1:6f37253dab87 327
emh203 1:6f37253dab87 328 float _ServoDutyCycleMin;
emh203 1:6f37253dab87 329 float _ServoDutyCycleMax;
emh203 1:6f37253dab87 330 float _ServoPeriod;
emh203 1:6f37253dab87 331
emh203 1:6f37253dab87 332 volatile uint16_t QueuedServo0Val;
emh203 1:6f37253dab87 333 volatile uint16_t QueuedServo1Val;
emh203 1:6f37253dab87 334
emh203 1:6f37253dab87 335 volatile uint8_t TFC_LineScanDataReady;
emh203 1:6f37253dab87 336 volatile uint16_t *LineScanImage0WorkingBuffer;
emh203 1:6f37253dab87 337 volatile uint16_t *LineScanImage1WorkingBuffer;
emh203 1:6f37253dab87 338
emh203 1:6f37253dab87 339 volatile uint16_t LineScanImage0Buffer[2][128];
emh203 1:6f37253dab87 340 volatile uint16_t LineScanImage1Buffer[2][128];
emh203 1:6f37253dab87 341 volatile uint8_t LineScanWorkingBuffer;
emh203 1:6f37253dab87 342
emh203 1:6f37253dab87 343 volatile uint16_t PotADC_Value[2];
emh203 1:6f37253dab87 344 volatile uint16_t BatSenseADC_Value;
emh203 1:6f37253dab87 345 volatile uint16_t CurrentADC_State;
emh203 1:6f37253dab87 346 volatile uint8_t CurrentLineScanPixel;
emh203 1:6f37253dab87 347 volatile uint8_t CurrentLineScanChannel;
emh203 1:6f37253dab87 348 volatile uint32_t TFC_ServoTicker;
emh203 1:6f37253dab87 349 volatile uint16_t * TFC_LineScanCameraData[2];
emh203 1:6f37253dab87 350
emh203 1:6f37253dab87 351 void TFC_SetServoDutyCycle(uint8_t ServoNumber, float DutyCycle);
emh203 1:6f37253dab87 352 void TFC_InitLineScanCamera();
emh203 1:6f37253dab87 353 uint8_t ADC_Cal(ADC_MemMapPtr adcmap);
emh203 1:6f37253dab87 354 void ADC_Config_Alt(ADC_MemMapPtr adcmap, tADC_ConfigPtr ADC_CfgPtr);
emh203 1:6f37253dab87 355 void ADC_Read_Cal(ADC_MemMapPtr adcmap, tADC_Cal_Blk *blk);
emh203 1:6f37253dab87 356 void TFC_InitADC0();
emh203 1:6f37253dab87 357 void TFC_InitADC_System();
emh203 1:6f37253dab87 358 void TFC_GPIO_Init();
emh203 1:6f37253dab87 359 void ADC0_Handler();
emh203 1:6f37253dab87 360 void TPM1_Handler();
emh203 1:6f37253dab87 361
emh203 1:6f37253dab87 362
emh203 1:6f37253dab87 363 void TFC_Init()
emh203 1:6f37253dab87 364 {
emh203 1:6f37253dab87 365
emh203 1:6f37253dab87 366 TFC_GPIO_Init();
emh203 1:6f37253dab87 367
emh203 1:6f37253dab87 368 TFC_InitADC_System(); // Always call this before the Servo init function.... The IRQ for the Servo code modifies ADC registers and the clocks need enable to the ADC peripherals 1st!
emh203 1:6f37253dab87 369
emh203 1:6f37253dab87 370 TFC_InitLineScanCamera();
emh203 1:6f37253dab87 371
emh203 1:6f37253dab87 372 TFC_InitServos(SERVO_MIN_PULSE_WIDTH_DEFAULT , SERVO_MAX_PULSE_WIDTH_DEFAULT, SERVO_DEFAULT_PERIOD);
emh203 1:6f37253dab87 373
emh203 1:6f37253dab87 374 TFC_ServoTicker = 0;
emh203 1:6f37253dab87 375
emh203 1:6f37253dab87 376 TFC_InitMotorPWM(FTM0_DEFAULT_SWITCHING_FREQUENCY);
emh203 1:6f37253dab87 377
emh203 1:6f37253dab87 378 }
emh203 1:6f37253dab87 379
emh203 1:6f37253dab87 380
emh203 1:6f37253dab87 381 void TFC_GPIO_Init()
emh203 1:6f37253dab87 382 {
emh203 1:6f37253dab87 383
emh203 1:6f37253dab87 384 //enable Clocks to all ports
emh203 1:6f37253dab87 385
emh203 1:6f37253dab87 386 SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK;
emh203 1:6f37253dab87 387
emh203 1:6f37253dab87 388 //Setup Pins as GPIO
emh203 1:6f37253dab87 389 PORTE->PCR[21] = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;
emh203 1:6f37253dab87 390 PORTE->PCR[20] = PORT_PCR_MUX(1);
emh203 1:6f37253dab87 391
emh203 1:6f37253dab87 392 //Port for Pushbuttons
emh203 1:6f37253dab87 393 PORTC->PCR[13] = PORT_PCR_MUX(1);
emh203 1:6f37253dab87 394 PORTC->PCR[17] = PORT_PCR_MUX(1);
emh203 1:6f37253dab87 395
emh203 1:6f37253dab87 396
emh203 1:6f37253dab87 397 //Ports for DIP Switches
emh203 1:6f37253dab87 398 PORTE->PCR[2] = PORT_PCR_MUX(1);
emh203 1:6f37253dab87 399 PORTE->PCR[3] = PORT_PCR_MUX(1);
emh203 1:6f37253dab87 400 PORTE->PCR[4] = PORT_PCR_MUX(1);
emh203 1:6f37253dab87 401 PORTE->PCR[5] = PORT_PCR_MUX(1);
emh203 1:6f37253dab87 402
emh203 1:6f37253dab87 403 //Ports for LEDs
emh203 1:6f37253dab87 404 PORTB->PCR[8] = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;
emh203 1:6f37253dab87 405 PORTB->PCR[9] = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;
