ECE 4180 Lab 3
Page last updated 07 Mar 2013, by
0
replies
.
Audio Player using RPG, TextLCD, and SD card
- Implemented a fully functional audio player that plays .wav files from a USB drive.
Schematic
Functions
Audio Player
- Plays .wav files from a USB drive.
- Using a USB socket and the MSCFileSystem library originally obtained from http://mbed.org/users/chris/code/MSCUsbHost_FULL/docs/tip/files.html
Song List
- The list of songs that are in the USB are displayed on LCD 1.
Main Menu
- A main menu consisting of the volume and the state of the audio player is displayed on LCD 1.
Controls
- The song can be played, paused and stopped using three push buttons.
Volume Control
- The volume of the audio output can be controlled by using a slider.
Song Choice
- The list of songs available can be scrolled through using an RPG and the current song is displayed on LCD 2.
Audio Output
- The audio is outputted from an audio jack.
- Therefore the audio can be played through earphones or speakers.
Playlist
- The user can save a playlist of songs that will be played continuously.
- A song can be added to the playlist by pressing the stop button in the STOP state.
Demo Video
Code
main.cpp
- main code used to implement an audio player
main.cpp
#include "mbed.h" #include "RPG.h" #include "TextLCD.h" #include "wave_player.h" #include "MSCFileSystem.h" #include <string.h> #include <cstdio> #define FSNAME "msc" MSCFileSystem msc(FSNAME); RPG rpg1(p21,p22,p23); //Set up RPG TextLCD lcd1(p9, p10, p11, p12, p13, p14, TextLCD::LCD20x4); // rs, e, d4-d7 TextLCD lcd2(p5, p6, p7, p8, p19, p20, TextLCD::LCD20x4); AnalogOut mySpeaker(p18); DigitalIn pb_add(p29); //SDFileSystem sd(p5, p6, p7, p8, "sd"); // the pinout on the mbed Cool Components workshop board AnalogIn position(p17); //slider wave_player waver(&mySpeaker); Serial term(USBTX, USBRX); // tx, rx int volume = 0; int count = 0; int dirt = 0; char* songList[50]; char* playList[10]; int index = 0; int index_play = 0; int len; int main() { DIR *d; struct dirent *p; d = opendir("/" FSNAME); if ( d != NULL ) { while ( (p = readdir(d)) != NULL ) { songList[index] = (char*)malloc(sizeof(char) * strlen(p->d_name)); term.printf(" - %s\n", p->d_name); strcpy(songList[index++], p->d_name); } songList[index] = (char*)malloc(sizeof(char) * 8); strcpy(songList[index++], "Playlist"); } else { error("Could not open directory!"); } pb_add.mode(PullUp); FILE *wave_file; while(1) { char * selectedFile; volume = position*300; dirt = rpg1.dir(); //Get Dir count = count + dirt; //Ad Dir to count if(count > (index-1)){ count = 0; } if(count < 0){ count = index-1; } lcd1.cls(); lcd1.printf("Song List: \n"); //Print out Count lcd1.printf("%s ", songList[count]); lcd2.cls(); lcd2.printf("Volume: %d \n", volume); //Print out Count lcd2.printf("Mode: STOP"); if(!pb_add) { playList[index_play] = (char*)malloc(sizeof(char) * strlen(songList[count])); strcpy(playList[index_play++], songList[count]); lcd2.cls(); lcd2.printf("Song Added to PlayList"); //Print out Count wait(0.5); } if (rpg1.pb()) { if(count == (index-1)&&index_play > 0) { for(int i = 0; i < (index_play);i++) { len = 5+strlen(playList[i]); selectedFile = (char*)malloc(sizeof(char) * len); strcpy(selectedFile, "/msc/"); strcat(selectedFile, playList[i]); wave_file=fopen(selectedFile,"r"); lcd2.cls(); lcd2.printf("Volume: %d \n", volume); //Print out Count lcd2.printf("Mode: PLAY"); waver.play(wave_file); fclose(wave_file); free(selectedFile); if(!pb_add) //stop the whole play list break; } } else { len = 5+strlen(songList[count]); selectedFile = (char*)malloc(sizeof(char) * len); strcpy(selectedFile, "/msc/"); strcat(selectedFile, songList[count]); wave_file=fopen(selectedFile,"r"); lcd2.cls(); lcd2.printf("Volume: %d \n", volume); //Print out Count lcd2.printf("Mode: PLAY"); waver.play(wave_file); fclose(wave_file); free(selectedFile); } while(!pb_add){}; //prevent from adding stuff to the play list } } }
wave_player.cpp
- edited version of wave_player.cpp, originally obtained from http://mbed.org/users/sravet/code/wave_player/
wave_player.cpp
