added wait_us(31) in admw_spi.cpp to support hibernation mode

Committer:
Vkadaba
Date:
Thu Nov 14 05:35:08 2019 +0000
Revision:
33:df7a00f1b8e1
Parent:
32:52445bef314d
Child:
36:54e2418e7620
Added support for the following:; 1.Rsense; 2.Excitation current state; 3.Buffer bypass ; ; the aobve support is only for analog sensors.; Tested and the system is working fine

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ADIJake 0:85855ecd3257 1 /*
Vkadaba 8:2f2775c34640 2 Copyright 2019 (c) Analog Devices, Inc.
ADIJake 0:85855ecd3257 3
ADIJake 0:85855ecd3257 4 All rights reserved.
ADIJake 0:85855ecd3257 5
ADIJake 0:85855ecd3257 6 Redistribution and use in source and binary forms, with or without
ADIJake 0:85855ecd3257 7 modification, are permitted provided that the following conditions are met:
ADIJake 0:85855ecd3257 8 - Redistributions of source code must retain the above copyright
ADIJake 0:85855ecd3257 9 notice, this list of conditions and the following disclaimer.
ADIJake 0:85855ecd3257 10 - Redistributions in binary form must reproduce the above copyright
ADIJake 0:85855ecd3257 11 notice, this list of conditions and the following disclaimer in
ADIJake 0:85855ecd3257 12 the documentation and/or other materials provided with the
ADIJake 0:85855ecd3257 13 distribution.
ADIJake 0:85855ecd3257 14 - Neither the name of Analog Devices, Inc. nor the names of its
ADIJake 0:85855ecd3257 15 contributors may be used to endorse or promote products derived
ADIJake 0:85855ecd3257 16 from this software without specific prior written permission.
ADIJake 0:85855ecd3257 17 - The use of this software may or may not infringe the patent rights
ADIJake 0:85855ecd3257 18 of one or more patent holders. This license does not release you
ADIJake 0:85855ecd3257 19 from the requirement that you obtain separate licenses from these
ADIJake 0:85855ecd3257 20 patent holders to use this software.
ADIJake 0:85855ecd3257 21 - Use of the software either in source or binary form, must be run
ADIJake 0:85855ecd3257 22 on or directly connected to an Analog Devices Inc. component.
ADIJake 0:85855ecd3257 23
ADIJake 0:85855ecd3257 24 THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
ADIJake 0:85855ecd3257 25 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
ADIJake 0:85855ecd3257 26 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
ADIJake 0:85855ecd3257 27 IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
ADIJake 0:85855ecd3257 28 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
ADIJake 0:85855ecd3257 29 LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
ADIJake 0:85855ecd3257 30 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
ADIJake 0:85855ecd3257 31 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
ADIJake 0:85855ecd3257 32 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
ADIJake 0:85855ecd3257 33 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
ADIJake 0:85855ecd3257 34 */
ADIJake 0:85855ecd3257 35
ADIJake 0:85855ecd3257 36 /*!
ADIJake 0:85855ecd3257 37 ******************************************************************************
ADIJake 0:85855ecd3257 38 * @file:
Vkadaba 8:2f2775c34640 39 * @brief: API implementation for ADMW1001
ADIJake 0:85855ecd3257 40 *-----------------------------------------------------------------------------
ADIJake 0:85855ecd3257 41 */
ADIJake 0:85855ecd3257 42
ADIJake 0:85855ecd3257 43 #include <float.h>
ADIJake 0:85855ecd3257 44 #include <math.h>
ADIJake 0:85855ecd3257 45 #include <string.h>
ADIJake 0:85855ecd3257 46
Vkadaba 5:0728bde67bdb 47 #include "admw_platform.h"
Vkadaba 5:0728bde67bdb 48 #include "admw_api.h"
Vkadaba 5:0728bde67bdb 49 #include "admw1001/admw1001_api.h"
Vkadaba 5:0728bde67bdb 50
Vkadaba 5:0728bde67bdb 51 #include "admw1001/ADMW1001_REGISTERS_typedefs.h"
Vkadaba 5:0728bde67bdb 52 #include "admw1001/ADMW1001_REGISTERS.h"
Vkadaba 5:0728bde67bdb 53 #include "admw1001/admw1001_lut_data.h"
Vkadaba 5:0728bde67bdb 54 #include "admw1001/admw1001_host_comms.h"
ADIJake 0:85855ecd3257 55
ADIJake 0:85855ecd3257 56 #include "crc16.h"
Vkadaba 13:97cb32670539 57 #define VERSIONID_MAJOR 2
Vkadaba 13:97cb32670539 58 #define VERSIONID_MINOR 0
ADIJake 0:85855ecd3257 59
ADIJake 0:85855ecd3257 60 uint32_t getDataCnt = 0;
Vkadaba 32:52445bef314d 61 #define ADMW_VERSION_REG_VAL_SIZE 4u
Vkadaba 32:52445bef314d 62 #define ADMW_FORMATTED_VERSION_SIZE 11u
ADIJake 0:85855ecd3257 63
Vkadaba 32:52445bef314d 64 #define ADMW_SFL_READ_STATUS_SIZE 42u
ADIJake 0:85855ecd3257 65 /*
ADIJake 0:85855ecd3257 66 * The following macros are used to encapsulate the register access code
ADIJake 0:85855ecd3257 67 * to improve readability in the functions further below in this file
ADIJake 0:85855ecd3257 68 */
ADIJake 0:85855ecd3257 69 #define STRINGIFY(name) #name
ADIJake 0:85855ecd3257 70
ADIJake 0:85855ecd3257 71 /* Expand the full name of the reset value macro for the specified register */
Vkadaba 5:0728bde67bdb 72 #define REG_RESET_VAL(_name) REG_##_name##_RESET
ADIJake 0:85855ecd3257 73
ADIJake 0:85855ecd3257 74 /* Checks if a value is outside the bounds of the specified register field */
ADIJake 0:85855ecd3257 75 #define CHECK_REG_FIELD_VAL(_field, _val) \
ADIJake 0:85855ecd3257 76 do { \
Vkadaba 8:2f2775c34640 77 uint32_t _mask = BITM_##_field; \
Vkadaba 8:2f2775c34640 78 uint32_t _shift = BITP_##_field; \
ADIJake 0:85855ecd3257 79 if ((((_val) << _shift) & ~(_mask)) != 0) { \
Vkadaba 6:9d393a9677f4 80 ADMW_LOG_ERROR("Value 0x%08X invalid for register field %s",\
ADIJake 0:85855ecd3257 81 (uint32_t)(_val), \
Vkadaba 6:9d393a9677f4 82 STRINGIFY(ADMW_##_field)); \
Vkadaba 8:2f2775c34640 83 return ADMW_INVALID_PARAM; \
ADIJake 0:85855ecd3257 84 } \
ADIJake 0:85855ecd3257 85 } while(false)
ADIJake 0:85855ecd3257 86
ADIJake 0:85855ecd3257 87 /*
ADIJake 0:85855ecd3257 88 * Encapsulates the write to a specified register
ADIJake 0:85855ecd3257 89 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 90 */
ADIJake 0:85855ecd3257 91 #define WRITE_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 92 do { \
Vkadaba 8:2f2775c34640 93 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 94 _type _regval = _val; \
Vkadaba 8:2f2775c34640 95 _res = admw1001_WriteRegister((_hdev), \
Vkadaba 8:2f2775c34640 96 REG_##_name, \
ADIJake 0:85855ecd3257 97 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 98 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 99 return _res; \
ADIJake 0:85855ecd3257 100 } while(false)
ADIJake 0:85855ecd3257 101
ADIJake 0:85855ecd3257 102 /* Wrapper macro to write a value to a uint32_t register */
Vkadaba 8:2f2775c34640 103 #define WRITE_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 104 WRITE_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 105 /* Wrapper macro to write a value to a uint16_t register */
Vkadaba 8:2f2775c34640 106 #define WRITE_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 107 WRITE_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 108 /* Wrapper macro to write a value to a uint8_t register */
Vkadaba 8:2f2775c34640 109 #define WRITE_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 110 WRITE_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 111 /* Wrapper macro to write a value to a float32_t register */
Vkadaba 8:2f2775c34640 112 #define WRITE_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 113 WRITE_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 114
ADIJake 0:85855ecd3257 115 /*
ADIJake 0:85855ecd3257 116 * Encapsulates the read from a specified register
ADIJake 0:85855ecd3257 117 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 118 */
ADIJake 0:85855ecd3257 119 #define READ_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 120 do { \
Vkadaba 8:2f2775c34640 121 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 122 _type _regval; \
Vkadaba 8:2f2775c34640 123 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 124 REG_##_name, \
ADIJake 0:85855ecd3257 125 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 126 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 127 return _res; \
ADIJake 0:85855ecd3257 128 _val = _regval; \
ADIJake 0:85855ecd3257 129 } while(false)
ADIJake 0:85855ecd3257 130
ADIJake 0:85855ecd3257 131 /* Wrapper macro to read a value from a uint32_t register */
Vkadaba 8:2f2775c34640 132 #define READ_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 133 READ_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 134 /* Wrapper macro to read a value from a uint16_t register */
Vkadaba 8:2f2775c34640 135 #define READ_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 136 READ_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 137 /* Wrapper macro to read a value from a uint8_t register */
Vkadaba 8:2f2775c34640 138 #define READ_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 139 READ_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 140 /* Wrapper macro to read a value from a float32_t register */
Vkadaba 8:2f2775c34640 141 #define READ_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 142 READ_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 143
ADIJake 0:85855ecd3257 144 /*
ADIJake 0:85855ecd3257 145 * Wrapper macro to write an array of values to a uint8_t register
ADIJake 0:85855ecd3257 146 * NOTE - this is intended only for writing to a keyhole data register
ADIJake 0:85855ecd3257 147 */
Vkadaba 8:2f2775c34640 148 #define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 149 do { \
Vkadaba 8:2f2775c34640 150 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 151 _res = admw1001_WriteRegister(_hdev, \
Vkadaba 8:2f2775c34640 152 REG_##_name, \
Vkadaba 6:9d393a9677f4 153 _arr, _len); \
Vkadaba 8:2f2775c34640 154 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 155 return _res; \
ADIJake 0:85855ecd3257 156 } while(false)
ADIJake 0:85855ecd3257 157
ADIJake 0:85855ecd3257 158 /*
ADIJake 0:85855ecd3257 159 * Wrapper macro to read an array of values from a uint8_t register
ADIJake 0:85855ecd3257 160 * NOTE - this is intended only for reading from a keyhole data register
ADIJake 0:85855ecd3257 161 */
Vkadaba 6:9d393a9677f4 162 #define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 163 do { \
Vkadaba 8:2f2775c34640 164 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 165 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 166 REG##_name, \
Vkadaba 6:9d393a9677f4 167 _arr, _len); \
Vkadaba 8:2f2775c34640 168 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 169 return _res; \
ADIJake 0:85855ecd3257 170 } while(false)
ADIJake 0:85855ecd3257 171
Vkadaba 8:2f2775c34640 172 #define ADMW1001_CHANNEL_IS_ADC(c) \
Vkadaba 8:2f2775c34640 173 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 174
Vkadaba 8:2f2775c34640 175 #define ADMW1001_CHANNEL_IS_ADC_CJC(c) \
Vkadaba 8:2f2775c34640 176 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 177
Vkadaba 8:2f2775c34640 178 #define ADMW1001_CHANNEL_IS_ADC_SENSOR(c) \
Vkadaba 8:2f2775c34640 179 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 180
Vkadaba 8:2f2775c34640 181 #define ADMW1001_CHANNEL_IS_ADC_VOLTAGE(c) \
Vkadaba 8:2f2775c34640 182 ((c) == ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL || ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 183
Vkadaba 8:2f2775c34640 184 #define ADMW1001_CHANNEL_IS_ADC_CURRENT(c) \
Vkadaba 8:2f2775c34640 185 ((c) == ADMW1001_CH_ID_ANLG_1_UNIVERSAL || (c) == ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 186
Vkadaba 8:2f2775c34640 187 #define ADMW1001_CHANNEL_IS_VIRTUAL(c) \
Vkadaba 8:2f2775c34640 188 ((c) == ADMW1001_CH_ID_DIG_SPI_1 || (c) == ADMW1001_CH_ID_DIG_SPI_2)
ADIJake 0:85855ecd3257 189
Vkadaba 32:52445bef314d 190 //typedef struct {
Vkadaba 32:52445bef314d 191 // unsigned nDeviceIndex;
Vkadaba 32:52445bef314d 192 // ADMW_SPI_HANDLE hSpi;
Vkadaba 32:52445bef314d 193 // ADMW_GPIO_HANDLE hGpio;
Vkadaba 32:52445bef314d 194 //
Vkadaba 32:52445bef314d 195 //} ADMW_DEVICE_CONTEXT;
Vkadaba 5:0728bde67bdb 196
Vkadaba 5:0728bde67bdb 197 static ADMW_DEVICE_CONTEXT gDeviceCtx[ADMW_PLATFORM_MAX_DEVICES];
ADIJake 0:85855ecd3257 198
ADIJake 0:85855ecd3257 199 /*
Vkadaba 5:0728bde67bdb 200 * Open an ADMW device instance.