emh203 1:6f37253dab87 406 PORTB->PCR[10] = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;
emh203 1:6f37253dab87 407 PORTB->PCR[11] = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;
emh203 1:6f37253dab87 408
emh203 1:6f37253dab87 409
emh203 1:6f37253dab87 410 //Setup the output pins
emh203 1:6f37253dab87 411 PTE->PDDR = TFC_HBRIDGE_EN_LOC;
emh203 1:6f37253dab87 412 PTB->PDDR = TFC_BAT_LED0_LOC | TFC_BAT_LED1_LOC | TFC_BAT_LED2_LOC | TFC_BAT_LED3_LOC;
emh203 1:6f37253dab87 413
emh203 1:6f37253dab87 414 TFC_SetBatteryLED(0);
emh203 1:6f37253dab87 415 TFC_HBRIDGE_DISABLE;
emh203 1:6f37253dab87 416 }
emh203 1:6f37253dab87 417
emh203 1:6f37253dab87 418 void TFC_SetBatteryLED(uint8_t Value)
emh203 1:6f37253dab87 419 {
emh203 1:6f37253dab87 420 if(Value & 0x01)
emh203 1:6f37253dab87 421 TFC_BAT_LED0_ON;
emh203 1:6f37253dab87 422 else
emh203 1:6f37253dab87 423 TFC_BAT_LED0_OFF;
emh203 1:6f37253dab87 424
emh203 1:6f37253dab87 425 if(Value & 0x02)
emh203 1:6f37253dab87 426 TFC_BAT_LED1_ON;
emh203 1:6f37253dab87 427 else
emh203 1:6f37253dab87 428 TFC_BAT_LED1_OFF;
emh203 1:6f37253dab87 429
emh203 1:6f37253dab87 430 if(Value & 0x04)
emh203 1:6f37253dab87 431 TFC_BAT_LED2_ON;
emh203 1:6f37253dab87 432 else
emh203 1:6f37253dab87 433 TFC_BAT_LED2_OFF;
emh203 1:6f37253dab87 434
emh203 1:6f37253dab87 435 if(Value & 0x08)
emh203 1:6f37253dab87 436 TFC_BAT_LED3_ON;
emh203 1:6f37253dab87 437 else
emh203 1:6f37253dab87 438 TFC_BAT_LED3_OFF;
emh203 1:6f37253dab87 439 }
emh203 1:6f37253dab87 440
emh203 1:6f37253dab87 441 uint8_t TFC_GetDIP_Switch()
emh203 1:6f37253dab87 442 {
emh203 1:6f37253dab87 443 uint8_t DIP_Val=0;
emh203 1:6f37253dab87 444
emh203 1:6f37253dab87 445 DIP_Val = (PTE->PDIR>>2) & 0xF;
emh203 1:6f37253dab87 446
emh203 1:6f37253dab87 447 return DIP_Val;
emh203 1:6f37253dab87 448 }
emh203 1:6f37253dab87 449
emh203 1:6f37253dab87 450 uint8_t TFC_ReadPushButton(uint8_t Index)
emh203 1:6f37253dab87 451 {
emh203 1:6f37253dab87 452 if(Index == 0) {
emh203 1:6f37253dab87 453 return TFC_PUSH_BUTTON_0_PRESSED;
emh203 1:6f37253dab87 454 } else {
emh203 1:6f37253dab87 455 return TFC_PUSH_BUTTON_1_PRESSED;
emh203 1:6f37253dab87 456 }
emh203 1:6f37253dab87 457 }
emh203 1:6f37253dab87 458
emh203 1:6f37253dab87 459 extern "C" void TPM1_IRQHandler()
emh203 1:6f37253dab87 460 {
emh203 1:6f37253dab87 461 //Clear the overflow mask if set. According to the reference manual, we clear by writing a logic one!
emh203 1:6f37253dab87 462 if(TPM1->SC & TPM_SC_TOF_MASK)
emh203 1:6f37253dab87 463 TPM1->SC |= TPM_SC_TOF_MASK;
emh203 1:6f37253dab87 464
emh203 1:6f37253dab87 465 //Dump the queued values to the timer channels
emh203 1:6f37253dab87 466 TPM1->CONTROLS[0].CnV = QueuedServo0Val;
emh203 1:6f37253dab87 467 TPM1->CONTROLS[1].CnV = QueuedServo1Val;
emh203 1:6f37253dab87 468
emh203 1:6f37253dab87 469
emh203 1:6f37253dab87 470 //Prime the next ADC capture cycle
emh203 1:6f37253dab87 471 TAOS_SI_HIGH;
emh203 1:6f37253dab87 472 //Prime the ADC pump and start capturing POT 0
emh203 1:6f37253dab87 473 CurrentADC_State = ADC_STATE_CAPTURE_POT_0;
emh203 1:6f37253dab87 474
emh203 1:6f37253dab87 475 ADC0->CFG2 &= ~ADC_CFG2_MUXSEL_MASK; //Select the A side of the mux
emh203 1:6f37253dab87 476 ADC0->SC1[0] = TFC_POT_0_ADC_CHANNEL | ADC_SC1_AIEN_MASK; //Start the State machine at POT0
emh203 1:6f37253dab87 477
emh203 1:6f37253dab87 478 //Flag that a new cervo cycle will start
emh203 1:6f37253dab87 479 if (TFC_ServoTicker < 0xffffffff)//if servo tick less than max value, count up...
emh203 1:6f37253dab87 480 TFC_ServoTicker++;
emh203 1:6f37253dab87 481
emh203 1:6f37253dab87 482 }
emh203 1:6f37253dab87 483
emh203 1:6f37253dab87 484
emh203 1:6f37253dab87 485 void TFC_InitServos(float PulseWidthMin, float PulseWidthMax, float ServoPeriod)
emh203 1:6f37253dab87 486 {
emh203 1:6f37253dab87 487
emh203 1:6f37253dab87 488 SIM->SCGC5 |= SIM_SCGC5_PORTB_MASK;
emh203 1:6f37253dab87 489
emh203 1:6f37253dab87 490 _ServoPeriod = ServoPeriod;
emh203 1:6f37253dab87 491 _ServoDutyCycleMin = PulseWidthMin/ServoPeriod;
emh203 1:6f37253dab87 492 _ServoDutyCycleMax = PulseWidthMax/ServoPeriod;
emh203 1:6f37253dab87 493
emh203 1:6f37253dab87 494 //Clock Setup for the TPM requires a couple steps.
