ECE 4180 Lab 3
Page last updated 07 Mar 2013, by .
0
replies
Audio Player using RPG, TextLCD, and SD card

- Implemented a fully functional audio player that plays .wav files from a USB drive.
Schematic

Functions
Audio Player
- Plays .wav files from a USB drive.
- Using a USB socket and the MSCFileSystem library originally obtained from http://mbed.org/users/chris/code/MSCUsbHost_FULL/docs/tip/files.html
Song List
- The list of songs that are in the USB are displayed on LCD 1.
Main Menu
- A main menu consisting of the volume and the state of the audio player is displayed on LCD 1.
Controls
- The song can be played, paused and stopped using three push buttons.
Volume Control
- The volume of the audio output can be controlled by using a slider.
Song Choice
- The list of songs available can be scrolled through using an RPG and the current song is displayed on LCD 2.
Audio Output
- The audio is outputted from an audio jack.
- Therefore the audio can be played through earphones or speakers.
Playlist
- The user can save a playlist of songs that will be played continuously.
- A song can be added to the playlist by pressing the stop button in the STOP state.
Demo Video
Code
main.cpp
- main code used to implement an audio player
main.cpp
#include "mbed.h"
#include "RPG.h"
#include "TextLCD.h"
#include "wave_player.h"
#include "MSCFileSystem.h"
#include <string.h>
#include <cstdio>
#define FSNAME "msc"
MSCFileSystem msc(FSNAME);
RPG rpg1(p21,p22,p23); //Set up RPG
TextLCD lcd1(p9, p10, p11, p12, p13, p14, TextLCD::LCD20x4); // rs, e, d4-d7
TextLCD lcd2(p5, p6, p7, p8, p19, p20, TextLCD::LCD20x4);
AnalogOut mySpeaker(p18);
DigitalIn pb_add(p29);
//SDFileSystem sd(p5, p6, p7, p8, "sd"); // the pinout on the mbed Cool Components workshop board
AnalogIn position(p17); //slider
wave_player waver(&mySpeaker);
Serial term(USBTX, USBRX); // tx, rx
int volume = 0;
int count = 0;
int dirt = 0;
char* songList[50];
char* playList[10];
int index = 0;
int index_play = 0;
int len;
int main()
{
DIR *d;
struct dirent *p;
d = opendir("/" FSNAME);
if ( d != NULL )
{
while ( (p = readdir(d)) != NULL )
{
songList[index] = (char*)malloc(sizeof(char) * strlen(p->d_name));
term.printf(" - %s\n", p->d_name);
strcpy(songList[index++], p->d_name);
}
songList[index] = (char*)malloc(sizeof(char) * 8);
strcpy(songList[index++], "Playlist");
}
else
{
error("Could not open directory!");
}
pb_add.mode(PullUp);
FILE *wave_file;
while(1)
{
char * selectedFile;
volume = position*300;
dirt = rpg1.dir(); //Get Dir
count = count + dirt; //Ad Dir to count
if(count > (index-1)){
count = 0;
}
if(count < 0){
count = index-1;
}
lcd1.cls();
lcd1.printf("Song List: \n"); //Print out Count
lcd1.printf("%s ", songList[count]);
lcd2.cls();
lcd2.printf("Volume: %d \n", volume); //Print out Count
lcd2.printf("Mode: STOP");
if(!pb_add)
{
playList[index_play] = (char*)malloc(sizeof(char) * strlen(songList[count]));
strcpy(playList[index_play++], songList[count]);
lcd2.cls();
lcd2.printf("Song Added to PlayList"); //Print out Count
wait(0.5);
}
if (rpg1.pb())
{
if(count == (index-1)&&index_play > 0)
{
for(int i = 0; i < (index_play);i++)
{
len = 5+strlen(playList[i]);
selectedFile = (char*)malloc(sizeof(char) * len);
strcpy(selectedFile, "/msc/");
strcat(selectedFile, playList[i]);
wave_file=fopen(selectedFile,"r");
lcd2.cls();
lcd2.printf("Volume: %d \n", volume); //Print out Count
lcd2.printf("Mode: PLAY");
waver.play(wave_file);
fclose(wave_file);
free(selectedFile);
if(!pb_add) //stop the whole play list
break;
}
}
else
{
len = 5+strlen(songList[count]);
selectedFile = (char*)malloc(sizeof(char) * len);
strcpy(selectedFile, "/msc/");
strcat(selectedFile, songList[count]);
wave_file=fopen(selectedFile,"r");
lcd2.cls();
lcd2.printf("Volume: %d \n", volume); //Print out Count
lcd2.printf("Mode: PLAY");
waver.play(wave_file);
fclose(wave_file);
free(selectedFile);
}
while(!pb_add){}; //prevent from adding stuff to the play list
}
}
}
wave_player.cpp
- edited version of wave_player.cpp, originally obtained from http://mbed.org/users/sravet/code/wave_player/
wave_player.cpp
//-----------------------------------------------------------------------------
// a sample mbed library to play back wave files.