//----------------------------------------------------------------------------- // a sample mbed library to play back wave files. // // explanation of wave file format. // https://ccrma.stanford.edu/courses/422/projects/WaveFormat/ // if VERBOSE is uncommented then the wave player will enter a verbose // mode that displays all data values as it reads them from the file // and writes them to the DAC. Very slow and unusable output on the DAC, // but useful for debugging wave files that don't work. //#define VERBOSE #include <mbed.h> #include <stdio.h> #include <wave_player.h> #include "TextLCD.h" Serial pc(USBTX, USBRX); DigitalIn pb_pause(p30); DigitalIn pb_stop(p29); DigitalIn pb_play(p28); TextLCD lcd_player(p5, p6, p7, p8, p19, p20, TextLCD::LCD20x4); AnalogIn position_player(p17); //slider //----------------------------------------------------------------------------- // constructor -- accepts an mbed pin to use for AnalogOut. Only p18 will work wave_player::wave_player(AnalogOut *_dac) { wave_DAC=_dac; wave_DAC->write_u16(32768); //DAC is 0-3.3V, so idles at ~1.6V verbosity=0; } //----------------------------------------------------------------------------- // if verbosity is set then wave player enters a mode where the wave file // is decoded and displayed to the screen, including sample values put into // the DAC FIFO, and values read out of the DAC FIFO by the ISR. The DAC output // itself is so slow as to be unusable, but this might be handy for debugging // wave files that don't play //----------------------------------------------------------------------------- void wave_player::set_verbosity(int v) { verbosity=v; } //----------------------------------------------------------------------------- // player function. Takes a pointer to an opened wave file. The file needs // to be stored in a filesystem with enough bandwidth to feed the wave data. // LocalFileSystem isn't, but the SDcard is, at least for 22kHz files. The // SDcard filesystem can be hotrodded by increasing the SPI frequency it uses // internally. //----------------------------------------------------------------------------- void wave_player::play(FILE *wavefile) { unsigned chunk_id,chunk_size,channel; unsigned data,samp_int,i; short unsigned dac_data; long long slice_value; char *slice_buf; short *data_sptr; unsigned char *data_bptr; int *data_wptr; FMT_STRUCT wav_format; long slice,num_slices; pb_pause.mode(PullUp); pb_stop.mode(PullUp); pb_play.mode(PullUp); int volume_player = 0; int count = 0; DAC_wptr=0; DAC_rptr=0; for (i=0;i<256;i+=2) { DAC_fifo[i]=0; DAC_fifo[i+1]=3000; } DAC_wptr=4; DAC_on=0; fread(&chunk_id,4,1,wavefile); fread(&chunk_size,4,1,wavefile); while (!feof(wavefile)) { if (verbosity) pc.printf("Read chunk ID 0x%x, size 0x%x\n",chunk_id,chunk_size); switch (chunk_id) { case 0x46464952: fread(&data,4,1,wavefile); if (verbosity) { pc.printf("RIFF chunk\n"); pc.printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size); pc.printf(" RIFF type 0x%x\n",data); } pc.printf("case1\n"); break; case 0x20746d66: fread(&wav_format,sizeof(wav_format),1,wavefile); if (verbosity) { pc.printf("FORMAT chunk\n"); pc.printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size); pc.printf(" compression code %d\n",wav_format.comp_code); pc.printf(" %d channels\n",wav_format.num_channels); pc.printf(" %d samples/sec\n",wav_format.sample_rate); pc.printf(" %d bytes/sec\n",wav_format.avg_Bps); pc.printf(" block align %d\n",wav_format.block_align); pc.printf(" %d bits per sample\n",wav_format.sig_bps); } if (chunk_size > sizeof(wav_format)) fseek(wavefile,chunk_size-sizeof(wav_format),SEEK_CUR); pc.printf("case2\n"); break; case 0x61746164: // allocate a buffer big enough to hold a slice slice_buf=(char *)malloc(wav_format.block_align); if (!slice_buf) { pc.printf("Unable to malloc slice buffer"); exit(1); } num_slices=chunk_size/wav_format.block_align; samp_int=1000000/(wav_format.sample_rate); if (verbosity) { pc.printf("DATA chunk\n"); pc.printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size); pc.printf(" %d slices\n",num_slices); pc.printf(" Ideal sample interval=%d\n",(unsigned)(1000000.0/wav_format.sample_rate)); pc.printf(" programmed interrupt tick interval=%d\n",samp_int); } // starting up ticker to write samples