emh203 1:6f37253dab87 495 SIM->SCGC6 &= ~SIM_SCGC6_TPM1_MASK;
emh203 1:6f37253dab87 496 //1st, set the clock mux
emh203 1:6f37253dab87 497 //See Page 124 of f the KL25 Sub-Family Reference Manual, Rev. 3, September 2012
emh203 1:6f37253dab87 498 SIM->SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK;// We Want MCGPLLCLK/2 (See Page 196 of the KL25 Sub-Family Reference Manual, Rev. 3, September 2012)
emh203 1:6f37253dab87 499 SIM->SOPT2 &= ~(SIM_SOPT2_TPMSRC_MASK);
emh203 1:6f37253dab87 500 SIM->SOPT2 |= SIM_SOPT2_TPMSRC(1);
emh203 1:6f37253dab87 501
emh203 1:6f37253dab87 502 //Enable the Clock to the FTM0 Module
emh203 1:6f37253dab87 503 //See Page 207 of f the KL25 Sub-Family Reference Manual, Rev. 3, September 2012
emh203 1:6f37253dab87 504 SIM->SCGC6 |= SIM_SCGC6_TPM1_MASK;
emh203 1:6f37253dab87 505
emh203 1:6f37253dab87 506 //The TPM Module has Clock. Now set up the peripheral
emh203 1:6f37253dab87 507
emh203 1:6f37253dab87 508 //Blow away the control registers to ensure that the counter is not running
emh203 1:6f37253dab87 509 TPM1->SC = 0;
emh203 1:6f37253dab87 510 TPM1->CONF = 0;
emh203 1:6f37253dab87 511
emh203 1:6f37253dab87 512 //While the counter is disabled we can setup the prescaler
emh203 1:6f37253dab87 513
emh203 1:6f37253dab87 514 TPM1->SC = TPM_SC_PS(FTM1_CLK_PRESCALE);
emh203 1:6f37253dab87 515 TPM1->SC |= TPM_SC_TOIE_MASK; //Enable Interrupts for the Timer Overflow
emh203 1:6f37253dab87 516
emh203 1:6f37253dab87 517 //Setup the mod register to get the correct PWM Period
emh203 1:6f37253dab87 518
emh203 1:6f37253dab87 519 TPM1->MOD = (SystemCoreClock/(1<<(FTM1_CLK_PRESCALE))) * _ServoPeriod;
emh203 1:6f37253dab87 520 //Setup Channels 0 and 1
emh203 1:6f37253dab87 521
emh203 1:6f37253dab87 522 TPM1->CONTROLS[0].CnSC = TPM_CnSC_MSB_MASK | TPM_CnSC_ELSB_MASK;
emh203 1:6f37253dab87 523 TPM1->CONTROLS[1].CnSC = TPM_CnSC_MSB_MASK | TPM_CnSC_ELSB_MASK;
emh203 1:6f37253dab87 524
emh203 1:6f37253dab87 525
emh203 1:6f37253dab87 526 //Set the Default duty cycle to servo neutral
emh203 1:6f37253dab87 527 TFC_SetServo(0, 0.0);
emh203 1:6f37253dab87 528 TFC_SetServo(1, 0.0);
emh203 1:6f37253dab87 529
emh203 1:6f37253dab87 530 //Enable the TPM COunter
emh203 1:6f37253dab87 531 TPM1->SC |= TPM_SC_CMOD(1);
emh203 1:6f37253dab87 532
emh203 1:6f37253dab87 533 //Enable TPM1 IRQ on the NVIC
emh203 1:6f37253dab87 534
emh203 1:6f37253dab87 535 //NVIC_SetVector(TPM1_IRQn,(uint32_t)TPM1_Handler);
emh203 1:6f37253dab87 536 NVIC_EnableIRQ(TPM1_IRQn);
emh203 1:6f37253dab87 537
emh203 1:6f37253dab87 538 //Enable the FTM functions on the the port
emh203 1:6f37253dab87 539
emh203 1:6f37253dab87 540 PORTB->PCR[0] = PORT_PCR_MUX(3);
emh203 1:6f37253dab87 541 PORTB->PCR[1] = PORT_PCR_MUX(3);
emh203 1:6f37253dab87 542
emh203 1:6f37253dab87 543 }
emh203 1:6f37253dab87 544
emh203 1:6f37253dab87 545
emh203 1:6f37253dab87 546 void TFC_SetServoDutyCycle(uint8_t ServoNumber, float DutyCycle)
emh203 1:6f37253dab87 547 {
emh203 1:6f37253dab87 548 switch(ServoNumber) {
emh203 1:6f37253dab87 549 default:
emh203 1:6f37253dab87 550 case 0:
emh203 1:6f37253dab87 551
emh203 1:6f37253dab87 552 QueuedServo0Val = TPM1->MOD * DutyCycle;
emh203 1:6f37253dab87 553
emh203 1:6f37253dab87 554 break;
emh203 1:6f37253dab87 555
emh203 1:6f37253dab87 556 case 1:
emh203 1:6f37253dab87 557
emh203 1:6f37253dab87 558 QueuedServo1Val = TPM1->MOD * DutyCycle;
emh203 1:6f37253dab87 559
emh203 1:6f37253dab87 560 break;
emh203 1:6f37253dab87 561 }
emh203 1:6f37253dab87 562 }
emh203 1:6f37253dab87 563
emh203 1:6f37253dab87 564 void TFC_SetServo(uint8_t ServoNumber, float Position)
emh203 1:6f37253dab87 565 {
emh203 1:6f37253dab87 566 TFC_SetServoDutyCycle(ServoNumber ,
emh203 1:6f37253dab87 567 ((Position + 1.0)/2) * ((_ServoDutyCycleMax - _ServoDutyCycleMin)+_ServoDutyCycleMin) );
emh203 1:6f37253dab87 568
emh203 1:6f37253dab87 569 }
emh203 1:6f37253dab87 570
emh203 1:6f37253dab87 571 //********************************************************************************************************
emh203 1:6f37253dab87 572 //********************************************************************************************************
emh203 1:6f37253dab87 573 //********************************************************************************************************
emh203 1:6f37253dab87 574 // _____ _____ ______ _ _ _ _ _____ _______ _____ ____ _ _ _____
emh203 1:6f37253dab87 575 // /\ | __ \ / ____| | ____| | | | \ | |/ ____|__ __|_ _/ __ \| \ | |/ ____|
emh203 1:6f37253dab87 576 // / \ | | | | | | |__ | | | | \| | | | | | || | | | \| | (___
emh203 1:6f37253dab87 577 // / /\ \ | | | | | | __| | | | | . ` | | | | | || | | | . ` |\___ \
emh203 1:6f37253dab87 578 // / ____ \| |__| | |____ | | | |__| | |\ | |____ | | _| || |__| | |\ |____) |