ADIJake 0:85855ecd3257 201 */
Vkadaba 5:0728bde67bdb 202 ADMW_RESULT admw_Open(
Vkadaba 8:2f2775c34640 203 unsigned const nDeviceIndex,
Vkadaba 5:0728bde67bdb 204 ADMW_CONNECTION * const pConnectionInfo,
Vkadaba 5:0728bde67bdb 205 ADMW_DEVICE_HANDLE * const phDevice)
ADIJake 0:85855ecd3257 206 {
Vkadaba 5:0728bde67bdb 207 ADMW_DEVICE_CONTEXT *pCtx;
Vkadaba 5:0728bde67bdb 208 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 209
Vkadaba 5:0728bde67bdb 210 if (nDeviceIndex >= ADMW_PLATFORM_MAX_DEVICES)
Vkadaba 5:0728bde67bdb 211 return ADMW_INVALID_DEVICE_NUM;
ADIJake 0:85855ecd3257 212
ADIJake 0:85855ecd3257 213 pCtx = &gDeviceCtx[nDeviceIndex];
ADIJake 0:85855ecd3257 214 pCtx->nDeviceIndex = nDeviceIndex;
ADIJake 0:85855ecd3257 215
Vkadaba 5:0728bde67bdb 216 eRet = admw_LogOpen(&pConnectionInfo->log);
Vkadaba 5:0728bde67bdb 217 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 218 return eRet;
ADIJake 0:85855ecd3257 219
Vkadaba 5:0728bde67bdb 220 eRet = admw_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
Vkadaba 5:0728bde67bdb 221 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 222 return eRet;
ADIJake 0:85855ecd3257 223
Vkadaba 5:0728bde67bdb 224 eRet = admw_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
Vkadaba 5:0728bde67bdb 225 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 226 return eRet;
ADIJake 0:85855ecd3257 227
ADIJake 0:85855ecd3257 228 *phDevice = pCtx;
Vkadaba 5:0728bde67bdb 229 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 230 }
ADIJake 0:85855ecd3257 231
ADIJake 0:85855ecd3257 232 /*
ADIJake 0:85855ecd3257 233 * Get the current state of the specified GPIO input signal.
ADIJake 0:85855ecd3257 234 */
Vkadaba 5:0728bde67bdb 235 ADMW_RESULT admw_GetGpioState(
Vkadaba 5:0728bde67bdb 236 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 237 ADMW_GPIO_PIN const ePinId,
ADIJake 0:85855ecd3257 238 bool * const pbAsserted)
ADIJake 0:85855ecd3257 239 {
Vkadaba 5:0728bde67bdb 240 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 241
Vkadaba 5:0728bde67bdb 242 return admw_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
ADIJake 0:85855ecd3257 243 }
ADIJake 0:85855ecd3257 244
ADIJake 0:85855ecd3257 245 /*
ADIJake 0:85855ecd3257 246 * Register an application-defined callback function for GPIO interrupts.
ADIJake 0:85855ecd3257 247 */
Vkadaba 5:0728bde67bdb 248 ADMW_RESULT admw_RegisterGpioCallback(
Vkadaba 5:0728bde67bdb 249 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 250 ADMW_GPIO_PIN const ePinId,
Vkadaba 5:0728bde67bdb 251 ADMW_GPIO_CALLBACK const callbackFunction,
ADIJake 0:85855ecd3257 252 void * const pCallbackParam)
ADIJake 0:85855ecd3257 253 {
Vkadaba 5:0728bde67bdb 254 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
ADIJake 0:85855ecd3257 255
Vkadaba 23:bb685f35b08b 256 if (callbackFunction) {
Vkadaba 5:0728bde67bdb 257 return admw_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
Vkadaba 23:bb685f35b08b 258 pCallbackParam);
Vkadaba 23:bb685f35b08b 259 } else {
Vkadaba 5:0728bde67bdb 260 return admw_GpioIrqDisable(pCtx->hGpio, ePinId);
ADIJake 0:85855ecd3257 261 }
ADIJake 0:85855ecd3257 262 }
ADIJake 0:85855ecd3257 263
Vkadaba 8:2f2775c34640 264 /*!
Vkadaba 8:2f2775c34640 265 * @brief Reset the specified ADMW device.
Vkadaba 8:2f2775c34640 266 *
Vkadaba 8:2f2775c34640 267 * @param[in] hDevice - handle of ADMW device to reset.
Vkadaba 8:2f2775c34640 268 *
Vkadaba 8:2f2775c34640 269 * @return Status
Vkadaba 8:2f2775c34640 270 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 8:2f2775c34640 271 * - #ADMW_FAILURE If reseet faisl
Vkadaba 8:2f2775c34640 272 *
Vkadaba 23:bb685f35b08b 273 * @details Toggle reset pin of the ADMW device low for a
Vkadaba 8:2f2775c34640 274 * minimum of 4 usec.
Vkadaba 8:2f2775c34640 275 *
ADIJake 0:85855ecd3257 276 */
Vkadaba 8:2f2775c34640 277 ADMW_RESULT admw_Reset(ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 278 {
Vkadaba 5:0728bde67bdb 279 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 280 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 281
ADIJake 0:85855ecd3257 282 /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
Vkadaba 5:0728bde67bdb 283 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, false);
Vkadaba 5:0728bde67bdb 284 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 285 return eRet;
ADIJake 0:85855ecd3257 286
Vkadaba 5:0728bde67bdb 287 admw_TimeDelayUsec(4);
Vkadaba 5:0728bde67bdb 288
Vkadaba 5:0728bde67bdb 289 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, true);
Vkadaba 5:0728bde67bdb 290 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 291 return eRet;
ADIJake 0:85855ecd3257 292
Vkadaba 5:0728bde67bdb 293 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 294 }
ADIJake 0:85855ecd3257 295
ADIJake 0:85855ecd3257 296 /*!
Vkadaba 8:2f2775c34640 297 * @brief Get general status of ADMW module.
ADIJake 0:85855ecd3257 298 *
ADIJake 0:85855ecd3257 299 * @param[in]
ADIJake 0:85855ecd3257 300 * @param[out] pStatus : Pointer to CORE Status struct.
ADIJake 0:85855ecd3257 301 *
ADIJake 0:85855ecd3257 302 * @return Status
Vkadaba 5:0728bde67bdb 303 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 304 * - #ADMW_FAILURE If status register read fails.
ADIJake 0:85855ecd3257 305 *
Vkadaba 8:2f2775c34640 306 * @details Read the general status register for the ADMW
ADIJake 0:85855ecd3257 307 * module. Indicates Error, Alert conditions, data ready
ADIJake 0:85855ecd3257 308 * and command running.
ADIJake 0:85855ecd3257 309 *
ADIJake 0:85855ecd3257 310 */
Vkadaba 5:0728bde67bdb 311 ADMW_RESULT admw_GetStatus(
Vkadaba 5:0728bde67bdb 312 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 313 ADMW_STATUS * const pStatus)
ADIJake 0:85855ecd3257 314 {
Vkadaba 8:2f2775c34640 315 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 316 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 317
ADIJake 0:85855ecd3257 318 memset(pStatus, 0, sizeof(*pStatus));
ADIJake 0:85855ecd3257 319
ADIJake 0:85855ecd3257 320 if (!statusReg.Cmd_Running) /* Active-low, so invert it */
Vkadaba 5:0728bde67bdb 321 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_BUSY;
ADIJake 0:85855ecd3257 322 if (statusReg.Drdy)
Vkadaba 5:0728bde67bdb 323 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_DATAREADY;
ADIJake 0:85855ecd3257 324 if (statusReg.FIFO_Error)
Vkadaba 5:0728bde67bdb 325 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_FIFO_ERROR;
Vkadaba 23:bb685f35b08b 326 if (statusReg.Alert_Active) {
Vkadaba 5:0728bde67bdb 327 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ALERT;
Vkadaba 5:0728bde67bdb 328
Vkadaba 8:2f2775c34640 329 ADMW_CORE_Channel_Alert_Status_t channelAlertStatusReg;
ADIJake 0:85855ecd3257 330 READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16,
ADIJake 0:85855ecd3257 331 CORE_CHANNEL_ALERT_STATUS);
ADIJake 0:85855ecd3257 332
Vkadaba 23:bb685f35b08b 333 for (unsigned i = 0; i < ADMW1001_MAX_CHANNELS; i++) {
Vkadaba 23:bb685f35b08b 334 if (channelAlertStatusReg.VALUE16 & (1 << i)) {
Vkadaba 8:2f2775c34640 335 ADMW_CORE_Alert_Detail_Ch_t alertDetailReg;
ADIJake 0:85855ecd3257 336 READ_REG_U16(hDevice, alertDetailReg.VALUE16,
ADIJake 0:85855ecd3257 337 CORE_ALERT_DETAIL_CHn(i));
ADIJake 0:85855ecd3257 338
Vkadaba 32:52445bef314d 339 if (alertDetailReg.ADC_Near_Overrange)
Vkadaba 32:52445bef314d 340 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_NEAR_OVERRANGE;
Vkadaba 32:52445bef314d 341 if (alertDetailReg.Sensor_UnderRange)
Vkadaba 32:52445bef314d 342 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_UNDERRANGE;
Vkadaba 32:52445bef314d 343 if (alertDetailReg.Sensor_OverRange)
Vkadaba 32:52445bef314d 344 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_OVERRANGE ;
Vkadaba 32:52445bef314d 345 if (alertDetailReg.CJ_Soft_Fault)
Vkadaba 32:52445bef314d 346 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_SOFT_FAULT ;
Vkadaba 32:52445bef314d 347 if (alertDetailReg.CJ_Hard_Fault)
Vkadaba 32:52445bef314d 348 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_HARD_FAULT;
Vkadaba 32:52445bef314d 349 if (alertDetailReg.ADC_Input_OverRange)
Vkadaba 32:52445bef314d 350 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_INPUT_OVERRANGE ;
Vkadaba 32:52445bef314d 351 if (alertDetailReg.Sensor_HardFault)
Vkadaba 32:52445bef314d 352 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_HARDFAULT;
Vkadaba 32:52445bef314d 353
ADIJake 0:85855ecd3257 354 }
ADIJake 0:85855ecd3257 355 }
ADIJake 0:85855ecd3257 356
Vkadaba 32:52445bef314d 357 if (statusReg.Configuration_Error)
Vkadaba 5:0728bde67bdb 358 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_CONFIG_ERROR;
Vkadaba 32:52445bef314d 359 if (statusReg.LUT_Error)
Vkadaba 5:0728bde67bdb 360 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_LUT_ERROR;
ADIJake 0:85855ecd3257 361 }
ADIJake 0:85855ecd3257 362
Vkadaba 23:bb685f35b08b 363 if (statusReg.Error) {
Vkadaba 5:0728bde67bdb 364 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ERROR;
Vkadaba 5:0728bde67bdb 365
Vkadaba 8:2f2775c34640 366 ADMW_CORE_Error_Code_t errorCodeReg;
ADIJake 0:85855ecd3257 367 READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE);
ADIJake 0:85855ecd3257 368 pStatus->errorCode = errorCodeReg.Error_Code;
ADIJake 0:85855ecd3257 369
ADIJake 0:85855ecd3257 370 }
Vkadaba 5:0728bde67bdb 371 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 372 }
