Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FastPWM3 mbed-dev-STM-lean
main.cpp
- Committer:
- benkatz
- Date:
- 2018-05-25
- Revision:
- 43:dfb72608639c
- Parent:
- 42:738fa01b0346
- Child:
- 44:8040fa2fcb0d
File content as of revision 43:dfb72608639c:
/// high-bandwidth 3-phase motor control, for robots
/// Written by benkatz, with much inspiration from bayleyw, nkirkby, scolton, David Otten, and others
/// Hardware documentation can be found at build-its.blogspot.com
/// Written for the STM32F446, but can be implemented on other STM32 MCU's with some further register-diddling
#define REST_MODE 0
#define CALIBRATION_MODE 1
#define MOTOR_MODE 2
#define SETUP_MODE 4
#define ENCODER_MODE 5
#define VERSION_NUM "1.5"
float __float_reg[64]; // Floats stored in flash
int __int_reg[256]; // Ints stored in flash. Includes position sensor calibration lookup table
#include "mbed.h"
#include "PositionSensor.h"
#include "structs.h"
#include "foc.h"
#include "calibration.h"
#include "hw_setup.h"
#include "math_ops.h"
#include "current_controller_config.h"
#include "hw_config.h"
#include "motor_config.h"
#include "stm32f4xx_flash.h"
#include "FlashWriter.h"
#include "user_config.h"
#include "PreferenceWriter.h"
#include "CAN_com.h"
PreferenceWriter prefs(6);
GPIOStruct gpio;
ControllerStruct controller;
COMStruct com;
ObserverStruct observer;
Serial pc(PA_2, PA_3);
CAN can(PB_8, PB_9); // CAN Rx pin name, CAN Tx pin name
CANMessage rxMsg;
CANMessage txMsg;
PositionSensorAM5147 spi(16384, 0.0, NPP);
volatile int count = 0;
volatile int state = REST_MODE;
volatile int state_change;
void onMsgReceived() {
//msgAvailable = true;
//printf("%.3f %.3f %.3f\n\r", controller.theta_mech, controller.dtheta_mech, controller.i_q);
can.read(rxMsg);
if((rxMsg.id == CAN_ID)){
controller.timeout = 0;
if(((rxMsg.data[0]==0xFF) & (rxMsg.data[1]==0xFF) & (rxMsg.data[2]==0xFF) & (rxMsg.data[3]==0xFF) & (rxMsg.data[4]==0xFF) & (rxMsg.data[5]==0xFF) & (rxMsg.data[6]==0xFF) & (rxMsg.data[7]==0xFC))){
state = MOTOR_MODE;
state_change = 1;
}
else if(((rxMsg.data[0]==0xFF) & (rxMsg.data[1]==0xFF) & (rxMsg.data[2]==0xFF) & (rxMsg.data[3]==0xFF) * (rxMsg.data[4]==0xFF) & (rxMsg.data[5]==0xFF) & (rxMsg.data[6]==0xFF) & (rxMsg.data[7]==0xFD))){
state = REST_MODE;
state_change = 1;
gpio.led->write(0);;
}
else if(((rxMsg.data[0]==0xFF) & (rxMsg.data[1]==0xFF) & (rxMsg.data[2]==0xFF) & (rxMsg.data[3]==0xFF) * (rxMsg.data[4]==0xFF) & (rxMsg.data[5]==0xFF) & (rxMsg.data[6]==0xFF) & (rxMsg.data[7]==0xFE))){
spi.ZeroPosition();
}
else if(state == MOTOR_MODE){
unpack_cmd(rxMsg, &controller);
}
pack_reply(&txMsg, controller.theta_mech, controller.dtheta_mech, controller.i_q_filt*KT_OUT);
can.write(txMsg);
}
}
void enter_menu_state(void){
printf("\n\r\n\r\n\r");
printf(" Commands:\n\r");
printf(" m - Motor Mode\n\r");
printf(" c - Calibrate Encoder\n\r");
printf(" s - Setup\n\r");
printf(" e - Display Encoder\n\r");
printf(" z - Set Zero Position\n\r");
printf(" esc - Exit to Menu\n\r");
state_change = 0;
gpio.enable->write(0);
gpio.led->write(0);
}
void enter_setup_state(void){
printf("\n\r\n\r Configuration Options \n\r\n\n");
printf(" %-4s %-31s %-5s %-6s %-5s\n\r\n\r", "prefix", "parameter", "min", "max", "current value");
printf(" %-4s %-31s %-5s %-6s %.1f\n\r", "b", "Current Bandwidth (Hz)", "100", "2000", I_BW);
printf(" %-4s %-31s %-5s %-6s %-5i\n\r", "i", "CAN ID", "0", "127", CAN_ID);