emh203 1:6f37253dab87 579 // /_/ \_\_____/ \_____| |_| \____/|_| \_|\_____| |_| |_____\____/|_| \_|_____/
emh203 1:6f37253dab87 580 // ********************************************************************************************************
emh203 1:6f37253dab87 581 // ********************************************************************************************************
emh203 1:6f37253dab87 582 // ********************************************************************************************************
emh203 1:6f37253dab87 583
emh203 1:6f37253dab87 584
emh203 1:6f37253dab87 585
emh203 1:6f37253dab87 586
emh203 1:6f37253dab87 587
emh203 1:6f37253dab87 588 uint8_t ADC_Cal(ADC_MemMapPtr adcmap)
emh203 1:6f37253dab87 589 {
emh203 1:6f37253dab87 590
emh203 1:6f37253dab87 591 uint16_t cal_var;
emh203 1:6f37253dab87 592
emh203 1:6f37253dab87 593 ADC_SC2_REG(adcmap) &= ~ADC_SC2_ADTRG_MASK ; // Enable Software Conversion Trigger for Calibration Process - ADC0_SC2 = ADC0_SC2 | ADC_SC2_ADTRGW(0);
emh203 1:6f37253dab87 594 ADC_SC3_REG(adcmap) &= ( ~ADC_SC3_ADCO_MASK & ~ADC_SC3_AVGS_MASK ); // set single conversion, clear avgs bitfield for next writing
emh203 1:6f37253dab87 595 ADC_SC3_REG(adcmap) |= ( ADC_SC3_AVGE_MASK | ADC_SC3_AVGS(AVGS_32) ); // Turn averaging ON and set at max value ( 32 )
emh203 1:6f37253dab87 596
emh203 1:6f37253dab87 597
emh203 1:6f37253dab87 598 ADC_SC3_REG(adcmap) |= ADC_SC3_CAL_MASK ; // Start CAL
emh203 1:6f37253dab87 599 while ( (ADC_SC1_REG(adcmap,A) & ADC_SC1_COCO_MASK ) == COCO_NOT ); // Wait calibration end
emh203 1:6f37253dab87 600
emh203 1:6f37253dab87 601 if ((ADC_SC3_REG(adcmap)& ADC_SC3_CALF_MASK) == CALF_FAIL ) {
emh203 1:6f37253dab87 602 return(1); // Check for Calibration fail error and return
emh203 1:6f37253dab87 603 }
emh203 1:6f37253dab87 604 // Calculate plus-side calibration
emh203 1:6f37253dab87 605 cal_var = 0x00;
emh203 1:6f37253dab87 606
emh203 1:6f37253dab87 607 cal_var = ADC_CLP0_REG(adcmap);
emh203 1:6f37253dab87 608 cal_var += ADC_CLP1_REG(adcmap);
emh203 1:6f37253dab87 609 cal_var += ADC_CLP2_REG(adcmap);
emh203 1:6f37253dab87 610 cal_var += ADC_CLP3_REG(adcmap);
emh203 1:6f37253dab87 611 cal_var += ADC_CLP4_REG(adcmap);
emh203 1:6f37253dab87 612 cal_var += ADC_CLPS_REG(adcmap);
emh203 1:6f37253dab87 613
emh203 1:6f37253dab87 614 cal_var = cal_var/2;
emh203 1:6f37253dab87 615 cal_var |= 0x8000; // Set MSB
emh203 1:6f37253dab87 616
emh203 1:6f37253dab87 617 ADC_PG_REG(adcmap) = ADC_PG_PG(cal_var);
emh203 1:6f37253dab87 618
emh203 1:6f37253dab87 619
emh203 1:6f37253dab87 620 // Calculate minus-side calibration
emh203 1:6f37253dab87 621 cal_var = 0x00;
emh203 1:6f37253dab87 622
emh203 1:6f37253dab87 623 cal_var = ADC_CLM0_REG(adcmap);
emh203 1:6f37253dab87 624 cal_var += ADC_CLM1_REG(adcmap);
emh203 1:6f37253dab87 625 cal_var += ADC_CLM2_REG(adcmap);
emh203 1:6f37253dab87 626 cal_var += ADC_CLM3_REG(adcmap);
emh203 1:6f37253dab87 627 cal_var += ADC_CLM4_REG(adcmap);
emh203 1:6f37253dab87 628 cal_var += ADC_CLMS_REG(adcmap);
emh203 1:6f37253dab87 629
emh203 1:6f37253dab87 630 cal_var = cal_var/2;
emh203 1:6f37253dab87 631
emh203 1:6f37253dab87 632 cal_var |= 0x8000; // Set MSB
emh203 1:6f37253dab87 633
emh203 1:6f37253dab87 634 ADC_MG_REG(adcmap) = ADC_MG_MG(cal_var);
emh203 1:6f37253dab87 635
emh203 1:6f37253dab87 636 ADC_SC3_REG(adcmap) &= ~ADC_SC3_CAL_MASK ; /* Clear CAL bit */
emh203 1:6f37253dab87 637
emh203 1:6f37253dab87 638 return(0);
emh203 1:6f37253dab87 639 }
emh203 1:6f37253dab87 640
emh203 1:6f37253dab87 641
emh203 1:6f37253dab87 642 void ADC_Config_Alt(ADC_MemMapPtr adcmap, tADC_ConfigPtr ADC_CfgPtr)
emh203 1:6f37253dab87 643 {
emh203 1:6f37253dab87 644 ADC_CFG1_REG(adcmap) = ADC_CfgPtr->CONFIG1;
emh203 1:6f37253dab87 645 ADC_CFG2_REG(adcmap) = ADC_CfgPtr->CONFIG2;
emh203 1:6f37253dab87 646 ADC_CV1_REG(adcmap) = ADC_CfgPtr->COMPARE1;
emh203 1:6f37253dab87 647 ADC_CV2_REG(adcmap) = ADC_CfgPtr->COMPARE2;
emh203 1:6f37253dab87 648 ADC_SC2_REG(adcmap) = ADC_CfgPtr->STATUS2;
emh203 1:6f37253dab87 649 ADC_SC3_REG(adcmap) = ADC_CfgPtr->STATUS3;
emh203 1:6f37253dab87 650 //ADC_PGA_REG(adcmap) = ADC_CfgPtr->PGA;
emh203 1:6f37253dab87 651 ADC_SC1_REG(adcmap,A)= ADC_CfgPtr->STATUS1A;
emh203 1:6f37253dab87 652 ADC_SC1_REG(adcmap,B)= ADC_CfgPtr->STATUS1B;
emh203 1:6f37253dab87 653 }
emh203 1:6f37253dab87 654
emh203 1:6f37253dab87 655
emh203 1:6f37253dab87 656 void ADC_Read_Cal(ADC_MemMapPtr adcmap, tADC_Cal_Blk *blk)
emh203 1:6f37253dab87 657 {
emh203 1:6f37253dab87 658 blk->OFS = ADC_OFS_REG(adcmap);
emh203 1:6f37253dab87 659 blk->PG = ADC_PG_REG(adcmap);
emh203 1:6f37253dab87 660 blk->MG = ADC_MG_REG(adcmap);
emh203 1:6f37253dab87 661 blk->CLPD = ADC_CLPD_REG(adcmap);