ADIJake 0:85855ecd3257 373
Vkadaba 5:0728bde67bdb 374 ADMW_RESULT admw_GetCommandRunningState(
Vkadaba 5:0728bde67bdb 375 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 376 bool *pbCommandRunning)
ADIJake 0:85855ecd3257 377 {
Vkadaba 8:2f2775c34640 378 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 379
ADIJake 0:85855ecd3257 380 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 381
ADIJake 0:85855ecd3257 382 /* We should never normally see 0xFF here if the module is operational */
ADIJake 0:85855ecd3257 383 if (statusReg.VALUE8 == 0xFF)
Vkadaba 5:0728bde67bdb 384 return ADMW_ERR_NOT_INITIALIZED;
ADIJake 0:85855ecd3257 385
ADIJake 0:85855ecd3257 386 *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */
ADIJake 0:85855ecd3257 387
Vkadaba 5:0728bde67bdb 388 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 389 }
ADIJake 0:85855ecd3257 390
Vkadaba 32:52445bef314d 391 ADMW_RESULT deviceInformation(ADMW_DEVICE_HANDLE hDevice)
Vkadaba 32:52445bef314d 392 {
Vkadaba 32:52445bef314d 393 uint16_t nAddress = REG_CORE_REVISION;
Vkadaba 32:52445bef314d 394 char nData[ADMW_VERSION_REG_VAL_SIZE]; //4 Bytes of version register data
Vkadaba 32:52445bef314d 395 ADMW_RESULT res;
Vkadaba 32:52445bef314d 396 res=admw1001_ReadRegister(hDevice,nAddress,nData,sizeof(nData));
Vkadaba 32:52445bef314d 397 if(res != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 398 //if reading version register failed, sending 00.00.0000 as ADMW1001 firmware version
Vkadaba 32:52445bef314d 399 //strcat(nData, ADMW1001_FIRMWARE_VERSION_DEFAULT);
Vkadaba 32:52445bef314d 400 ADMW_LOG_INFO("Firmware Version Id is %X.%X",nData[2],nData[0]);
Vkadaba 32:52445bef314d 401 } else {
Vkadaba 32:52445bef314d 402 char buffer[ADMW_FORMATTED_VERSION_SIZE]; //00.00.0000 8 digits + 2 Bytes "." + one null character at the end
Vkadaba 32:52445bef314d 403 strcat(nData, buffer);
Vkadaba 32:52445bef314d 404 ADMW_LOG_INFO("Firmware Version Id is %X.%X",nData[2],nData[0]);
Vkadaba 32:52445bef314d 405 }
Vkadaba 32:52445bef314d 406 return ADMW_SUCCESS;
Vkadaba 32:52445bef314d 407 }
Vkadaba 5:0728bde67bdb 408 static ADMW_RESULT executeCommand(
Vkadaba 5:0728bde67bdb 409 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 410 ADMW_CORE_Command_Special_Command const command,
ADIJake 0:85855ecd3257 411 bool const bWaitForCompletion)
ADIJake 0:85855ecd3257 412 {
Vkadaba 8:2f2775c34640 413 ADMW_CORE_Command_t commandReg;
ADIJake 0:85855ecd3257 414 bool bCommandRunning;
Vkadaba 5:0728bde67bdb 415 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 416
ADIJake 0:85855ecd3257 417 /*
ADIJake 0:85855ecd3257 418 * Don't allow another command to be issued if one is already running, but
Vkadaba 6:9d393a9677f4 419 * make an exception for ENUM_CORE_COMMAND_NOP which can be used to
ADIJake 0:85855ecd3257 420 * request a running command to be stopped (e.g. continuous measurement)
ADIJake 0:85855ecd3257 421 */
Vkadaba 23:bb685f35b08b 422 if (command != ENUM_CORE_COMMAND_NOP) {
Vkadaba 5:0728bde67bdb 423 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 424 if (eRet)
ADIJake 0:85855ecd3257 425 return eRet;
ADIJake 0:85855ecd3257 426
ADIJake 0:85855ecd3257 427 if (bCommandRunning)
Vkadaba 5:0728bde67bdb 428 return ADMW_IN_USE;
ADIJake 0:85855ecd3257 429 }
ADIJake 0:85855ecd3257 430
ADIJake 0:85855ecd3257 431 commandReg.Special_Command = command;
ADIJake 0:85855ecd3257 432 WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND);
ADIJake 0:85855ecd3257 433
Vkadaba 23:bb685f35b08b 434 if (bWaitForCompletion) {
ADIJake 0:85855ecd3257 435 do {
ADIJake 0:85855ecd3257 436 /* Allow a minimum 50usec delay for status update before checking */
Vkadaba 5:0728bde67bdb 437 admw_TimeDelayUsec(50);
Vkadaba 5:0728bde67bdb 438
Vkadaba 5:0728bde67bdb 439 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 440 if (eRet)
ADIJake 0:85855ecd3257 441 return eRet;
ADIJake 0:85855ecd3257 442 } while (bCommandRunning);
ADIJake 0:85855ecd3257 443 }
ADIJake 0:85855ecd3257 444
Vkadaba 5:0728bde67bdb 445 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 446 }
ADIJake 0:85855ecd3257 447
Vkadaba 5:0728bde67bdb 448 ADMW_RESULT admw_ApplyConfigUpdates(
Vkadaba 5:0728bde67bdb 449 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 450 {
Vkadaba 5:0728bde67bdb 451 return executeCommand(hDevice, CORE_COMMAND_LATCH_CONFIG, true);
ADIJake 0:85855ecd3257 452 }
ADIJake 0:85855ecd3257 453
ADIJake 0:85855ecd3257 454 /*!
ADIJake 0:85855ecd3257 455 * @brief Start a measurement cycle.
ADIJake 0:85855ecd3257 456 *
ADIJake 0:85855ecd3257 457 * @param[out]
ADIJake 0:85855ecd3257 458 *
ADIJake 0:85855ecd3257 459 * @return Status
Vkadaba 5:0728bde67bdb 460 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 461 * - #ADMW_FAILURE
ADIJake 0:85855ecd3257 462 *
ADIJake 0:85855ecd3257 463 * @details Sends the latch config command. Configuration for channels in
ADIJake 0:85855ecd3257 464 * conversion cycle should be completed before this function.
ADIJake 0:85855ecd3257 465 * Channel enabled bit should be set before this function.
ADIJake 0:85855ecd3257 466 * Starts a conversion and configures the format of the sample.
ADIJake 0:85855ecd3257 467 *
ADIJake 0:85855ecd3257 468 */
Vkadaba 5:0728bde67bdb 469 ADMW_RESULT admw_StartMeasurement(
Vkadaba 5:0728bde67bdb 470 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 471 ADMW_MEASUREMENT_MODE const eMeasurementMode)
ADIJake 0:85855ecd3257 472 {
Vkadaba 23:bb685f35b08b 473 switch (eMeasurementMode) {
Vkadaba 23:bb685f35b08b 474 case ADMW_MEASUREMENT_MODE_NORMAL:
Vkadaba 23:bb685f35b08b 475 return executeCommand(hDevice, CORE_COMMAND_CONVERT_WITH_RAW, false);
Vkadaba 23:bb685f35b08b 476 case ADMW_MEASUREMENT_MODE_OMIT_RAW:
Vkadaba 23:bb685f35b08b 477 return executeCommand(hDevice, CORE_COMMAND_CONVERT, false);
Vkadaba 23:bb685f35b08b 478 default:
Vkadaba 23:bb685f35b08b 479 ADMW_LOG_ERROR("Invalid measurement mode %d specified",
Vkadaba 23:bb685f35b08b 480 eMeasurementMode);
Vkadaba 23:bb685f35b08b 481 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 482 }
ADIJake 0:85855ecd3257 483 }
ADIJake 0:85855ecd3257 484
ADIJake 0:85855ecd3257 485 /*
ADIJake 0:85855ecd3257 486 * Store the configuration settings to persistent memory on the device.
ADIJake 0:85855ecd3257 487 * The settings can be saved to 4 different flash memory areas (slots).
ADIJake 0:85855ecd3257 488 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 489 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 490 */
Vkadaba 5:0728bde67bdb 491 ADMW_RESULT admw_SaveConfig(
Vkadaba 5:0728bde67bdb 492 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 493 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 494 {
Vkadaba 23:bb685f35b08b 495 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 496 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 497 return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_1, true);
ADIJake 0:85855ecd3257 498 default:
Vkadaba 5:0728bde67bdb 499 ADMW_LOG_ERROR("Invalid user config target slot %d specified",
Vkadaba 23:bb685f35b08b 500 eSlotId);
Vkadaba 5:0728bde67bdb 501 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 502 }
ADIJake 0:85855ecd3257 503 }
ADIJake 0:85855ecd3257 504
ADIJake 0:85855ecd3257 505 /*
ADIJake 0:85855ecd3257 506 * Restore the configuration settings from persistent memory on the device.
ADIJake 0:85855ecd3257 507 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 508 */
Vkadaba 5:0728bde67bdb 509 ADMW_RESULT admw_RestoreConfig(
Vkadaba 5:0728bde67bdb 510 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 511 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 512 {
Vkadaba 23:bb685f35b08b 513 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 514 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 515 return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_1, true);
ADIJake 0:85855ecd3257 516 default:
Vkadaba 5:0728bde67bdb 517 ADMW_LOG_ERROR("Invalid user config source slot %d specified",
Vkadaba 23:bb685f35b08b 518 eSlotId);
Vkadaba 5:0728bde67bdb 519 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 520 }
ADIJake 0:85855ecd3257 521 }
ADIJake 0:85855ecd3257 522
ADIJake 0:85855ecd3257 523 /*
ADIJake 0:85855ecd3257 524 * Store the LUT data to persistent memory on the device.
ADIJake 0:85855ecd3257 525 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 526 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 527 */
Vkadaba 5:0728bde67bdb 528 ADMW_RESULT admw_SaveLutData(
Vkadaba 5:0728bde67bdb 529 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 530 {
Vkadaba 5:0728bde67bdb 531 return executeCommand(hDevice, CORE_COMMAND_SAVE_LUT, true);
ADIJake 0:85855ecd3257 532 }
ADIJake 0:85855ecd3257 533
ADIJake 0:85855ecd3257 534 /*
ADIJake 0:85855ecd3257 535 * Restore the LUT data from persistent memory on the device.
ADIJake 0:85855ecd3257 536 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 537 */
Vkadaba 5:0728bde67bdb 538 ADMW_RESULT admw_RestoreLutData(
Vkadaba 5:0728bde67bdb 539 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 540 {
Vkadaba 5:0728bde67bdb 541 return executeCommand(hDevice, CORE_COMMAND_LOAD_LUT, true);
ADIJake 0:85855ecd3257 542 }
ADIJake 0:85855ecd3257 543
ADIJake 0:85855ecd3257 544 /*
ADIJake 0:85855ecd3257 545 * Stop the measurement cycles on the device.
ADIJake 0:85855ecd3257 546 * To be used only if a measurement command is currently running.