out -- no printfs until tick.detach is called if (verbosity) tick.attach_us(this,&wave_player::dac_out, 500000); else tick.attach_us(this,&wave_player::dac_out, samp_int); DAC_on=1; // start reading slices, which contain one sample each for however many channels // are in the wave file. one channel=mono, two channels=stereo, etc. Since // mbed only has a single AnalogOut, all of the channels present are averaged // to produce a single sample value. This summing and averaging happens in // a variable of type signed long long, to make sure that the data doesn't // overflow regardless of sample size (8 bits, 16 bits, 32 bits). // // note that from what I can find that 8 bit wave files use unsigned data, // while 16 and 32 bit wave files use signed data // for (slice=0;slice<num_slices;slice+=1) { fread(slice_buf,wav_format.block_align,1,wavefile); if (feof(wavefile)) { pc.printf("Oops -- not enough slices in the wave file\n"); exit(1); } data_sptr=(short *)slice_buf; // 16 bit samples data_bptr=(unsigned char *)slice_buf; // 8 bit samples data_wptr=(int *)slice_buf; // 32 bit samples slice_value=0; for (channel=0;channel<wav_format.num_channels;channel++) { switch (wav_format.sig_bps) { case 16: if (verbosity) pc.printf("16 bit channel %d data=%d ",channel,data_sptr[channel]); slice_value+=data_sptr[channel]; break; case 32: if (verbosity) pc.printf("32 bit channel %d data=%d ",channel,data_wptr[channel]); slice_value+=data_wptr[channel]; break; case 8: if (verbosity) pc.printf("8 bit channel %d data=%d ",channel,(int)data_bptr[channel]); slice_value+=data_bptr[channel]; break; } } slice_value/=wav_format.num_channels; // slice_value is now averaged. Next it needs to be scaled to an unsigned 16 bit value // with DC offset so it can be written to the DAC. switch (wav_format.sig_bps) { case 8: slice_value<<=8; break; case 16: slice_value+=32768; break; case 32: slice_value>>=16; slice_value+=32768; break; } dac_data=(short unsigned)slice_value; if (verbosity) pc.printf("sample %d wptr %d slice_value %d dac_data %u\n",slice,DAC_wptr,(int)slice_value,dac_data); DAC_fifo[DAC_wptr]=dac_data; //controls count++; if(count%10000 == 0) { volume_player = position_player*300; lcd_player.cls(); lcd_player.printf("Volume: %d \n", volume_player); //Print out Count lcd_player.printf("Mode: PLAY"); } if(!pb_pause) { tick.detach(); lcd_player.cls(); lcd_player.printf("Volume: %d \n", volume_player); //Print out Count lcd_player.printf("Mode: PAUSE"); while(1) { count++; if(count%1000000 == 0) { volume_player = position_player*300; lcd_player.cls(); lcd_player.printf("Volume: %d \n", volume_player); //Print out Count lcd_player.printf("Mode: PAUSE"); } //lcd_player.printf("Volume: %d \n", volume_player); //Print out Count if(!pb_play) { tick.attach_us(this,&wave_player::dac_out, samp_int); lcd_player.cls(); lcd_player.printf("Volume: %d \n", volume_player); //Print out Count lcd_player.printf("Mode: PLAY"); break; } } } if(!pb_stop) { tick.detach(); //while(!pb_stop){};//prevent from adding to playlist return; } //controls end DAC_wptr=(DAC_wptr+1) & 0xff; while (DAC_wptr==DAC_rptr) { } } DAC_on=0; tick.detach(); free(slice_buf); pc.printf("case3\n"); break; case 0x5453494c: if (verbosity) pc.printf("INFO chunk, size %d\n",chunk_size); fseek(wavefile,chunk_size,SEEK_CUR); pc.printf("case4\n"); break; default: pc.printf("unknown chunk type 0x%x, size %d\n",chunk_id,chunk_size); data=fseek(wavefile,chunk_size,SEEK_CUR); break; } fread(&chunk_id,4,1,wavefile); fread(&chunk_size,4,1,wavefile); } } void wave_player::dac_out() { if (DAC_on) { #ifdef VERBOSE pc.printf("ISR rdptr %d got %u\n",DAC_rptr,DAC_fifo[DAC_rptr]); #endif wave_DAC->write_u16(DAC_fifo[DAC_rptr]); DAC_rptr=(DAC_rptr+1) & 0xff; } }
Full Program
Import programLab3
Publish code
References
- http://mbed.org/cookbook/Text-LCD
- http://mbed.org/users/4180_1/notebook/using-a-speaker-for-audio-output/
- http://mbed.org/users/canderson199/notebook/rotary-pulse-generator-library/
- http://www.pavius.net/2010/02/rotary-encoder-based-cooking-timer/
- http://mbed.org/handbook/AnalogIn
- http://mbed.org/handbook/USBDevice
- http://upverter.com/
Please log in to post comments.