emh203 1:6f37253dab87 662 blk->CLPS = ADC_CLPS_REG(adcmap);
emh203 1:6f37253dab87 663 blk->CLP4 = ADC_CLP4_REG(adcmap);
emh203 1:6f37253dab87 664 blk->CLP3 = ADC_CLP3_REG(adcmap);
emh203 1:6f37253dab87 665 blk->CLP2 = ADC_CLP2_REG(adcmap);
emh203 1:6f37253dab87 666 blk->CLP1 = ADC_CLP1_REG(adcmap);
emh203 1:6f37253dab87 667 blk->CLP0 = ADC_CLP0_REG(adcmap);
emh203 1:6f37253dab87 668 blk->CLMD = ADC_CLMD_REG(adcmap);
emh203 1:6f37253dab87 669 blk->CLMS = ADC_CLMS_REG(adcmap);
emh203 1:6f37253dab87 670 blk->CLM4 = ADC_CLM4_REG(adcmap);
emh203 1:6f37253dab87 671 blk->CLM3 = ADC_CLM3_REG(adcmap);
emh203 1:6f37253dab87 672 blk->CLM2 = ADC_CLM2_REG(adcmap);
emh203 1:6f37253dab87 673 blk->CLM1 = ADC_CLM1_REG(adcmap);
emh203 1:6f37253dab87 674 blk->CLM0 = ADC_CLM0_REG(adcmap);
emh203 1:6f37253dab87 675
emh203 1:6f37253dab87 676 }
emh203 1:6f37253dab87 677
emh203 1:6f37253dab87 678
emh203 1:6f37253dab87 679 void TFC_InitADC0()
emh203 1:6f37253dab87 680 {
emh203 1:6f37253dab87 681 tADC_Config Master_Adc0_Config;
emh203 1:6f37253dab87 682
emh203 1:6f37253dab87 683
emh203 1:6f37253dab87 684 SIM->SCGC6 |= (SIM_SCGC6_ADC0_MASK);
emh203 1:6f37253dab87 685
emh203 1:6f37253dab87 686 //Lets calibrate the ADC. 1st setup how the channel will be used.
emh203 1:6f37253dab87 687
emh203 1:6f37253dab87 688
emh203 1:6f37253dab87 689 Master_Adc0_Config.CONFIG1 = ADLPC_NORMAL //No low power mode
emh203 1:6f37253dab87 690 | ADC_CFG1_ADIV(ADIV_4) //divide input by 4
emh203 1:6f37253dab87 691 | ADLSMP_LONG //long sample time
emh203 1:6f37253dab87 692 | ADC_CFG1_MODE(MODE_12)//single ended 8-bit conversion
emh203 1:6f37253dab87 693 | ADC_CFG1_ADICLK(ADICLK_BUS);
emh203 1:6f37253dab87 694
emh203 1:6f37253dab87 695 Master_Adc0_Config.CONFIG2 = MUXSEL_ADCA // select the A side of the ADC channel.
emh203 1:6f37253dab87 696 | ADACKEN_DISABLED
emh203 1:6f37253dab87 697 | ADHSC_HISPEED
emh203 1:6f37253dab87 698 | ADC_CFG2_ADLSTS(ADLSTS_2);//Extra long sample Time (20 extra clocks)
emh203 1:6f37253dab87 699
emh203 1:6f37253dab87 700
emh203 1:6f37253dab87 701 Master_Adc0_Config.COMPARE1 = 00000; // Comparators don't matter for calibration
emh203 1:6f37253dab87 702 Master_Adc0_Config.COMPARE1 = 0xFFFF;
emh203 1:6f37253dab87 703
emh203 1:6f37253dab87 704 Master_Adc0_Config.STATUS2 = ADTRG_HW //hardware triggers for calibration
emh203 1:6f37253dab87 705 | ACFE_DISABLED //disable comparator
emh203 1:6f37253dab87 706 | ACFGT_GREATER
emh203 1:6f37253dab87 707 | ACREN_ENABLED
emh203 1:6f37253dab87 708 | DMAEN_DISABLED //Disable DMA
emh203 1:6f37253dab87 709 | ADC_SC2_REFSEL(REFSEL_EXT); //External Reference
emh203 1:6f37253dab87 710
emh203 1:6f37253dab87 711 Master_Adc0_Config.STATUS3 = CAL_OFF
emh203 1:6f37253dab87 712 | ADCO_SINGLE
emh203 1:6f37253dab87 713 | AVGE_ENABLED;
emh203 1:6f37253dab87 714 // | ADC_SC3_AVGS(AVGS_4);
emh203 1:6f37253dab87 715
emh203 1:6f37253dab87 716 Master_Adc0_Config.PGA = 0; // Disable the PGA
emh203 1:6f37253dab87 717
emh203 1:6f37253dab87 718
emh203 1:6f37253dab87 719 // Configure ADC as it will be used, but because ADC_SC1_ADCH is 31,
emh203 1:6f37253dab87 720 // the ADC will be inactive. Channel 31 is just disable function.
emh203 1:6f37253dab87 721 // There really is no channel 31.
emh203 1:6f37253dab87 722
emh203 1:6f37253dab87 723 Master_Adc0_Config.STATUS1A = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(31);
emh203 1:6f37253dab87 724
emh203 1:6f37253dab87 725
emh203 1:6f37253dab87 726 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc0_Config); // config ADC
emh203 1:6f37253dab87 727
emh203 1:6f37253dab87 728 // Calibrate the ADC in the configuration in which it will be used:
emh203 1:6f37253dab87 729 ADC_Cal(ADC0_BASE_PTR); // do the calibration
emh203 1:6f37253dab87 730
emh203 1:6f37253dab87 731
emh203 1:6f37253dab87 732 Master_Adc0_Config.STATUS2 = ACFE_DISABLED //disable comparator
emh203 1:6f37253dab87 733 | ACFGT_GREATER
emh203 1:6f37253dab87 734 | ACREN_ENABLED
emh203 1:6f37253dab87 735 | DMAEN_DISABLED //Disable DMA
emh203 1:6f37253dab87 736 | ADC_SC2_REFSEL(REFSEL_EXT); //External Reference
emh203 1:6f37253dab87 737
emh203 1:6f37253dab87 738 Master_Adc0_Config.STATUS3 = CAL_OFF
emh203 1:6f37253dab87 739 | ADCO_SINGLE;
emh203 1:6f37253dab87 740
emh203 1:6f37253dab87 741
emh203 1:6f37253dab87 742
emh203 1:6f37253dab87 743 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc0_Config);
emh203 1:6f37253dab87 744 }
emh203 1:6f37253dab87 745
emh203 1:6f37253dab87 746
emh203 1:6f37253dab87 747 void TFC_InitADC_System()
emh203 1:6f37253dab87 748 {
emh203 1:6f37253dab87 749
emh203 1:6f37253dab87 750 TFC_InitADC0();
emh203 1:6f37253dab87 751
emh203 1:6f37253dab87 752
emh203 1:6f37253dab87 753 //All Adc processing of the Pots and linescan will be done in the ADC0 IRQ!