//
// explanation of wave file format.
// https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
// if VERBOSE is uncommented then the wave player will enter a verbose
// mode that displays all data values as it reads them from the file
// and writes them to the DAC. Very slow and unusable output on the DAC,
// but useful for debugging wave files that don't work.
//#define VERBOSE
#include <mbed.h>
#include <stdio.h>
#include <wave_player.h>
#include "TextLCD.h"
Serial pc(USBTX, USBRX);
DigitalIn pb_pause(p30);
DigitalIn pb_stop(p29);
DigitalIn pb_play(p28);
TextLCD lcd_player(p5, p6, p7, p8, p19, p20, TextLCD::LCD20x4);
AnalogIn position_player(p17); //slider
//-----------------------------------------------------------------------------
// constructor -- accepts an mbed pin to use for AnalogOut. Only p18 will work
wave_player::wave_player(AnalogOut *_dac)
{
wave_DAC=_dac;
wave_DAC->write_u16(32768); //DAC is 0-3.3V, so idles at ~1.6V
verbosity=0;
}
//-----------------------------------------------------------------------------
// if verbosity is set then wave player enters a mode where the wave file
// is decoded and displayed to the screen, including sample values put into
// the DAC FIFO, and values read out of the DAC FIFO by the ISR. The DAC output
// itself is so slow as to be unusable, but this might be handy for debugging
// wave files that don't play
//-----------------------------------------------------------------------------
void wave_player::set_verbosity(int v)
{
verbosity=v;
}
//-----------------------------------------------------------------------------
// player function. Takes a pointer to an opened wave file. The file needs
// to be stored in a filesystem with enough bandwidth to feed the wave data.
// LocalFileSystem isn't, but the SDcard is, at least for 22kHz files. The
// SDcard filesystem can be hotrodded by increasing the SPI frequency it uses
// internally.
//-----------------------------------------------------------------------------
void wave_player::play(FILE *wavefile)
{
unsigned chunk_id,chunk_size,channel;
unsigned data,samp_int,i;
short unsigned dac_data;
long long slice_value;
char *slice_buf;
short *data_sptr;
unsigned char *data_bptr;
int *data_wptr;
FMT_STRUCT wav_format;
long slice,num_slices;
pb_pause.mode(PullUp);
pb_stop.mode(PullUp);
pb_play.mode(PullUp);
int volume_player = 0;
int count = 0;
DAC_wptr=0;
DAC_rptr=0;
for (i=0;i<256;i+=2) {
DAC_fifo[i]=0;
DAC_fifo[i+1]=3000;
}
DAC_wptr=4;
DAC_on=0;
fread(&chunk_id,4,1,wavefile);
fread(&chunk_size,4,1,wavefile);
while (!feof(wavefile)) {
if (verbosity)
pc.printf("Read chunk ID 0x%x, size 0x%x\n",chunk_id,chunk_size);
switch (chunk_id) {
case 0x46464952:
fread(&data,4,1,wavefile);
if (verbosity) {
pc.printf("RIFF chunk\n");
pc.printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size);
pc.printf(" RIFF type 0x%x\n",data);
}
pc.printf("case1\n");
break;
case 0x20746d66:
fread(&wav_format,sizeof(wav_format),1,wavefile);
if (verbosity) {
pc.printf("FORMAT chunk\n");
pc.printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size);
pc.printf(" compression code %d\n",wav_format.comp_code);
pc.printf(" %d channels\n",wav_format.num_channels);
pc.printf(" %d samples/sec\n",wav_format.sample_rate);
pc.printf(" %d bytes/sec\n",wav_format.avg_Bps);
pc.printf(" block align %d\n",wav_format.block_align);
pc.printf(" %d bits per sample\n",wav_format.sig_bps);
}
if (chunk_size > sizeof(wav_format))
fseek(wavefile,chunk_size-sizeof(wav_format),SEEK_CUR);
pc.printf("case2\n");
break;
case 0x61746164:
// allocate a buffer big enough to hold a slice
slice_buf=(char *)malloc(wav_format.block_align);
if (!slice_buf) {
pc.printf("Unable to malloc slice buffer");
exit(1);
}
num_slices=chunk_size/wav_format.block_align;
samp_int=1000000/(wav_format.sample_rate);
if (verbosity) {
pc.printf("DATA chunk\n");
pc.printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size);
pc.printf(" %d slices\n",num_slices);
pc.printf(" Ideal sample interval=%d\n",(unsigned)(1000000.0/wav_format.sample_rate));
pc.printf(" programmed interrupt tick interval=%d\n",samp_int);
}
// starting up ticker to write samples out -- no printfs until tick.detach is called
if (verbosity)
tick.attach_us(this,&wave_player::dac_out, 500000);
else
tick.attach_us(this,&wave_player::dac_out, samp_int);
DAC_on=1;
// start reading slices, which contain one sample each for however many channels
// are in the wave file. one channel=mono, two channels=stereo, etc. Since
// mbed only has a single AnalogOut, all of the channels present are averaged
// to produce a single sample value. This summing and averaging happens in
// a variable of type signed long long, to make sure that the data doesn't
// overflow regardless of sample size (8 bits, 16 bits, 32 bits).