ADIJake 0:85855ecd3257 547 */
Vkadaba 5:0728bde67bdb 548 ADMW_RESULT admw_StopMeasurement(
Vkadaba 5:0728bde67bdb 549 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 550 {
Vkadaba 5:0728bde67bdb 551 return executeCommand(hDevice, CORE_COMMAND_NOP, true);
ADIJake 0:85855ecd3257 552 }
ADIJake 0:85855ecd3257 553
ADIJake 0:85855ecd3257 554 /*
Vkadaba 32:52445bef314d 555 *
Vkadaba 32:52445bef314d 556 */
Vkadaba 32:52445bef314d 557 ADMW_RESULT admw1001_sendRun( ADMW_DEVICE_HANDLE const hDevice)
Vkadaba 32:52445bef314d 558 {
Vkadaba 32:52445bef314d 559 bool bitCommand;
Vkadaba 32:52445bef314d 560 ADMW_RESULT eRet;
Vkadaba 32:52445bef314d 561 uint8_t pinreg = 0x1;
Vkadaba 32:52445bef314d 562
Vkadaba 32:52445bef314d 563 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 32:52445bef314d 564 static uint8_t DataBuffer[SPI_BUFFER_SIZE] = {0};
Vkadaba 32:52445bef314d 565 uint16_t nSize;
Vkadaba 32:52445bef314d 566
Vkadaba 32:52445bef314d 567 //Construct Read Status command
Vkadaba 32:52445bef314d 568 DataBuffer[0] = 0x07;
Vkadaba 32:52445bef314d 569 DataBuffer[1] = 0x0E; //Packet ID
Vkadaba 32:52445bef314d 570
Vkadaba 32:52445bef314d 571 DataBuffer[2] = 0x00;
Vkadaba 32:52445bef314d 572 DataBuffer[3] = 0x00; //Data words
Vkadaba 32:52445bef314d 573
Vkadaba 32:52445bef314d 574 DataBuffer[4] = 0x45;
Vkadaba 32:52445bef314d 575 DataBuffer[5] = 0x00; //Command ID
Vkadaba 32:52445bef314d 576
Vkadaba 32:52445bef314d 577 DataBuffer[6] = 0x00;
Vkadaba 32:52445bef314d 578 DataBuffer[7] = 0x50;
Vkadaba 32:52445bef314d 579 DataBuffer[8] = 0x00;
Vkadaba 32:52445bef314d 580 DataBuffer[9] = 0x00; //Address
Vkadaba 32:52445bef314d 581
Vkadaba 32:52445bef314d 582 DataBuffer[10] = 0x95;
Vkadaba 32:52445bef314d 583 DataBuffer[11] = 0x00;
Vkadaba 32:52445bef314d 584 DataBuffer[12] = 0x00;
Vkadaba 32:52445bef314d 585 DataBuffer[13] = 0x00; //Checksum
Vkadaba 32:52445bef314d 586
Vkadaba 32:52445bef314d 587 nSize = SFL_READ_STATUS_HDR_SIZE;
Vkadaba 32:52445bef314d 588
Vkadaba 32:52445bef314d 589 do {
Vkadaba 32:52445bef314d 590 // Get the SFL command irq pin to check if SFL is ready to receive commands
Vkadaba 32:52445bef314d 591 // Status pin is not checked since SFL is just booted, there should not be any issue with SFL
Vkadaba 32:52445bef314d 592 eRet = admw_GetGpioState( hDevice, ADMW_GPIO_PIN_DATAREADY, &bitCommand );
Vkadaba 32:52445bef314d 593 if( eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 594 return eRet;
Vkadaba 32:52445bef314d 595 }
Vkadaba 32:52445bef314d 596
Vkadaba 32:52445bef314d 597 // Command IRQ pin should be low and Status IRQ pin should be high for SFL to be in good state and ready to recieve commands
Vkadaba 32:52445bef314d 598 // pinreg == '0x00' - Error occured in SFL
Vkadaba 32:52445bef314d 599 // pinreg == '0x01' - SFL is ready to recieve commands
Vkadaba 32:52445bef314d 600 // pinreg == '0x02' - Error occured in handling any commands in SFL
Vkadaba 32:52445bef314d 601 // pinreg == '0x03' - SFL not booted
Vkadaba 32:52445bef314d 602
Vkadaba 32:52445bef314d 603 pinreg = (bitCommand);
Vkadaba 32:52445bef314d 604
Vkadaba 32:52445bef314d 605 } while(pinreg != 0x0u);
Vkadaba 32:52445bef314d 606
Vkadaba 32:52445bef314d 607 eRet = admw_SpiTransfer(pCtx->hSpi, DataBuffer, NULL,
Vkadaba 32:52445bef314d 608 nSize, false);
Vkadaba 32:52445bef314d 609
Vkadaba 32:52445bef314d 610 return eRet;
Vkadaba 32:52445bef314d 611 }
Vkadaba 32:52445bef314d 612
Vkadaba 32:52445bef314d 613 /*
ADIJake 0:85855ecd3257 614 * Read a set of data samples from the device.
ADIJake 0:85855ecd3257 615 * This may be called at any time.
ADIJake 0:85855ecd3257 616 */
Vkadaba 32:52445bef314d 617
Vkadaba 5:0728bde67bdb 618 ADMW_RESULT admw_GetData(
Vkadaba 5:0728bde67bdb 619 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 620 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 621 ADMW_DATA_SAMPLE * const pSamples,
ADIJake 0:85855ecd3257 622 uint8_t const nBytesPerSample,
ADIJake 0:85855ecd3257 623 uint32_t const nRequested,
ADIJake 0:85855ecd3257 624 uint32_t * const pnReturned)
ADIJake 0:85855ecd3257 625 {
Vkadaba 5:0728bde67bdb 626 ADMW1001_Sensor_Result_t sensorResult;
Vkadaba 5:0728bde67bdb 627 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 628 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 629 (REG_CORE_DATA_FIFO & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 630 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 631 command >> 8,
ADIJake 0:85855ecd3257 632 command & 0xFF
ADIJake 0:85855ecd3257 633 };
ADIJake 0:85855ecd3257 634 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 635 unsigned nValidSamples = 0;
Vkadaba 5:0728bde67bdb 636 ADMW_RESULT eRet = ADMW_SUCCESS;
ADIJake 0:85855ecd3257 637
ADIJake 0:85855ecd3257 638 do {
Vkadaba 5:0728bde67bdb 639 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 640 sizeof(command), false);
Vkadaba 23:bb685f35b08b 641 if (eRet) {
Vkadaba 5:0728bde67bdb 642 ADMW_LOG_ERROR("Failed to send read command for FIFO register");
ADIJake 0:85855ecd3257 643 return eRet;
ADIJake 0:85855ecd3257 644 }
Vkadaba 5:0728bde67bdb 645 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 646 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 647 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
ADIJake 0:85855ecd3257 648
Vkadaba 23:bb685f35b08b 649 for (unsigned i = 0; i < nRequested; i++) {
ADIJake 0:85855ecd3257 650 bool bHoldCs = true;
ADIJake 0:85855ecd3257 651
ADIJake 0:85855ecd3257 652 /* Keep the CS signal asserted for all but the last sample */
ADIJake 0:85855ecd3257 653 if ((i + 1) == nRequested)
ADIJake 0:85855ecd3257 654 bHoldCs = false;
ADIJake 0:85855ecd3257 655
ADIJake 0:85855ecd3257 656 getDataCnt++;
ADIJake 0:85855ecd3257 657
Vkadaba 5:0728bde67bdb 658 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, &sensorResult,
Vkadaba 23:bb685f35b08b 659 nBytesPerSample, bHoldCs);
Vkadaba 23:bb685f35b08b 660 if (eRet) {
Vkadaba 5:0728bde67bdb 661 ADMW_LOG_ERROR("Failed to read data from FIFO register");
ADIJake 0:85855ecd3257 662 return eRet;
ADIJake 0:85855ecd3257 663 }
ADIJake 0:85855ecd3257 664
Vkadaba 23:bb685f35b08b 665 if (! sensorResult.Ch_Valid) {
ADIJake 0:85855ecd3257 666 /*
ADIJake 0:85855ecd3257 667 * Reading an invalid sample indicates that there are no
ADIJake 0:85855ecd3257 668 * more samples available or we've lost sync with the device.
ADIJake 0:85855ecd3257 669 * In the latter case, it might be recoverable, but return here
ADIJake 0:85855ecd3257 670 * to let the application check the device status and decide itself.
ADIJake 0:85855ecd3257 671 */
Vkadaba 5:0728bde67bdb 672 eRet = ADMW_INCOMPLETE;
ADIJake 0:85855ecd3257 673 break;
ADIJake 0:85855ecd3257 674 }
ADIJake 0:85855ecd3257 675
Vkadaba 5:0728bde67bdb 676 ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
Vkadaba 5:0728bde67bdb 677
Vkadaba 5:0728bde67bdb 678 pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0;
ADIJake 0:85855ecd3257 679 if (sensorResult.Ch_Error)
Vkadaba 5:0728bde67bdb 680 pSample->status |= ADMW_DEVICE_STATUS_ERROR;
ADIJake 0:85855ecd3257 681 if (sensorResult.Ch_Alert)
Vkadaba 5:0728bde67bdb 682 pSample->status |= ADMW_DEVICE_STATUS_ALERT;
ADIJake 0:85855ecd3257 683
ADIJake 0:85855ecd3257 684 if (sensorResult.Ch_Raw)
ADIJake 0:85855ecd3257 685 pSample->rawValue = sensorResult.Raw_Sample;
ADIJake 0:85855ecd3257 686 else
ADIJake 0:85855ecd3257 687 pSample->rawValue = 0;
ADIJake 0:85855ecd3257 688
ADIJake 0:85855ecd3257 689 pSample->channelId = sensorResult.Channel_ID;
ADIJake 0:85855ecd3257 690 pSample->processedValue = sensorResult.Sensor_Result;
ADIJake 0:85855ecd3257 691
ADIJake 0:85855ecd3257 692 nValidSamples++;
ADIJake 0:85855ecd3257 693
Vkadaba 5:0728bde67bdb 694 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
ADIJake 0:85855ecd3257 695 }
ADIJake 0:85855ecd3257 696 *pnReturned = nValidSamples;
ADIJake 0:85855ecd3257 697
ADIJake 0:85855ecd3257 698 return eRet;
ADIJake 0:85855ecd3257 699 }
ADIJake 0:85855ecd3257 700
ADIJake 0:85855ecd3257 701 /*
Vkadaba 5:0728bde67bdb 702 * Close the given ADMW device.