emh203 1:6f37253dab87 754 //A state machine will scan through the channels.
emh203 1:6f37253dab87 755 //This is done to automate the linescan capture on Channel 0 to ensure that timing is very even
emh203 1:6f37253dab87 756 CurrentADC_State = ADC_STATE_INIT;
emh203 1:6f37253dab87 757
emh203 1:6f37253dab87 758 //The pump will be primed with the TPM1 interrupt. upon timeout/interrupt it will set the SI signal high
emh203 1:6f37253dab87 759 //for the camera and then start the conversions for the pots.
emh203 1:6f37253dab87 760
emh203 1:6f37253dab87 761 // NVIC_SetVector(ADC0_IRQn,(uint32_t)ADC0_Handler);
emh203 1:6f37253dab87 762 NVIC_EnableIRQ(ADC0_IRQn);
emh203 1:6f37253dab87 763
emh203 1:6f37253dab87 764 }
emh203 1:6f37253dab87 765
emh203 1:6f37253dab87 766 extern "C" void ADC0_IRQHandler()
emh203 1:6f37253dab87 767 {
emh203 1:6f37253dab87 768 uint8_t Junk;
emh203 1:6f37253dab87 769
emh203 1:6f37253dab87 770 switch(CurrentADC_State) {
emh203 1:6f37253dab87 771 default:
emh203 1:6f37253dab87 772 Junk = ADC0->R[0];
emh203 1:6f37253dab87 773 break;
emh203 1:6f37253dab87 774
emh203 1:6f37253dab87 775 case ADC_STATE_CAPTURE_POT_0:
emh203 1:6f37253dab87 776
emh203 1:6f37253dab87 777 PotADC_Value[0] = ADC0->R[0];
emh203 1:6f37253dab87 778 ADC0->CFG2 &= ~ADC_CFG2_MUXSEL_MASK; //Select the A side of the mux
emh203 1:6f37253dab87 779 ADC0->SC1[0] = TFC_POT_1_ADC_CHANNEL | ADC_SC1_AIEN_MASK;
emh203 1:6f37253dab87 780 CurrentADC_State = ADC_STATE_CAPTURE_POT_1;
emh203 1:6f37253dab87 781
emh203 1:6f37253dab87 782 break;
emh203 1:6f37253dab87 783
emh203 1:6f37253dab87 784 case ADC_STATE_CAPTURE_POT_1:
emh203 1:6f37253dab87 785
emh203 1:6f37253dab87 786 PotADC_Value[1] = ADC0->R[0];
emh203 1:6f37253dab87 787 ADC0->CFG2 |= ADC_CFG2_MUXSEL_MASK; //Select the B side of the mux
emh203 1:6f37253dab87 788 ADC0->SC1[0] = TFC_BAT_SENSE_CHANNEL| ADC_SC1_AIEN_MASK;
emh203 1:6f37253dab87 789 CurrentADC_State = ADC_STATE_CAPTURE_BATTERY_LEVEL;
emh203 1:6f37253dab87 790
emh203 1:6f37253dab87 791 break;
emh203 1:6f37253dab87 792
emh203 1:6f37253dab87 793 case ADC_STATE_CAPTURE_BATTERY_LEVEL:
emh203 1:6f37253dab87 794
emh203 1:6f37253dab87 795 BatSenseADC_Value = ADC0->R[0];
emh203 1:6f37253dab87 796
emh203 1:6f37253dab87 797 //Now we will start the sequence for the Linescan camera
emh203 1:6f37253dab87 798
emh203 1:6f37253dab87 799 TAOS_CLK_HIGH;
emh203 1:6f37253dab87 800
emh203 1:6f37253dab87 801 for(Junk = 0; Junk<50; Junk++) {
emh203 1:6f37253dab87 802 }
emh203 1:6f37253dab87 803
emh203 1:6f37253dab87 804 TAOS_SI_LOW;
emh203 1:6f37253dab87 805
emh203 1:6f37253dab87 806
emh203 1:6f37253dab87 807 CurrentLineScanPixel = 0;
emh203 1:6f37253dab87 808 CurrentLineScanChannel = 0;
emh203 1:6f37253dab87 809 CurrentADC_State = ADC_STATE_CAPTURE_LINE_SCAN;
emh203 1:6f37253dab87 810 ADC0->CFG2 |= ADC_CFG2_MUXSEL_MASK; //Select the B side of the mux
emh203 1:6f37253dab87 811 ADC0->SC1[0] = TFC_LINESCAN0_ADC_CHANNEL | ADC_SC1_AIEN_MASK;
emh203 1:6f37253dab87 812
emh203 1:6f37253dab87 813 break;
emh203 1:6f37253dab87 814
emh203 1:6f37253dab87 815 case ADC_STATE_CAPTURE_LINE_SCAN:
emh203 1:6f37253dab87 816
emh203 1:6f37253dab87 817 if(CurrentLineScanPixel<128) {
emh203 1:6f37253dab87 818 if(CurrentLineScanChannel == 0) {
emh203 1:6f37253dab87 819 LineScanImage0WorkingBuffer[CurrentLineScanPixel] = ADC0->R[0];
emh203 1:6f37253dab87 820 ADC0->SC1[0] = TFC_LINESCAN1_ADC_CHANNEL | ADC_SC1_AIEN_MASK;
emh203 1:6f37253dab87 821 CurrentLineScanChannel = 1;
emh203 1:6f37253dab87 822
emh203 1:6f37253dab87 823 } else {
emh203 1:6f37253dab87 824 LineScanImage1WorkingBuffer[CurrentLineScanPixel] = ADC0->R[0];
emh203 1:6f37253dab87 825 ADC0->SC1[0] = TFC_LINESCAN0_ADC_CHANNEL | ADC_SC1_AIEN_MASK;
emh203 1:6f37253dab87 826 CurrentLineScanChannel = 0;
emh203 1:6f37253dab87 827 CurrentLineScanPixel++;
emh203 1:6f37253dab87 828
emh203 1:6f37253dab87 829 TAOS_CLK_LOW;
emh203 1:6f37253dab87 830 for(Junk = 0; Junk<50; Junk++) {
emh203 1:6f37253dab87 831 }
emh203 1:6f37253dab87 832 TAOS_CLK_HIGH;
emh203 1:6f37253dab87 833
emh203 1:6f37253dab87 834 }
emh203 1:6f37253dab87 835