printf(" %-4s %-31s %-5s %-6s %-5i\n\r", "m", "CAN Master ID", "0", "127", CAN_MASTER);
printf(" %-4s %-31s %-5s %-6s %.1f\n\r", "l", "Torque Limit (N-m)", "0.0", "18.0", TORQUE_LIMIT);
printf(" %-4s %-31s %-5s %-6s %d\n\r", "t", "CAN Timeout (cycles)(0 = none)", "0", "100000", CAN_TIMEOUT);
printf("\n\r To change a value, type 'prefix''value''ENTER'\n\r i.e. 'b1000''ENTER'\n\r\n\r");
state_change = 0;
}
void enter_torque_mode(void){
controller.ovp_flag = 0;
gpio.enable->write(1); // Enable gate drive
reset_foc(&controller); // Tesets integrators, and other control loop parameters
wait(.001);
controller.i_d_ref = 0;
controller.i_q_ref = 0; // Current Setpoints
gpio.led->write(1); // Turn on status LED
state_change = 0;
printf("\n\r Entering Motor Mode \n\r");
}
void calibrate(void){
gpio.enable->write(1); // Enable gate drive
gpio.led->write(1); // Turn on status LED
order_phases(&spi, &gpio, &controller, &prefs); // Check phase ordering
calibrate(&spi, &gpio, &controller, &prefs); // Perform calibration procedure
gpio.led->write(0);; // Turn off status LED
wait(.2);
gpio.enable->write(0); // Turn off gate drive
printf("\n\r Calibration complete. Press 'esc' to return to menu\n\r");
state_change = 0;
}
void print_encoder(void){
printf(" Mechanical Angle: %f Electrical Angle: %f Raw: %d\n\r", spi.GetMechPosition(), spi.GetElecPosition(), spi.GetRawPosition());
wait(.05);
}
/// Current Sampling Interrupt ///
/// This runs at 40 kHz, regardless of of the mode the controller is in ///
extern "C" void TIM1_UP_TIM10_IRQHandler(void) {
if (TIM1->SR & TIM_SR_UIF ) {
///Sample current always ///
ADC1->CR2 |= 0x40000000; // Begin sample and conversion
//volatile int delay;
//for (delay = 0; delay < 55; delay++);
controller.adc2_raw = ADC2->DR; // Read ADC Data Registers
controller.adc1_raw = ADC1->DR;
controller.adc3_raw = ADC3->DR;
spi.Sample(); // sample position sensor
controller.theta_elec = spi.GetElecPosition();
controller.theta_mech = (1.0f/GR)*spi.GetMechPosition();
controller.dtheta_mech = (1.0f/GR)*spi.GetMechVelocity();
controller.dtheta_elec = spi.GetElecVelocity();
controller.v_bus = 0.95f*controller.v_bus + 0.05f*((float)controller.adc3_raw)*V_SCALE;
///
/// Check state machine state, and run the appropriate function ///
switch(state){
case REST_MODE: // Do nothing
if(state_change){
enter_menu_state();
}
break;
case CALIBRATION_MODE: // Run encoder calibration procedure
if(state_change){
calibrate();
}
break;
case MOTOR_MODE: // Run torque control
if(state_change){
enter_torque_mode();
count = 0;
}
else{
/*
if(controller.v_bus>28.0f){ //Turn of gate drive if bus voltage is too high, to prevent FETsplosion if the bus is cut during regen
gpio.enable->write(0);
controller.ovp_flag = 1;
state = REST_MODE;
state_change = 1;
printf("OVP Triggered!\n\r");
}
*/
torque_control(&controller);
if((controller.timeout > CAN_TIMEOUT) && (CAN_TIMEOUT > 0)){
controller.i_d_ref = 0;
controller.i_q_ref = 0;
controller.kp = 0;
controller.kd = 0;
controller.t_ff = 0;
}
commutate(&controller, &observer, &gpio, controller.theta_elec); // Run current loop
controller.timeout += 1;
/*
count++;
if(count == 4000){
printf("%.4f\n\r", controller.dtheta_mech);
count = 0;
}
*/
}
break;
case SETUP_MODE:
if(state_change){
enter_setup_state();
}
break;
case ENCODER_MODE:
print_encoder();
break;
}
}
TIM1->SR = 0x0; // reset the status register
}
char cmd_val[8] = {0};
char cmd_id = 0;
char char_count = 0;