ADIJake 0:85855ecd3257 703 */
Vkadaba 5:0728bde67bdb 704 ADMW_RESULT admw_Close(
Vkadaba 5:0728bde67bdb 705 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 706 {
Vkadaba 5:0728bde67bdb 707 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 708
Vkadaba 5:0728bde67bdb 709 admw_GpioClose(pCtx->hGpio);
Vkadaba 5:0728bde67bdb 710 admw_SpiClose(pCtx->hSpi);
Vkadaba 5:0728bde67bdb 711 admw_LogClose();
Vkadaba 5:0728bde67bdb 712
Vkadaba 5:0728bde67bdb 713 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 714 }
ADIJake 0:85855ecd3257 715
Vkadaba 5:0728bde67bdb 716 ADMW_RESULT admw1001_WriteRegister(
Vkadaba 5:0728bde67bdb 717 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 718 uint16_t nAddress,
ADIJake 0:85855ecd3257 719 void *pData,
ADIJake 0:85855ecd3257 720 unsigned nLength)
ADIJake 0:85855ecd3257 721 {
Vkadaba 5:0728bde67bdb 722 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 723 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 724 uint16_t command = ADMW1001_HOST_COMMS_WRITE_CMD |
Vkadaba 23:bb685f35b08b 725 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 726 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 727 command >> 8,
ADIJake 0:85855ecd3257 728 command & 0xFF
ADIJake 0:85855ecd3257 729 };
ADIJake 0:85855ecd3257 730 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 731
ADIJake 0:85855ecd3257 732 do {
Vkadaba 5:0728bde67bdb 733 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 734 sizeof(command), false);
Vkadaba 23:bb685f35b08b 735 if (eRet) {
Vkadaba 5:0728bde67bdb 736 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 737 nAddress);
ADIJake 0:85855ecd3257 738 return eRet;
ADIJake 0:85855ecd3257 739 }
ADIJake 0:85855ecd3257 740
Vkadaba 5:0728bde67bdb 741 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 742 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 743 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 744
Vkadaba 5:0728bde67bdb 745 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 746 if (eRet) {
Vkadaba 5:0728bde67bdb 747 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 748 nLength, nAddress);
ADIJake 0:85855ecd3257 749 return eRet;
ADIJake 0:85855ecd3257 750 }
ADIJake 0:85855ecd3257 751
Vkadaba 5:0728bde67bdb 752 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 753
Vkadaba 5:0728bde67bdb 754 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 755 }
ADIJake 0:85855ecd3257 756
Vkadaba 6:9d393a9677f4 757 ADMW_RESULT admw1001_Write_Debug_Register(
Vkadaba 6:9d393a9677f4 758 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 759 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 760 void *pData,
Vkadaba 6:9d393a9677f4 761 unsigned nLength)
Vkadaba 6:9d393a9677f4 762 {
Vkadaba 6:9d393a9677f4 763 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 764 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 765 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_WRITE_CMD |
Vkadaba 23:bb685f35b08b 766 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 767 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 768 command >> 8,
Vkadaba 6:9d393a9677f4 769 command & 0xFF
Vkadaba 6:9d393a9677f4 770 };
Vkadaba 6:9d393a9677f4 771 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 772
Vkadaba 6:9d393a9677f4 773 do {
Vkadaba 6:9d393a9677f4 774 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 775 sizeof(command), false);
Vkadaba 23:bb685f35b08b 776 if (eRet) {
Vkadaba 6:9d393a9677f4 777 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 778 nAddress);
Vkadaba 6:9d393a9677f4 779 return eRet;
Vkadaba 6:9d393a9677f4 780 }
Vkadaba 6:9d393a9677f4 781
Vkadaba 6:9d393a9677f4 782 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 783 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 784 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 785
Vkadaba 6:9d393a9677f4 786 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 787 if (eRet) {
Vkadaba 6:9d393a9677f4 788 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 789 nLength, nAddress);
Vkadaba 6:9d393a9677f4 790 return eRet;
Vkadaba 6:9d393a9677f4 791 }
Vkadaba 6:9d393a9677f4 792
Vkadaba 6:9d393a9677f4 793 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 794
Vkadaba 6:9d393a9677f4 795 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 796 }
Vkadaba 5:0728bde67bdb 797 ADMW_RESULT admw1001_ReadRegister(
Vkadaba 5:0728bde67bdb 798 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 799 uint16_t nAddress,
ADIJake 0:85855ecd3257 800 void *pData,
ADIJake 0:85855ecd3257 801 unsigned nLength)
ADIJake 0:85855ecd3257 802 {
Vkadaba 5:0728bde67bdb 803 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 804 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 805 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 806 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 807 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 808 command >> 8,
ADIJake 0:85855ecd3257 809 command & 0xFF
ADIJake 0:85855ecd3257 810 };
ADIJake 0:85855ecd3257 811 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 812
ADIJake 0:85855ecd3257 813 do {
Vkadaba 5:0728bde67bdb 814 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 815 sizeof(command), false);
Vkadaba 23:bb685f35b08b 816 if (eRet) {
Vkadaba 5:0728bde67bdb 817 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 818 nAddress);
ADIJake 0:85855ecd3257 819 return eRet;
ADIJake 0:85855ecd3257 820 }
ADIJake 0:85855ecd3257 821
Vkadaba 5:0728bde67bdb 822 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 823 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 824 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 825
Vkadaba 5:0728bde67bdb 826 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 827 if (eRet) {
Vkadaba 5:0728bde67bdb 828 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 829 nLength, nAddress);
ADIJake 0:85855ecd3257 830 return eRet;
ADIJake 0:85855ecd3257 831 }
ADIJake 0:85855ecd3257 832
Vkadaba 5:0728bde67bdb 833 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 834
Vkadaba 5:0728bde67bdb 835 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 836 }
ADIJake 0:85855ecd3257 837
Vkadaba 6:9d393a9677f4 838 ADMW_RESULT admw1001_Read_Debug_Register(
Vkadaba 6:9d393a9677f4 839 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 840 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 841 void *pData,
Vkadaba 6:9d393a9677f4 842 unsigned nLength)
Vkadaba 6:9d393a9677f4 843 {
Vkadaba 6:9d393a9677f4 844 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 845 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 846 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_READ_CMD |
Vkadaba 23:bb685f35b08b 847 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 848 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 849 command >> 8,
Vkadaba 6:9d393a9677f4 850 command & 0xFF
Vkadaba 6:9d393a9677f4 851 };
Vkadaba 6:9d393a9677f4 852 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 853
Vkadaba 6:9d393a9677f4 854 do {
Vkadaba 6:9d393a9677f4 855 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 856 sizeof(command), false);
Vkadaba 23:bb685f35b08b 857 if (eRet) {
Vkadaba 6:9d393a9677f4 858 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 859 nAddress);
Vkadaba 6:9d393a9677f4 860 return eRet;
Vkadaba 6:9d393a9677f4 861 }
Vkadaba 6:9d393a9677f4 862
Vkadaba 6:9d393a9677f4 863 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 864 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 865 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 866
Vkadaba 6:9d393a9677f4 867 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 868 if (eRet) {
Vkadaba 6:9d393a9677f4 869 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 870 nLength, nAddress);
Vkadaba 6:9d393a9677f4 871 return eRet;
Vkadaba 6:9d393a9677f4 872 }
Vkadaba 6:9d393a9677f4 873
Vkadaba 6:9d393a9677f4 874 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 875
Vkadaba 6:9d393a9677f4 876 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 877 }
Vkadaba 5:0728bde67bdb 878 ADMW_RESULT admw_GetDeviceReadyState(
Vkadaba 5:0728bde67bdb 879 ADMW_DEVICE_HANDLE const hDevice,
ADIJake 0:85855ecd3257 880 bool * const bReady)
ADIJake 0:85855ecd3257 881 {
Vkadaba 5:0728bde67bdb 882 ADMW_SPI_Chip_Type_t chipTypeReg;
ADIJake 0:85855ecd3257 883
ADIJake 0:85855ecd3257 884 READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE);
ADIJake 0:85855ecd3257 885 /* If we read this register successfully, assume the device is ready */
Vkadaba 5:0728bde67bdb 886 *bReady = (chipTypeReg.VALUE8 == REG_SPI_CHIP_TYPE_RESET);
Vkadaba 5:0728bde67bdb 887
Vkadaba 5:0728bde67bdb 888 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 889 }
ADIJake 0:85855ecd3257 890
Vkadaba 5:0728bde67bdb 891 ADMW_RESULT admw1001_GetDataReadyModeInfo(
Vkadaba 8:2f2775c34640 892 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 893 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 894 ADMW1001_OPERATING_MODE * const peOperatingMode,
Vkadaba 5:0728bde67bdb 895 ADMW1001_DATAREADY_MODE * const peDataReadyMode,
Vkadaba 8:2f2775c34640 896 uint32_t * const pnSamplesPerDataready,
Vkadaba 8:2f2775c34640 897 uint32_t * const pnSamplesPerCycle,
Vkadaba 8:2f2775c34640 898 uint8_t * const pnBytesPerSample)
ADIJake 0:85855ecd3257 899 {
ADIJake 0:85855ecd3257 900 unsigned nChannelsEnabled = 0;
ADIJake 0:85855ecd3257 901 unsigned nSamplesPerCycle = 0;
ADIJake 0:85855ecd3257 902
Vkadaba 8:2f2775c34640 903 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 904 READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 905
Vkadaba 6:9d393a9677f4 906 if (eMeasurementMode == (modeReg.Conversion_Mode == CORE_MODE_SINGLECYCLE))
Vkadaba 5:0728bde67bdb 907 *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE;
ADIJake 0:85855ecd3257 908 else
Vkadaba 5:0728bde67bdb 909 *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS;
ADIJake 0:85855ecd3257 910
Vkadaba 23:bb685f35b08b 911 if (eMeasurementMode == ADMW_MEASUREMENT_MODE_OMIT_RAW) {
Vkadaba 8:2f2775c34640 912 *pnBytesPerSample = 5;
Vkadaba 23:bb685f35b08b 913 } else {
Vkadaba 8:2f2775c34640 914 *pnBytesPerSample = 8;
Vkadaba 6:9d393a9677f4 915 }
Vkadaba 23:bb685f35b08b 916
Vkadaba 8:2f2775c34640 917 for (ADMW1001_CH_ID chId = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 918 chId < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 919 chId++) {
Vkadaba 8:2f2775c34640 920 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
Vkadaba 8:2f2775c34640 921 ADMW_CORE_Channel_Count_t channelCountReg;
Vkadaba 23:bb685f35b08b 922
Vkadaba 8:2f2775c34640 923 if (ADMW1001_CHANNEL_IS_VIRTUAL(chId))
