Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of Crypto_light by
AES.cpp
- Committer:
- feb11
- Date:
- 2013-09-09
- Revision:
- 2:473bac39ae7c
- Parent:
- 0:7a1237bd2d13
File content as of revision 2:473bac39ae7c:
#include "AES.h" #include <string.h> #include <stdio.h> #include <stdlib.h> static const uint8_t sbox[] = { 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 }; static const uint8_t inv_s[] = { 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D }; static const uint32_t rcon[10]= { 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000 }; AES::AES(const AES_TYPE t, uint8_t *key): state() { switch(t) { case AES_128: nr = 10; nk = 4; break; case AES_192: nr = 12; nk = 6; break; case AES_256: nr = 14; nk = 8; break; } keyExpansion(key); } void AES::keyExpansion(uint8_t *key) { uint32_t temp; int i = 0; while(i < nk) { w[i] = (key[4*i] << 24) + (key[4*i+1] << 16) + (key[4*i+2] << 8) + key[4*i+3]; i++; } i = nk; while(i < 4*(nr+1)) { temp = w[i-1]; if(i % nk == 0) { temp = rotWord(temp); temp = subWord(temp); temp ^= rcon[i/nk-1]; } else if(nk > 6 && i % nk == 4) temp = subWord(temp); w[i] = w[i-nk] ^ temp; i++; } } uint32_t AES::rotWord(uint32_t w) { return (w << 8) + (w >> 24); } uint32_t AES::invRotWord(uint32_t w) { return (w >> 8) + (w << 24); } uint32_t AES::subWord(uint32_t w) { uint32_t out = 0; for(int i = 0; i < 4; ++i) { uint8_t temp = (w & 0xFF); out |= (sbox[temp] << (8*i)); w = (w >> 8); } return out; } void AES::subBytes() { for(int i = 0; i < 16; ++i) state[i] = sbox[state[i]]; } void AES::invSubBytes() { for(int i = 0; i < 16; ++i) state[i] = inv_s[state[i]]; } void AES::shiftRows() { for(int r = 0; r < 4; ++r) { uint32_t temp = (state[r] << 24) + (state[r+4] << 16) + (state[r+8] << 8) + state[r+12]; int i = r; while(i > 0) { temp = rotWord(temp); --i; } state[r] = temp >> 24; state[r+4] = temp >> 16; state[r+8] = temp >> 8; state[r+12] = temp; } } void AES::invShiftRows() { for(int r = 0; r < 4; ++r) { uint32_t temp = (state[r] << 24) + (state[r+4] << 16) + (state[r+8] << 8) + state[r+12]; int i = r; while(i > 0) { temp = invRotWord(temp); --i; } state[r] = temp >> 24; state[r+4] = temp >> 16; state[r+8] = temp >> 8; state[r+12] = temp; } } /* Multiply two numbers in the GF(2^8) finite field defined * by the polynomial x^8 + x^4 + x^3 + x + 1 */ uint8_t gmul(uint8_t a, uint8_t b) { uint8_t p = 0; uint8_t counter; uint8_t carry; for (counter = 0; counter < 8; counter++) { if (b & 1) p ^= a; carry = (a & 0x80); a <<= 1; if (carry) a ^= 0x001B; /* what x^8 is modulo x^8 + x^4 + x^3 + x^2 + 1 */ b >>= 1; } return p; } void AES::mul(uint8_t *r) { uint8_t tmp[4]; memcpy(tmp, r, 4); r[0] = gmul(tmp[0],2) ^ gmul(tmp[1],3) ^ tmp[2] ^ tmp[3]; r[1] = tmp[0] ^ gmul(tmp[1],2) ^ gmul(tmp[2],3) ^ tmp[3]; r[2] = tmp[0] ^ tmp[1] ^ gmul(tmp[2],2) ^ gmul(tmp[3],3); r[3] = gmul(tmp[0],3) ^ tmp[1] ^ tmp[2] ^ gmul(tmp[3],2); } void AES::invMul(uint8_t *r) { uint8_t tmp[4]; memcpy(tmp, r, 4); r[0] = gmul(tmp[0],0x0e) ^ gmul(tmp[1],0x0b) ^ gmul(tmp[2],0x0d) ^ gmul(tmp[3],9); r[1] = gmul(tmp[0],9) ^ gmul(tmp[1],0x0e) ^ gmul(tmp[2],0x0b) ^ gmul(tmp[3],0x0d); r[2] = gmul(tmp[0],0x0d) ^ gmul(tmp[1],9) ^ gmul(tmp[2],0x0e) ^ gmul(tmp[3],0x0b); r[3] = gmul(tmp[0],0x0b) ^ gmul(tmp[1],0x0d) ^ gmul(tmp[2],9) ^ gmul(tmp[3],0x0e); } void AES::mixColumns() { for(int c = 0; c < 4; ++c) mul(&state[4*c]); } void AES::invMixColumns() { for(int c = 0; c < 4; ++c) invMul(&state[4*c]); } void AES::addRoundKey(int round) { for(int c = 0; c < 4; ++c) { uint32_t temp = (state[4*c] << 24) + (state[4*c+1] << 16) + (state[4*c+2] << 8) + state[4*c+3]; temp ^= w[round*4+c]; state[4*c] = temp >> 24; state[4*c+1] = temp >> 16; state[4*c+2] = temp >> 8; state[4*c+3] = temp; } } void AES::decryptBlock(uint8_t *out, uint8_t *in) { memcpy(state,in,16); addRoundKey(nr); for(int round = nr-1; round > 0; --round) { invShiftRows(); invSubBytes(); addRoundKey(round); invMixColumns(); } invShiftRows(); invSubBytes(); addRoundKey(0); memcpy(out, state, 16); } void AES::encryptBlock(uint8_t *out, uint8_t *in) { memcpy(state,in,16); addRoundKey(0); for(int round = 1; round < nr; ++round) { subBytes(); shiftRows(); mixColumns(); addRoundKey(round); } subBytes(); shiftRows(); addRoundKey(nr); memcpy(out, state, 16); } void AES::encrypt(uint8_t *out, uint8_t *in, uint32_t length) { for(uint32_t i = 0; i < length; i+=16) encryptBlock(&out[i], &in[i]); } void AES::decrypt(uint8_t *out, uint8_t *in, uint32_t length) { for(uint32_t i = 0; i < length; i+=16) decryptBlock(&out[i], &in[i]); } uint32_t AES::getBlockSize() const { return 16; }