/// Manage state machine with commands from serial terminal or configurator gui ///
/// Called when data received over serial ///
void serial_interrupt(void){
while(pc.readable()){
char c = pc.getc();
if(c == 27){
state = REST_MODE;
state_change = 1;
char_count = 0;
cmd_id = 0;
gpio.led->write(0);;
for(int i = 0; i<8; i++){cmd_val[i] = 0;}
}
if(state == REST_MODE){
switch (c){
case 'c':
state = CALIBRATION_MODE;
state_change = 1;
break;
case 'm':
state = MOTOR_MODE;
state_change = 1;
break;
case 'e':
state = ENCODER_MODE;
state_change = 1;
break;
case 's':
state = SETUP_MODE;
state_change = 1;
break;
case 'z':
spi.SetMechOffset(0);
spi.Sample();
wait_us(20);
M_OFFSET = spi.GetMechPosition();
if (!prefs.ready()) prefs.open();
prefs.flush(); // Write new prefs to flash
prefs.close();
prefs.load();
spi.SetMechOffset(M_OFFSET);
printf("\n\r Saved new zero position: %.4f\n\r\n\r", M_OFFSET);
break;
}
}
else if(state == SETUP_MODE){
if(c == 13){
switch (cmd_id){
case 'b':
I_BW = fmaxf(fminf(atof(cmd_val), 2000.0f), 100.0f);
break;
case 'i':
CAN_ID = atoi(cmd_val);
break;
case 'm':
CAN_MASTER = atoi(cmd_val);
break;
case 'l':
TORQUE_LIMIT = fmaxf(fminf(atof(cmd_val), 18.0f), 0.0f);
break;
case 't':
CAN_TIMEOUT = atoi(cmd_val);
break;
default:
printf("\n\r '%c' Not a valid command prefix\n\r\n\r", cmd_id);
break;
}
if (!prefs.ready()) prefs.open();
prefs.flush(); // Write new prefs to flash
prefs.close();
prefs.load();
state_change = 1;
char_count = 0;
cmd_id = 0;
for(int i = 0; i<8; i++){cmd_val[i] = 0;}
}
else{
if(char_count == 0){cmd_id = c;}
else{
cmd_val[char_count-1] = c;
}
pc.putc(c);
char_count++;
}
}
else if (state == ENCODER_MODE){
switch (c){
case 27:
state = REST_MODE;
state_change = 1;
break;
}
}
}
}
int main() {
can.frequency(1000000); // set bit rate to 1Mbps
controller.v_bus = V_BUS;
controller.mode = 0;
Init_All_HW(&gpio); // Setup PWM, ADC, GPIO
wait(.1);
gpio.enable->write(1);
TIM1->CCR3 = 0x708*(1.0f); // Write duty cycles
TIM1->CCR2 = 0x708*(1.0f);
TIM1->CCR1 = 0x708*(1.0f);
zero_current(&controller.adc1_offset, &controller.adc2_offset); // Measure current sensor zero-offset
gpio.enable->write(0);
reset_foc(&controller); // Reset current controller
TIM1->CR1 ^= TIM_CR1_UDIS;
//TIM1->CR1 |= TIM_CR1_UDIS; //enable interrupt
wait(.1);
NVIC_SetPriority(TIM1_UP_TIM10_IRQn, 2); // commutation > communication
NVIC_SetPriority(CAN1_RX0_IRQn, 3);
can.filter(CAN_ID<<21, 0xFFE00004, CANStandard, 0);
//can.filter(CAN_ID, 0xF, CANStandard, 0);
txMsg.id = CAN_MASTER;
txMsg.len = 6;
rxMsg.len = 8;
can.attach(&onMsgReceived); // attach 'CAN receive-complete' interrupt handler
prefs.load(); // Read flash
if(isnan(E_OFFSET)){E_OFFSET = 0.0f;}
if(isnan(M_OFFSET)){M_OFFSET = 0.0f;}
spi.SetElecOffset(E_OFFSET); // Set position sensor offset
spi.SetMechOffset(M_OFFSET);
int lut[128] = {0};
memcpy(&lut, &ENCODER_LUT, sizeof(lut));
spi.WriteLUT(lut); // Set potision sensor nonlinearity lookup table
pc.baud(921600); // set serial baud rate
wait(.01);
pc.printf("\n\r\n\r HobbyKing Cheetah\n\r\n\r");
wait(.01);
printf("\n\r Debug Info:\n\r");
printf(" Firmware Version: %s\n\r", VERSION_NUM);
printf(" ADC1 Offset: %d ADC2 Offset: %d\n\r", controller.adc1_offset, controller.adc2_offset);
printf(" Position Sensor Electrical Offset: %.4f\n\r", E_OFFSET);
printf(" Output Zero Position: %.4f\n\r", M_OFFSET);
printf(" CAN ID: %d\n\r", CAN_ID);
pc.attach(&serial_interrupt); // attach serial interrupt
state_change = 1;
while(1) {
}
}