Vkadaba 8:2f2775c34640 924 continue;
Vkadaba 23:bb685f35b08b 925
Vkadaba 8:2f2775c34640 926 READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId));
Vkadaba 8:2f2775c34640 927 READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId));
Vkadaba 23:bb685f35b08b 928
Vkadaba 23:bb685f35b08b 929 if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish) {
Vkadaba 8:2f2775c34640 930 ADMW_CORE_Sensor_Type_t sensorTypeReg;
Vkadaba 8:2f2775c34640 931 unsigned nActualChannels = 1;
Vkadaba 23:bb685f35b08b 932
Vkadaba 8:2f2775c34640 933 READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId));
Vkadaba 23:bb685f35b08b 934
Vkadaba 23:bb685f35b08b 935 if (chId == ADMW1001_CH_ID_DIG_SPI_0) {
Vkadaba 23:bb685f35b08b 936 /* Some sensors automatically generate samples on additional
Vkadaba 23:bb685f35b08b 937 * "virtual" channels so these channels must be counted as
Vkadaba 23:bb685f35b08b 938 * active when those sensors are selected and we use the count
Vkadaba 23:bb685f35b08b 939 * from the corresponding "physical" channel
Vkadaba 8:2f2775c34640 940 */
Vkadaba 32:52445bef314d 941 #if 0 /* SPI sensors arent supported at present to be added back once there is
Vkadaba 32:52445bef314d 942 * support for these sensors
Vkadaba 32:52445bef314d 943 */
Vkadaba 8:2f2775c34640 944 if ((sensorTypeReg.Sensor_Type >=
Vkadaba 23:bb685f35b08b 945 CORE_SENSOR_TYPE_SPI_ACCELEROMETER_A) &&
Vkadaba 23:bb685f35b08b 946 (sensorTypeReg.Sensor_Type <=
Vkadaba 23:bb685f35b08b 947 CORE_SENSOR_TYPE_SPI_ACCELEROMETER_B)) {
Vkadaba 8:2f2775c34640 948 nActualChannels += 2;
Vkadaba 8:2f2775c34640 949 }
Vkadaba 32:52445bef314d 950 #endif
Vkadaba 8:2f2775c34640 951 }
Vkadaba 23:bb685f35b08b 952
Vkadaba 8:2f2775c34640 953 nChannelsEnabled += nActualChannels;
Vkadaba 23:bb685f35b08b 954
Vkadaba 8:2f2775c34640 955 nSamplesPerCycle += nActualChannels *
Vkadaba 8:2f2775c34640 956 (channelCountReg.Channel_Count + 1);
ADIJake 0:85855ecd3257 957 }
Vkadaba 6:9d393a9677f4 958 }
Vkadaba 23:bb685f35b08b 959
Vkadaba 23:bb685f35b08b 960 if (nChannelsEnabled == 0) {
Vkadaba 8:2f2775c34640 961 *pnSamplesPerDataready = 0;
Vkadaba 8:2f2775c34640 962 *pnSamplesPerCycle = 0;
Vkadaba 8:2f2775c34640 963 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 964 }
Vkadaba 23:bb685f35b08b 965
Vkadaba 6:9d393a9677f4 966 *pnSamplesPerCycle = nSamplesPerCycle;
Vkadaba 23:bb685f35b08b 967
Vkadaba 23:bb685f35b08b 968 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 969 *pnSamplesPerDataready = 1;
Vkadaba 23:bb685f35b08b 970 } else {
Vkadaba 8:2f2775c34640 971 *pnSamplesPerDataready = nSamplesPerCycle;
Vkadaba 6:9d393a9677f4 972 }
Vkadaba 23:bb685f35b08b 973
Vkadaba 23:bb685f35b08b 974 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 975 *peDataReadyMode = ADMW1001_DATAREADY_PER_CONVERSION;
Vkadaba 23:bb685f35b08b 976 } else {
Vkadaba 8:2f2775c34640 977 *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE;
ADIJake 0:85855ecd3257 978 }
Vkadaba 23:bb685f35b08b 979
Vkadaba 5:0728bde67bdb 980 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 981 }
ADIJake 0:85855ecd3257 982
Vkadaba 5:0728bde67bdb 983 ADMW_RESULT admw_GetProductID(
Vkadaba 5:0728bde67bdb 984 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 985 ADMW_PRODUCT_ID *pProductId)
ADIJake 0:85855ecd3257 986 {
Vkadaba 5:0728bde67bdb 987 ADMW_SPI_Product_ID_L_t productIdLoReg;
Vkadaba 5:0728bde67bdb 988 ADMW_SPI_Product_ID_H_t productIdHiReg;
ADIJake 0:85855ecd3257 989
ADIJake 0:85855ecd3257 990 READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L);
ADIJake 0:85855ecd3257 991 READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H);
ADIJake 0:85855ecd3257 992
Vkadaba 23:bb685f35b08b 993 *pProductId = (ADMW_PRODUCT_ID)((productIdHiReg.VALUE8 << 8) |
Vkadaba 8:2f2775c34640 994 productIdLoReg.VALUE8);
Vkadaba 5:0728bde67bdb 995 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 996 }
ADIJake 0:85855ecd3257 997
Vkadaba 5:0728bde67bdb 998 static ADMW_RESULT admw_SetPowerMode(
Vkadaba 5:0728bde67bdb 999 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1000 ADMW1001_POWER_MODE powerMode)
ADIJake 0:85855ecd3257 1001 {
Vkadaba 8:2f2775c34640 1002 ADMW_CORE_Power_Config_t powerConfigReg;
Vkadaba 5:0728bde67bdb 1003
Vkadaba 23:bb685f35b08b 1004 if (powerMode == ADMW1001_POWER_MODE_HIBERNATION) {
Vkadaba 6:9d393a9677f4 1005 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_HIBERNATION;
Vkadaba 23:bb685f35b08b 1006 } else if (powerMode == ADMW1001_POWER_MODE_ACTIVE) {
Vkadaba 6:9d393a9677f4 1007 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_ACTIVE_MODE;
Vkadaba 23:bb685f35b08b 1008 } else {
Vkadaba 5:0728bde67bdb 1009 ADMW_LOG_ERROR("Invalid power mode %d specified", powerMode);
Vkadaba 5:0728bde67bdb 1010 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1011 }
ADIJake 0:85855ecd3257 1012
ADIJake 0:85855ecd3257 1013 WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG);
ADIJake 0:85855ecd3257 1014
Vkadaba 5:0728bde67bdb 1015 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1016 }
ADIJake 0:85855ecd3257 1017
Vkadaba 5:0728bde67bdb 1018 ADMW_RESULT admw1001_SetPowerConfig(
Vkadaba 5:0728bde67bdb 1019 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1020 ADMW1001_POWER_CONFIG *pPowerConfig)
ADIJake 0:85855ecd3257 1021 {
Vkadaba 5:0728bde67bdb 1022 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1023
Vkadaba 5:0728bde67bdb 1024 eRet = admw_SetPowerMode(hDevice, pPowerConfig->powerMode);
Vkadaba 23:bb685f35b08b 1025 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1026 ADMW_LOG_ERROR("Failed to set power mode");
ADIJake 0:85855ecd3257 1027 return eRet;
ADIJake 0:85855ecd3257 1028 }
ADIJake 0:85855ecd3257 1029
Vkadaba 5:0728bde67bdb 1030 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1031 }
ADIJake 0:85855ecd3257 1032
Vkadaba 33:df7a00f1b8e1 1033 static ADMW_RESULT admw_SetRSenseValue(
Vkadaba 33:df7a00f1b8e1 1034 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 33:df7a00f1b8e1 1035 float32_t RSenseValue)
Vkadaba 33:df7a00f1b8e1 1036 {
Vkadaba 33:df7a00f1b8e1 1037 ADMW_CORE_External_Reference_Resistor_t RefResistorConfigReg;
Vkadaba 33:df7a00f1b8e1 1038
Vkadaba 33:df7a00f1b8e1 1039 RefResistorConfigReg.Ext_Refin1_Value = RSenseValue;
Vkadaba 33:df7a00f1b8e1 1040
Vkadaba 33:df7a00f1b8e1 1041 WRITE_REG_FLOAT(hDevice, RefResistorConfigReg.VALUE32, CORE_EXTERNAL_REFERENCE_RESISTOR);
Vkadaba 33:df7a00f1b8e1 1042
Vkadaba 33:df7a00f1b8e1 1043 return ADMW_SUCCESS;
Vkadaba 33:df7a00f1b8e1 1044
Vkadaba 33:df7a00f1b8e1 1045 }
Vkadaba 5:0728bde67bdb 1046 static ADMW_RESULT admw_SetMode(
Vkadaba 5:0728bde67bdb 1047 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1048 ADMW1001_OPERATING_MODE eOperatingMode,
Vkadaba 8:2f2775c34640 1049 ADMW1001_DATAREADY_MODE eDataReadyMode)
ADIJake 0:85855ecd3257 1050 {
Vkadaba 8:2f2775c34640 1051 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 1052
ADIJake 0:85855ecd3257 1053 modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE);
ADIJake 0:85855ecd3257 1054
Vkadaba 23:bb685f35b08b 1055 if (eOperatingMode == ADMW1001_OPERATING_MODE_SINGLECYCLE) {
Vkadaba 5:0728bde67bdb 1056 modeReg.Conversion_Mode = CORE_MODE_SINGLECYCLE;
Vkadaba 23:bb685f35b08b 1057 } else if (eOperatingMode == ADMW1001_OPERATING_MODE_CONTINUOUS) {
Vkadaba 5:0728bde67bdb 1058 modeReg.Conversion_Mode = CORE_MODE_CONTINUOUS;
Vkadaba 23:bb685f35b08b 1059 } else {
Vkadaba 5:0728bde67bdb 1060 ADMW_LOG_ERROR("Invalid operating mode %d specified",
Vkadaba 23:bb685f35b08b 1061 eOperatingMode);
Vkadaba 5:0728bde67bdb 1062 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1063 }
ADIJake 0:85855ecd3257 1064
Vkadaba 23:bb685f35b08b 1065 if (eDataReadyMode == ADMW1001_DATAREADY_PER_CONVERSION) {
Vkadaba 5:0728bde67bdb 1066 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CONVERSION;
Vkadaba 23:bb685f35b08b 1067 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_CYCLE) {
Vkadaba 5:0728bde67bdb 1068 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CYCLE;
Vkadaba 23:bb685f35b08b 1069 } else {
Vkadaba 5:0728bde67bdb 1070 ADMW_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode);
Vkadaba 5:0728bde67bdb 1071 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1072 }
ADIJake 0:85855ecd3257 1073
ADIJake 0:85855ecd3257 1074 WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 1075
Vkadaba 5:0728bde67bdb 1076 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1077 }
ADIJake 0:85855ecd3257 1078
Vkadaba 8:2f2775c34640 1079 ADMW_RESULT admw_SetCycleControl(ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1080 uint32_t nCycleInterval,
Vkadaba 8:2f2775c34640 1081 bool vBiasEnable)
ADIJake 0:85855ecd3257 1082 {
Vkadaba 8:2f2775c34640 1083 ADMW_CORE_Cycle_Control_t cycleControlReg;
ADIJake 0:85855ecd3257 1084
ADIJake 0:85855ecd3257 1085 cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1086
Vkadaba 23:bb685f35b08b 1087 if (nCycleInterval < (1000 * (1 << 12))) {
Vkadaba 5:0728bde67bdb 1088 cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_MILLISECONDS;
ADIJake 0:85855ecd3257 1089 nCycleInterval /= 1000;
Vkadaba 23:bb685f35b08b 1090 } else {
Vkadaba 5:0728bde67bdb 1091 cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS;
ADIJake 0:85855ecd3257 1092 nCycleInterval /= 1000000;
ADIJake 0:85855ecd3257 1093 }
ADIJake 0:85855ecd3257 1094
Vkadaba 23:bb685f35b08b 1095 if (vBiasEnable == true) {
Vkadaba 8:2f2775c34640 1096 cycleControlReg.Vbias = 1;
Vkadaba 8:2f2775c34640 1097 }
ADIJake 0:85855ecd3257 1098 CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval);
ADIJake 0:85855ecd3257 1099 cycleControlReg.Cycle_Time = nCycleInterval;
ADIJake 0:85855ecd3257 1100
ADIJake 0:85855ecd3257 1101 WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1102
Vkadaba 5:0728bde67bdb 1103 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1104 }
ADIJake 0:85855ecd3257 1105
Vkadaba 5:0728bde67bdb 1106 static ADMW_RESULT admw_SetExternalReferenceValues(
Vkadaba 5:0728bde67bdb 1107 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 1108 float32_t externalRef1Value)
ADIJake 0:85855ecd3257 1109 {
Vkadaba 6:9d393a9677f4 1110 WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE_RESISTOR);
ADIJake 0:85855ecd3257 1111
Vkadaba 5:0728bde67bdb 1112 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1113 }
ADIJake 0:85855ecd3257 1114
Vkadaba 5:0728bde67bdb 1115 ADMW_RESULT admw1001_SetMeasurementConfig(
Vkadaba 5:0728bde67bdb 1116 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1117 ADMW1001_MEASUREMENT_CONFIG *pMeasConfig)
ADIJake 0:85855ecd3257 1118 {
Vkadaba 5:0728bde67bdb 1119 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1120