emh203 1:6f37253dab87 836 } else {
emh203 1:6f37253dab87 837 // done with the capture sequence. we can wait for the PIT0 IRQ to restart
emh203 1:6f37253dab87 838
emh203 1:6f37253dab87 839 TAOS_CLK_HIGH;
emh203 1:6f37253dab87 840
emh203 1:6f37253dab87 841 for(Junk = 0; Junk<50; Junk++) {
emh203 1:6f37253dab87 842 }
emh203 1:6f37253dab87 843
emh203 1:6f37253dab87 844 TAOS_CLK_LOW;
emh203 1:6f37253dab87 845 CurrentADC_State = ADC_STATE_INIT;
emh203 1:6f37253dab87 846
emh203 1:6f37253dab87 847 //swap the buffer
emh203 1:6f37253dab87 848
emh203 1:6f37253dab87 849 if(LineScanWorkingBuffer == 0) {
emh203 1:6f37253dab87 850 LineScanWorkingBuffer = 1;
emh203 1:6f37253dab87 851
emh203 1:6f37253dab87 852 LineScanImage0WorkingBuffer = &LineScanImage0Buffer[1][0];
emh203 1:6f37253dab87 853 LineScanImage1WorkingBuffer = &LineScanImage1Buffer[1][0];
emh203 1:6f37253dab87 854
emh203 1:6f37253dab87 855 TFC_LineScanCameraData[0] = &LineScanImage0Buffer[0][0];
emh203 1:6f37253dab87 856 TFC_LineScanCameraData[1] = &LineScanImage1Buffer[0][0];
emh203 1:6f37253dab87 857 } else {
emh203 1:6f37253dab87 858 LineScanWorkingBuffer = 0;
emh203 1:6f37253dab87 859 LineScanImage0WorkingBuffer = &LineScanImage0Buffer[0][0];
emh203 1:6f37253dab87 860 LineScanImage1WorkingBuffer = &LineScanImage1Buffer[0][0];
emh203 1:6f37253dab87 861
emh203 1:6f37253dab87 862 TFC_LineScanCameraData[0] = &LineScanImage0Buffer[1][0];
emh203 1:6f37253dab87 863 TFC_LineScanCameraData[1] = &LineScanImage1Buffer[1][0];
emh203 1:6f37253dab87 864 }
emh203 1:6f37253dab87 865
emh203 1:6f37253dab87 866 TFC_LineScanDataReady++;
emh203 1:6f37253dab87 867 }
emh203 1:6f37253dab87 868
emh203 1:6f37253dab87 869 break;
emh203 1:6f37253dab87 870 }
emh203 1:6f37253dab87 871
emh203 1:6f37253dab87 872 }
emh203 1:6f37253dab87 873
emh203 1:6f37253dab87 874 void TFC_InitLineScanCamera()
emh203 1:6f37253dab87 875 {
emh203 1:6f37253dab87 876 SIM->SCGC5 |= SIM_SCGC5_PORTE_MASK | SIM_SCGC5_PORTD_MASK; //Make sure the clock is enabled for PORTE;
emh203 1:6f37253dab87 877 PORTE->PCR[1] = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK; //Enable GPIO on on the pin for the CLOCK Signal
emh203 1:6f37253dab87 878 PORTD->PCR[7] = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK; //Enable GPIO on on the pin for SI signal
emh203 1:6f37253dab87 879
emh203 1:6f37253dab87 880 PORTD->PCR[5] = PORT_PCR_MUX(0); //Make sure AO signal goes to an analog input
emh203 1:6f37253dab87 881 PORTD->PCR[6] = PORT_PCR_MUX(0); //Make sure AO signal goes to an analog input
emh203 1:6f37253dab87 882
emh203 1:6f37253dab87 883 //Make sure the Clock and SI pins are outputs
emh203 1:6f37253dab87 884 PTD->PDDR |= (1<<7);
emh203 1:6f37253dab87 885 PTE->PDDR |= (1<<1);
emh203 1:6f37253dab87 886
emh203 1:6f37253dab87 887 TAOS_CLK_LOW;
emh203 1:6f37253dab87 888 TAOS_SI_LOW;
emh203 1:6f37253dab87 889
emh203 1:6f37253dab87 890 LineScanWorkingBuffer = 0;
emh203 1:6f37253dab87 891
emh203 1:6f37253dab87 892 LineScanImage0WorkingBuffer = &LineScanImage0Buffer[LineScanWorkingBuffer][0];
emh203 1:6f37253dab87 893 LineScanImage1WorkingBuffer = &LineScanImage1Buffer[LineScanWorkingBuffer][0];
emh203 1:6f37253dab87 894
emh203 1:6f37253dab87 895 TFC_LineScanCameraData[0] = &LineScanImage0Buffer[1][0];
emh203 1:6f37253dab87 896 TFC_LineScanCameraData[1] = &LineScanImage1Buffer[1][0];
emh203 1:6f37253dab87 897 }
emh203 1:6f37253dab87 898
emh203 1:6f37253dab87 899
emh203 1:6f37253dab87 900
emh203 1:6f37253dab87 901
emh203 1:6f37253dab87 902
emh203 1:6f37253dab87 903 /** Initialized TPM0 to be used for generating PWM signals for the the dual drive motors. This method is called in the TFC constructor with a default value of 4000.0Hz
emh203 1:6f37253dab87 904 *
emh203 1:6f37253dab87 905 * @param SwitchingFrequency PWM Switching Frequency in floating point format. Pick something between 1000 and 9000. Maybe you can modulate it and make a tune.
emh203 1:6f37253dab87 906 */
emh203 1:6f37253dab87 907 void TFC_InitMotorPWM(float SwitchingFrequency)
emh203 1:6f37253dab87 908 {
emh203 1:6f37253dab87 909 //Clock Setup for the TPM requires a couple steps.