//
// note that from what I can find that 8 bit wave files use unsigned data,
// while 16 and 32 bit wave files use signed data
//
for (slice=0;slice<num_slices;slice+=1) {
fread(slice_buf,wav_format.block_align,1,wavefile);
if (feof(wavefile)) {
pc.printf("Oops -- not enough slices in the wave file\n");
exit(1);
}
data_sptr=(short *)slice_buf; // 16 bit samples
data_bptr=(unsigned char *)slice_buf; // 8 bit samples
data_wptr=(int *)slice_buf; // 32 bit samples
slice_value=0;
for (channel=0;channel<wav_format.num_channels;channel++) {
switch (wav_format.sig_bps) {
case 16:
if (verbosity)
pc.printf("16 bit channel %d data=%d ",channel,data_sptr[channel]);
slice_value+=data_sptr[channel];
break;
case 32:
if (verbosity)
pc.printf("32 bit channel %d data=%d ",channel,data_wptr[channel]);
slice_value+=data_wptr[channel];
break;
case 8:
if (verbosity)
pc.printf("8 bit channel %d data=%d ",channel,(int)data_bptr[channel]);
slice_value+=data_bptr[channel];
break;
}
}
slice_value/=wav_format.num_channels;
// slice_value is now averaged. Next it needs to be scaled to an unsigned 16 bit value
// with DC offset so it can be written to the DAC.
switch (wav_format.sig_bps) {
case 8: slice_value<<=8;
break;
case 16: slice_value+=32768;
break;
case 32: slice_value>>=16;
slice_value+=32768;
break;
}
dac_data=(short unsigned)slice_value;
if (verbosity)
pc.printf("sample %d wptr %d slice_value %d dac_data %u\n",slice,DAC_wptr,(int)slice_value,dac_data);
DAC_fifo[DAC_wptr]=dac_data;
//controls
count++;
if(count%10000 == 0)
{
volume_player = position_player*300;
lcd_player.cls();
lcd_player.printf("Volume: %d \n", volume_player); //Print out Count
lcd_player.printf("Mode: PLAY");
}
if(!pb_pause)
{
tick.detach();
lcd_player.cls();
lcd_player.printf("Volume: %d \n", volume_player); //Print out Count
lcd_player.printf("Mode: PAUSE");
while(1)
{
count++;
if(count%1000000 == 0)
{
volume_player = position_player*300;
lcd_player.cls();
lcd_player.printf("Volume: %d \n", volume_player); //Print out Count
lcd_player.printf("Mode: PAUSE");
}
//lcd_player.printf("Volume: %d \n", volume_player); //Print out Count
if(!pb_play)
{
tick.attach_us(this,&wave_player::dac_out, samp_int);
lcd_player.cls();
lcd_player.printf("Volume: %d \n", volume_player); //Print out Count
lcd_player.printf("Mode: PLAY");
break;
}
}
}
if(!pb_stop)
{
tick.detach();
//while(!pb_stop){};//prevent from adding to playlist
return;
}
//controls end
DAC_wptr=(DAC_wptr+1) & 0xff;
while (DAC_wptr==DAC_rptr) {
}
}
DAC_on=0;
tick.detach();
free(slice_buf);
pc.printf("case3\n");
break;
case 0x5453494c:
if (verbosity)
pc.printf("INFO chunk, size %d\n",chunk_size);
fseek(wavefile,chunk_size,SEEK_CUR);
pc.printf("case4\n");
break;
default:
pc.printf("unknown chunk type 0x%x, size %d\n",chunk_id,chunk_size);
data=fseek(wavefile,chunk_size,SEEK_CUR);
break;
}
fread(&chunk_id,4,1,wavefile);
fread(&chunk_size,4,1,wavefile);
}
}
void wave_player::dac_out()
{
if (DAC_on) {
#ifdef VERBOSE
pc.printf("ISR rdptr %d got %u\n",DAC_rptr,DAC_fifo[DAC_rptr]);
#endif
wave_DAC->write_u16(DAC_fifo[DAC_rptr]);
DAC_rptr=(DAC_rptr+1) & 0xff;
}
}
Full Program
Import programLab3
Publish code
References
- http://mbed.org/cookbook/Text-LCD
- http://mbed.org/users/4180_1/notebook/using-a-speaker-for-audio-output/
- http://mbed.org/users/canderson199/notebook/rotary-pulse-generator-library/
- http://www.pavius.net/2010/02/rotary-encoder-based-cooking-timer/
- http://mbed.org/handbook/AnalogIn
- http://mbed.org/handbook/USBDevice
- http://upverter.com/
Please log in to post comments.