Vkadaba 5:0728bde67bdb 1121 eRet = admw_SetMode(hDevice,
Vkadaba 8:2f2775c34640 1122 pMeasConfig->operatingMode,
Vkadaba 8:2f2775c34640 1123 pMeasConfig->dataReadyMode);
Vkadaba 23:bb685f35b08b 1124 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1125 ADMW_LOG_ERROR("Failed to set operating mode");
ADIJake 0:85855ecd3257 1126 return eRet;
ADIJake 0:85855ecd3257 1127 }
ADIJake 0:85855ecd3257 1128
Vkadaba 8:2f2775c34640 1129 eRet = admw_SetCycleControl(hDevice, pMeasConfig->cycleInterval,
Vkadaba 8:2f2775c34640 1130 pMeasConfig->vBiasEnable);
Vkadaba 23:bb685f35b08b 1131 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1132 ADMW_LOG_ERROR("Failed to set cycle control");
ADIJake 0:85855ecd3257 1133 return eRet;
ADIJake 0:85855ecd3257 1134 }
ADIJake 0:85855ecd3257 1135
Vkadaba 23:bb685f35b08b 1136 if(pMeasConfig->externalRef1Value>0) {
Vkadaba 8:2f2775c34640 1137 eRet = admw_SetExternalReferenceValues(hDevice,
Vkadaba 8:2f2775c34640 1138 pMeasConfig->externalRef1Value);
ADIJake 0:85855ecd3257 1139 }
Vkadaba 8:2f2775c34640 1140
Vkadaba 23:bb685f35b08b 1141 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1142 ADMW_LOG_ERROR("Failed to set external reference values");
ADIJake 0:85855ecd3257 1143 return eRet;
ADIJake 0:85855ecd3257 1144 }
ADIJake 0:85855ecd3257 1145
Vkadaba 33:df7a00f1b8e1 1146 eRet = admw_SetRSenseValue(hDevice, pMeasConfig->RSenseValue);
Vkadaba 33:df7a00f1b8e1 1147 if (eRet != ADMW_SUCCESS)
Vkadaba 33:df7a00f1b8e1 1148 {
Vkadaba 33:df7a00f1b8e1 1149 ADMW_LOG_ERROR("Failed to set RSenseValue");
Vkadaba 33:df7a00f1b8e1 1150 return eRet;
Vkadaba 33:df7a00f1b8e1 1151 }
Vkadaba 5:0728bde67bdb 1152 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1153 }
ADIJake 0:85855ecd3257 1154
ADIJake 0:85855ecd3257 1155
ADIJake 0:85855ecd3257 1156
Vkadaba 5:0728bde67bdb 1157 ADMW_RESULT admw1001_SetChannelCount(
Vkadaba 5:0728bde67bdb 1158 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1159 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1160 uint32_t nMeasurementsPerCycle)
ADIJake 0:85855ecd3257 1161 {
Vkadaba 8:2f2775c34640 1162 ADMW_CORE_Channel_Count_t channelCountReg;
ADIJake 0:85855ecd3257 1163
ADIJake 0:85855ecd3257 1164 channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn);
ADIJake 0:85855ecd3257 1165
Vkadaba 23:bb685f35b08b 1166 if (nMeasurementsPerCycle > 0) {
ADIJake 0:85855ecd3257 1167 nMeasurementsPerCycle -= 1;
ADIJake 0:85855ecd3257 1168
ADIJake 0:85855ecd3257 1169 CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT,
ADIJake 0:85855ecd3257 1170 nMeasurementsPerCycle);
ADIJake 0:85855ecd3257 1171
ADIJake 0:85855ecd3257 1172 channelCountReg.Channel_Enable = 1;
ADIJake 0:85855ecd3257 1173 channelCountReg.Channel_Count = nMeasurementsPerCycle;
Vkadaba 23:bb685f35b08b 1174 } else {
ADIJake 0:85855ecd3257 1175 channelCountReg.Channel_Enable = 0;
ADIJake 0:85855ecd3257 1176 }
ADIJake 0:85855ecd3257 1177
ADIJake 0:85855ecd3257 1178 WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId));
ADIJake 0:85855ecd3257 1179
Vkadaba 5:0728bde67bdb 1180 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1181 }
ADIJake 0:85855ecd3257 1182
Vkadaba 5:0728bde67bdb 1183 ADMW_RESULT admw1001_SetChannelOptions(
Vkadaba 5:0728bde67bdb 1184 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1185 ADMW1001_CH_ID eChannelId,
Vkadaba 6:9d393a9677f4 1186 ADMW1001_CHANNEL_PRIORITY ePriority)
ADIJake 0:85855ecd3257 1187 {
Vkadaba 8:2f2775c34640 1188 ADMW_CORE_Channel_Options_t channelOptionsReg;
ADIJake 0:85855ecd3257 1189
ADIJake 0:85855ecd3257 1190 channelOptionsReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_OPTIONSn);
ADIJake 0:85855ecd3257 1191
ADIJake 0:85855ecd3257 1192 CHECK_REG_FIELD_VAL(CORE_CHANNEL_OPTIONS_CHANNEL_PRIORITY, ePriority);
ADIJake 0:85855ecd3257 1193 channelOptionsReg.Channel_Priority = ePriority;
ADIJake 0:85855ecd3257 1194
ADIJake 0:85855ecd3257 1195 WRITE_REG_U8(hDevice, channelOptionsReg.VALUE8, CORE_CHANNEL_OPTIONSn(eChannelId));
ADIJake 0:85855ecd3257 1196
Vkadaba 5:0728bde67bdb 1197 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1198 }
ADIJake 0:85855ecd3257 1199
Vkadaba 5:0728bde67bdb 1200 ADMW_RESULT admw1001_SetChannelSkipCount(
Vkadaba 5:0728bde67bdb 1201 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1202 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1203 uint32_t nCycleSkipCount)
ADIJake 0:85855ecd3257 1204 {
Vkadaba 8:2f2775c34640 1205 ADMW_CORE_Channel_Skip_t channelSkipReg;
ADIJake 0:85855ecd3257 1206
ADIJake 0:85855ecd3257 1207 channelSkipReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_SKIPn);
ADIJake 0:85855ecd3257 1208
ADIJake 0:85855ecd3257 1209 CHECK_REG_FIELD_VAL(CORE_CHANNEL_SKIP_CHANNEL_SKIP, nCycleSkipCount);
ADIJake 0:85855ecd3257 1210
ADIJake 0:85855ecd3257 1211 channelSkipReg.Channel_Skip = nCycleSkipCount;
ADIJake 0:85855ecd3257 1212
ADIJake 0:85855ecd3257 1213 WRITE_REG_U16(hDevice, channelSkipReg.VALUE16, CORE_CHANNEL_SKIPn(eChannelId));
ADIJake 0:85855ecd3257 1214
Vkadaba 5:0728bde67bdb 1215 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1216 }
ADIJake 0:85855ecd3257 1217
Vkadaba 5:0728bde67bdb 1218 static ADMW_RESULT admw_SetChannelAdcSensorType(
Vkadaba 8:2f2775c34640 1219 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1220 ADMW1001_CH_ID eChannelId,
Vkadaba 8:2f2775c34640 1221 ADMW1001_ADC_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1222 {
Vkadaba 8:2f2775c34640 1223 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1224
ADIJake 0:85855ecd3257 1225 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1226
ADIJake 0:85855ecd3257 1227 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1228 switch(sensorType) {
Vkadaba 8:2f2775c34640 1229 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100:
Vkadaba 8:2f2775c34640 1230 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000:
Vkadaba 8:2f2775c34640 1231 case ADMW1001_ADC_SENSOR_RTD_3WIRE_1:
Vkadaba 8:2f2775c34640 1232 case ADMW1001_ADC_SENSOR_RTD_3WIRE_2:
Vkadaba 8:2f2775c34640 1233 case ADMW1001_ADC_SENSOR_RTD_3WIRE_3:
Vkadaba 8:2f2775c34640 1234 case ADMW1001_ADC_SENSOR_RTD_3WIRE_4:
Vkadaba 8:2f2775c34640 1235 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100:
Vkadaba 8:2f2775c34640 1236 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000:
Vkadaba 8:2f2775c34640 1237 case ADMW1001_ADC_SENSOR_RTD_4WIRE_1:
Vkadaba 8:2f2775c34640 1238 case ADMW1001_ADC_SENSOR_RTD_4WIRE_2:
Vkadaba 8:2f2775c34640 1239 case ADMW1001_ADC_SENSOR_RTD_4WIRE_3:
Vkadaba 8:2f2775c34640 1240 case ADMW1001_ADC_SENSOR_RTD_4WIRE_4:
Vkadaba 8:2f2775c34640 1241 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_1:
Vkadaba 8:2f2775c34640 1242 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_2:
Vkadaba 8:2f2775c34640 1243 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_3:
Vkadaba 8:2f2775c34640 1244 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_4:
Vkadaba 8:2f2775c34640 1245 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_1:
Vkadaba 8:2f2775c34640 1246 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_2:
Vkadaba 8:2f2775c34640 1247 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_3:
Vkadaba 8:2f2775c34640 1248 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_4:
Vkadaba 8:2f2775c34640 1249 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100:
Vkadaba 8:2f2775c34640 1250 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000:
Vkadaba 8:2f2775c34640 1251 case ADMW1001_ADC_SENSOR_RTD_2WIRE_1:
Vkadaba 8:2f2775c34640 1252 case ADMW1001_ADC_SENSOR_RTD_2WIRE_2:
Vkadaba 8:2f2775c34640 1253 case ADMW1001_ADC_SENSOR_RTD_2WIRE_3:
Vkadaba 8:2f2775c34640 1254 case ADMW1001_ADC_SENSOR_RTD_2WIRE_4:
Vkadaba 8:2f2775c34640 1255 case ADMW1001_ADC_SENSOR_DIODE_2C_TYPEA:
Vkadaba 8:2f2775c34640 1256 case ADMW1001_ADC_SENSOR_DIODE_3C_TYPEA:
Vkadaba 8:2f2775c34640 1257 case ADMW1001_ADC_SENSOR_DIODE_2C_1:
Vkadaba 8:2f2775c34640 1258 case ADMW1001_ADC_SENSOR_DIODE_3C_1:
Vkadaba 8:2f2775c34640 1259 case ADMW1001_ADC_SENSOR_THERMISTOR_A_10K:
Vkadaba 8:2f2775c34640 1260 case ADMW1001_ADC_SENSOR_THERMISTOR_B_10K:
Vkadaba 8:2f2775c34640 1261 case ADMW1001_ADC_SENSOR_THERMISTOR_1:
Vkadaba 8:2f2775c34640 1262 case ADMW1001_ADC_SENSOR_THERMISTOR_2:
Vkadaba 8:2f2775c34640 1263 case ADMW1001_ADC_SENSOR_THERMISTOR_3:
Vkadaba 8:2f2775c34640 1264 case ADMW1001_ADC_SENSOR_THERMISTOR_4:
Vkadaba 6:9d393a9677f4 1265 if (! (ADMW1001_CHANNEL_IS_ADC_SENSOR(eChannelId) ||
Vkadaba 23:bb685f35b08b 1266 ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId))) {
Vkadaba 6:9d393a9677f4 1267 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1268 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1269 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1270 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1271 }
Vkadaba 6:9d393a9677f4 1272 break;
Vkadaba 6:9d393a9677f4 1273 case ADMW1001_ADC_SENSOR_VOLTAGE:
Vkadaba 8:2f2775c34640 1274 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_A:
Vkadaba 8:2f2775c34640 1275 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_B:
Vkadaba 8:2f2775c34640 1276 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_1:
Vkadaba 8:2f2775c34640 1277 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_2:
Vkadaba 8:2f2775c34640 1278 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J:
Vkadaba 8:2f2775c34640 1279 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K:
Vkadaba 8:2f2775c34640 1280 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T:
Vkadaba 8:2f2775c34640 1281 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_1:
Vkadaba 8:2f2775c34640 1282 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_2:
Vkadaba 8:2f2775c34640 1283 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_3:
Vkadaba 8:2f2775c34640 1284 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_4:
Vkadaba 23:bb685f35b08b 1285 if (! ADMW1001_CHANNEL_IS_ADC_VOLTAGE(eChannelId)) {
Vkadaba 6:9d393a9677f4 1286 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1287 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1288 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1289 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1290 }
Vkadaba 6:9d393a9677f4 1291 break;
Vkadaba 6:9d393a9677f4 1292 case ADMW1001_ADC_SENSOR_CURRENT:
Vkadaba 8:2f2775c34640 1293 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_A:
Vkadaba 8:2f2775c34640 1294 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_1:
Vkadaba 8:2f2775c34640 1295 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_2:
Vkadaba 23:bb685f35b08b 1296 if (! ADMW1001_CHANNEL_IS_ADC_CURRENT(eChannelId)) {