emh203 1:6f37253dab87 910
emh203 1:6f37253dab87 911
emh203 1:6f37253dab87 912 //1st, set the clock mux
emh203 1:6f37253dab87 913 //See Page 124 of f the KL25 Sub-Family Reference Manual, Rev. 3, September 2012
emh203 1:6f37253dab87 914 // SIM->SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK;// We Want MCGPLLCLK/2 (See Page 196 of the KL25 Sub-Family Reference Manual, Rev. 3, September 2012)
emh203 1:6f37253dab87 915 // SIM->SOPT2 &= ~(SIM_SOPT2_TPMSRC_MASK);
emh203 1:6f37253dab87 916 // SIM->SOPT2 |= SIM_SOPT2_TPMSRC(1); //We want the MCGPLLCLK/2 (See Page 196 of the KL25 Sub-Family Reference Manual, Rev. 3, September 2012)
emh203 1:6f37253dab87 917
emh203 1:6f37253dab87 918
emh203 1:6f37253dab87 919 //Enable the Clock to the FTM0 Module
emh203 1:6f37253dab87 920 //See Page 207 of f the KL25 Sub-Family Reference Manual, Rev. 3, September 2012
emh203 1:6f37253dab87 921 SIM->SCGC6 |= SIM_SCGC6_TPM0_MASK;
emh203 1:6f37253dab87 922
emh203 1:6f37253dab87 923 //The TPM Module has Clock. Now set up the peripheral
emh203 1:6f37253dab87 924
emh203 1:6f37253dab87 925 //Blow away the control registers to ensure that the counter is not running
emh203 1:6f37253dab87 926 TPM0->SC = 0;
emh203 1:6f37253dab87 927 TPM0->CONF = 0;
emh203 1:6f37253dab87 928
emh203 1:6f37253dab87 929 //While the counter is disabled we can setup the prescaler
emh203 1:6f37253dab87 930
emh203 1:6f37253dab87 931 TPM0->SC = TPM_SC_PS(FTM0_CLK_PRESCALE);
emh203 1:6f37253dab87 932
emh203 1:6f37253dab87 933 //Setup the mod register to get the correct PWM Period
emh203 1:6f37253dab87 934
emh203 1:6f37253dab87 935 TPM0->MOD = (uint32_t)((float)(FTM0_CLOCK/(1<<FTM0_CLK_PRESCALE))/SwitchingFrequency);
emh203 1:6f37253dab87 936
emh203 1:6f37253dab87 937 //Setup Channels 0,1,2,3
emh203 1:6f37253dab87 938 TPM0->CONTROLS[0].CnSC = TPM_CnSC_MSB_MASK | TPM_CnSC_ELSB_MASK;
emh203 1:6f37253dab87 939 TPM0->CONTROLS[1].CnSC = TPM_CnSC_MSB_MASK | TPM_CnSC_ELSA_MASK; // invert the second PWM signal for a complimentary output;
emh203 1:6f37253dab87 940 TPM0->CONTROLS[2].CnSC = TPM_CnSC_MSB_MASK | TPM_CnSC_ELSB_MASK;
emh203 1:6f37253dab87 941 TPM0->CONTROLS[3].CnSC = TPM_CnSC_MSB_MASK | TPM_CnSC_ELSA_MASK; // invert the second PWM signal for a complimentary output;
emh203 1:6f37253dab87 942
emh203 1:6f37253dab87 943 //Enable the Counter
emh203 1:6f37253dab87 944
emh203 1:6f37253dab87 945 //Set the Default duty cycle to 50% duty cycle
emh203 1:6f37253dab87 946 TFC_SetMotorPWM(0.0,0.0);
emh203 1:6f37253dab87 947
emh203 1:6f37253dab87 948 //Enable the TPM COunter
emh203 1:6f37253dab87 949 TPM0->SC |= TPM_SC_CMOD(1);
emh203 1:6f37253dab87 950
emh203 1:6f37253dab87 951 //Enable the FTM functions on the the port
emh203 1:6f37253dab87 952 PORTC->PCR[1] = PORT_PCR_MUX(4);
emh203 1:6f37253dab87 953 PORTC->PCR[2] = PORT_PCR_MUX(4);
emh203 1:6f37253dab87 954 PORTC->PCR[3] = PORT_PCR_MUX(4);
emh203 1:6f37253dab87 955 PORTC->PCR[4] = PORT_PCR_MUX(4);
emh203 1:6f37253dab87 956
emh203 1:6f37253dab87 957 }
emh203 1:6f37253dab87 958
emh203 1:6f37253dab87 959 void TFC_SetMotorPWM(float MotorA , float MotorB)
emh203 1:6f37253dab87 960 {
emh203 1:6f37253dab87 961 if(MotorA>1.0)
emh203 1:6f37253dab87 962 MotorA = 1.0;
emh203 1:6f37253dab87 963 else if(MotorA<-1.0)
emh203 1:6f37253dab87 964 MotorA = -1.0;
emh203 1:6f37253dab87 965
emh203 1:6f37253dab87 966 if(MotorB>1.0)
emh203 1:6f37253dab87 967 MotorB = 1.0;
emh203 1:6f37253dab87 968 else if(MotorB<-1.0)
emh203 1:6f37253dab87 969 MotorB = -1.0;
emh203 1:6f37253dab87 970
emh203 1:6f37253dab87 971 TPM0->CONTROLS[2].CnV = (uint16_t) ((float)TPM0->MOD * (float)((MotorA + 1.0)/2.0));
emh203 1:6f37253dab87 972 TPM0->CONTROLS[3].CnV = TPM0->CONTROLS[2].CnV;
emh203 1:6f37253dab87 973 TPM0->CONTROLS[0].CnV = (uint16_t) ((float)TPM0->MOD * (float)((MotorB + 1.0)/2.0));
emh203 1:6f37253dab87 974 TPM0->CONTROLS[1].CnV = TPM0->CONTROLS[0].CnV;
emh203 1:6f37253dab87 975
emh203 1:6f37253dab87 976 }
emh203 1:6f37253dab87 977
emh203 1:6f37253dab87 978 //Pot Reading is Scaled to return a value of -1.0 to 1.0
emh203 1:6f37253dab87 979 float TFC_ReadPot(uint8_t Channel)
emh203 1:6f37253dab87 980 {
emh203 1:6f37253dab87 981 if(Channel == 0)
emh203 1:6f37253dab87 982 return ((float)PotADC_Value[0]/-((float)ADC_MAX_CODE/2.0))+1.0;
emh203 1:6f37253dab87 983 else
emh203 1:6f37253dab87 984 return ((float)PotADC_Value[1]/-((float)ADC_MAX_CODE/2.0))+1.0;
emh203 1:6f37253dab87 985 }
emh203 1:6f37253dab87 986
emh203 1:6f37253dab87 987 float TFC_ReadBatteryVoltage()
emh203 1:6f37253dab87 988 {
emh203 1:6f37253dab87 989 return (((float)BatSenseADC_Value/(float)(ADC_MAX_CODE)) * 3.0);// * ((47000.0+10000.0)/10000.0);
emh203 1:6f37253dab87 990 }