Vkadaba 6:9d393a9677f4 1297 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1298 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1299 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1300 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1301 }
Vkadaba 6:9d393a9677f4 1302 break;
Vkadaba 6:9d393a9677f4 1303 default:
Vkadaba 6:9d393a9677f4 1304 ADMW_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified",
Vkadaba 23:bb685f35b08b 1305 sensorType);
Vkadaba 5:0728bde67bdb 1306 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1307 }
ADIJake 0:85855ecd3257 1308
ADIJake 0:85855ecd3257 1309 sensorTypeReg.Sensor_Type = sensorType;
ADIJake 0:85855ecd3257 1310
ADIJake 0:85855ecd3257 1311 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1312
Vkadaba 5:0728bde67bdb 1313 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1314 }
ADIJake 0:85855ecd3257 1315
Vkadaba 5:0728bde67bdb 1316 static ADMW_RESULT admw_SetChannelAdcSensorDetails(
Vkadaba 8:2f2775c34640 1317 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1318 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1319 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1320 /*
ADIJake 0:85855ecd3257 1321 * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
ADIJake 0:85855ecd3257 1322 * General details:
ADIJake 0:85855ecd3257 1323 * - Measurement_Units
ADIJake 0:85855ecd3257 1324 * - Compensation_Channel
ADIJake 0:85855ecd3257 1325 * - CJC_Publish (if "CJC" was removed from the name)
ADIJake 0:85855ecd3257 1326 * ADC-specific details:
ADIJake 0:85855ecd3257 1327 * - PGA_Gain
ADIJake 0:85855ecd3257 1328 * - Reference_Select
ADIJake 0:85855ecd3257 1329 * - Reference_Buffer_Disable
ADIJake 0:85855ecd3257 1330 */
ADIJake 0:85855ecd3257 1331 {
Vkadaba 5:0728bde67bdb 1332 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
Vkadaba 8:2f2775c34640 1333 ADMW1001_ADC_REFERENCE_TYPE refType = pAdcChannelConfig->reference;
Vkadaba 8:2f2775c34640 1334 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1335
ADIJake 0:85855ecd3257 1336 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1337
Vkadaba 23:bb685f35b08b 1338 switch(pChannelConfig->measurementUnit) {
Vkadaba 8:2f2775c34640 1339 case ADMW1001_MEASUREMENT_UNIT_FAHRENHEIT:
Vkadaba 8:2f2775c34640 1340 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF;
Vkadaba 8:2f2775c34640 1341 break;
Vkadaba 8:2f2775c34640 1342 case ADMW1001_MEASUREMENT_UNIT_CELSIUS:
Vkadaba 8:2f2775c34640 1343 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC;
Vkadaba 8:2f2775c34640 1344 break;
Vkadaba 8:2f2775c34640 1345 case ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED:
Vkadaba 8:2f2775c34640 1346 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 8:2f2775c34640 1347 break;
Vkadaba 8:2f2775c34640 1348 default:
Vkadaba 8:2f2775c34640 1349 ADMW_LOG_ERROR("Invalid measurement unit %d specified",
Vkadaba 8:2f2775c34640 1350 pChannelConfig->measurementUnit);
Vkadaba 8:2f2775c34640 1351 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1352 }
ADIJake 0:85855ecd3257 1353
Vkadaba 23:bb685f35b08b 1354 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1355 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1356 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1357 } else {
ADIJake 0:85855ecd3257 1358 sensorDetailsReg.Compensation_Disable = 0;
ADIJake 0:85855ecd3257 1359 sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
ADIJake 0:85855ecd3257 1360 }
ADIJake 0:85855ecd3257 1361
Vkadaba 23:bb685f35b08b 1362 switch(refType) {
Vkadaba 8:2f2775c34640 1363 case ADMW1001_ADC_REFERENCE_VOLTAGE_INTERNAL:
Vkadaba 8:2f2775c34640 1364 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VINT;
Vkadaba 8:2f2775c34640 1365 break;
Vkadaba 8:2f2775c34640 1366 case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
Vkadaba 8:2f2775c34640 1367 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT1;
Vkadaba 8:2f2775c34640 1368 break;
Vkadaba 8:2f2775c34640 1369 case ADMW1001_ADC_REFERENCE_VOLTAGE_AVDD:
Vkadaba 8:2f2775c34640 1370 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_AVDD;
Vkadaba 8:2f2775c34640 1371 break;
Vkadaba 8:2f2775c34640 1372 default:
Vkadaba 8:2f2775c34640 1373 ADMW_LOG_ERROR("Invalid ADC reference type %d specified", refType);
Vkadaba 8:2f2775c34640 1374 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1375 }
Vkadaba 23:bb685f35b08b 1376
Vkadaba 23:bb685f35b08b 1377 switch(pAdcChannelConfig->gain) {
Vkadaba 8:2f2775c34640 1378 case ADMW1001_ADC_GAIN_1X:
Vkadaba 8:2f2775c34640 1379 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_1;
Vkadaba 8:2f2775c34640 1380 break;
Vkadaba 8:2f2775c34640 1381 case ADMW1001_ADC_GAIN_2X:
Vkadaba 8:2f2775c34640 1382 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_2;
Vkadaba 8:2f2775c34640 1383 break;
Vkadaba 8:2f2775c34640 1384 case ADMW1001_ADC_GAIN_4X:
Vkadaba 8:2f2775c34640 1385 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_4;
Vkadaba 8:2f2775c34640 1386 break;
Vkadaba 8:2f2775c34640 1387 case ADMW1001_ADC_GAIN_8X:
Vkadaba 8:2f2775c34640 1388 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_8;
Vkadaba 8:2f2775c34640 1389 break;
Vkadaba 8:2f2775c34640 1390 case ADMW1001_ADC_GAIN_16X:
Vkadaba 8:2f2775c34640 1391 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_16;
Vkadaba 8:2f2775c34640 1392 break;
Vkadaba 8:2f2775c34640 1393 case ADMW1001_ADC_GAIN_32X:
Vkadaba 8:2f2775c34640 1394 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_32;
Vkadaba 8:2f2775c34640 1395 break;
Vkadaba 8:2f2775c34640 1396 case ADMW1001_ADC_GAIN_64X:
Vkadaba 8:2f2775c34640 1397 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_64;
Vkadaba 8:2f2775c34640 1398 break;
Vkadaba 8:2f2775c34640 1399 case ADMW1001_ADC_GAIN_128X:
Vkadaba 8:2f2775c34640 1400 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_128;
Vkadaba 8:2f2775c34640 1401 break;
Vkadaba 8:2f2775c34640 1402 default:
Vkadaba 8:2f2775c34640 1403 ADMW_LOG_ERROR("Invalid ADC gain %d specified",
Vkadaba 23:bb685f35b08b 1404 pAdcChannelConfig->gain);
Vkadaba 8:2f2775c34640 1405 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1406 }
ADIJake 0:85855ecd3257 1407
Vkadaba 23:bb685f35b08b 1408 switch(pAdcChannelConfig->rtdCurve) {
Vkadaba 8:2f2775c34640 1409 case ADMW1001_ADC_RTD_CURVE_EUROPEAN:
Vkadaba 8:2f2775c34640 1410 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_EUROPEAN_CURVE;
Vkadaba 8:2f2775c34640 1411 break;
Vkadaba 8:2f2775c34640 1412 case ADMW1001_ADC_RTD_CURVE_AMERICAN:
Vkadaba 8:2f2775c34640 1413 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_AMERICAN_CURVE;
Vkadaba 8:2f2775c34640 1414 break;
Vkadaba 8:2f2775c34640 1415 case ADMW1001_ADC_RTD_CURVE_JAPANESE:
Vkadaba 8:2f2775c34640 1416 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_JAPANESE_CURVE;
Vkadaba 8:2f2775c34640 1417 break;
Vkadaba 8:2f2775c34640 1418 case ADMW1001_ADC_RTD_CURVE_ITS90:
Vkadaba 8:2f2775c34640 1419 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_ITS90_CURVE;
Vkadaba 8:2f2775c34640 1420 break;
Vkadaba 8:2f2775c34640 1421 default:
Vkadaba 8:2f2775c34640 1422 ADMW_LOG_ERROR("Invalid RTD Curve %d specified",
Vkadaba 23:bb685f35b08b 1423 pAdcChannelConfig->rtdCurve);
Vkadaba 8:2f2775c34640 1424 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1425 }
Vkadaba 6:9d393a9677f4 1426
Vkadaba 23:bb685f35b08b 1427 if (pChannelConfig->disablePublishing) {
ADIJake 0:85855ecd3257 1428 sensorDetailsReg.Do_Not_Publish = 1;
Vkadaba 23:bb685f35b08b 1429 } else {
ADIJake 0:85855ecd3257 1430 sensorDetailsReg.Do_Not_Publish = 0;
Vkadaba 8:2f2775c34640 1431 }
Vkadaba 23:bb685f35b08b 1432
Vkadaba 23:bb685f35b08b 1433 switch (pChannelConfig->lutSelect) {
Vkadaba 8:2f2775c34640 1434 case ADMW1001_LUT_DEFAULT:
Vkadaba 8:2f2775c34640 1435 case ADMW1001_LUT_UNITY:
Vkadaba 8:2f2775c34640 1436 case ADMW1001_LUT_CUSTOM:
Vkadaba 8:2f2775c34640 1437 sensorDetailsReg.LUT_Select = pChannelConfig->lutSelect;
Vkadaba 8:2f2775c34640 1438 break;
Vkadaba 8:2f2775c34640 1439 default:
Vkadaba 8:2f2775c34640 1440 ADMW_LOG_ERROR("Invalid LUT selection %d specified",
Vkadaba 23:bb685f35b08b 1441 pChannelConfig->lutSelect);
Vkadaba 23:bb685f35b08b 1442 return ADMW_INVALID_PARAM;
Vkadaba 8:2f2775c34640 1443 }
Vkadaba 23:bb685f35b08b 1444
ADIJake 0:85855ecd3257 1445 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1446
Vkadaba 5:0728bde67bdb 1447 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1448 }
ADIJake 0:85855ecd3257 1449
Vkadaba 33:df7a00f1b8e1 1450 static ADMW_RESULT admw_SetChannelAdcMeasurementSetup(
Vkadaba 5:0728bde67bdb 1451 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1452 ADMW1001_CH_ID eChannelId,
Vkadaba 33:df7a00f1b8e1 1453 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig)
ADIJake 0:85855ecd3257 1454 {
Vkadaba 8:2f2775c34640 1455 ADMW_CORE_Measurement_Setup_t MeasSetupReg;
Vkadaba 33:df7a00f1b8e1 1456 ADMW1001_ADC_FILTER_CONFIG *pFilterConfig = &pAdcChannelConfig->filter;
Vkadaba 6:9d393a9677f4 1457 MeasSetupReg.VALUE32 = REG_RESET_VAL(CORE_MEASUREMENT_SETUPn);
Vkadaba 33:df7a00f1b8e1 1458 MeasSetupReg.PST_MEAS_EXC_CTRL = pAdcChannelConfig->current.excitationState;
Vkadaba 33:df7a00f1b8e1 1459 MeasSetupReg.Buffer_Bypass = pAdcChannelConfig->bufferBypass;
Vkadaba 33:df7a00f1b8e1 1460
Vkadaba 23:bb685f35b08b 1461 if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC4) {
Vkadaba 6:9d393a9677f4 1462 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC4;
Vkadaba 6:9d393a9677f4 1463 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1464 } else if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC3) {
Vkadaba 6:9d393a9677f4 1465 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC3;
Vkadaba 23:bb685f35b08b 1466 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1467 } else {
Vkadaba 5:0728bde67bdb 1468 ADMW_LOG_ERROR("Invalid ADC filter type %d specified",
Vkadaba 23:bb685f35b08b 1469 pFilterConfig->type);
Vkadaba 5:0728bde67bdb 1470 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1471 }
Vkadaba 23:bb685f35b08b 1472
Vkadaba 8:2f2775c34640 1473 /* chop mod ecan be 0 (none), 1 (HW, 2 (SW, 3 (HW+SW). */
Vkadaba 17:2f0028880874 1474 MeasSetupReg.Chop_Mode = pFilterConfig->chopMode;
Vkadaba 23:bb685f35b08b 1475
Vkadaba 6:9d393a9677f4 1476 if(pFilterConfig->notch1p2)
Vkadaba 6:9d393a9677f4 1477 MeasSetupReg.NOTCH_EN_2 = 1;
Vkadaba 6:9d393a9677f4 1478 else
Vkadaba 6:9d393a9677f4 1479 MeasSetupReg.NOTCH_EN_2 = 0;
Vkadaba 23:bb685f35b08b 1480
Vkadaba 23:bb685f35b08b 1481 switch(pFilterConfig->groundSwitch) {
Vkadaba 23:bb685f35b08b 1482 case ADMW1001_ADC_GND_SW_OPEN:
Vkadaba 23:bb685f35b08b 1483 MeasSetupReg.GND_SW = CORE_MEASUREMENT_SETUP_GND_SW_OPEN;
Vkadaba 23:bb685f35b08b 1484 break;
Vkadaba 23:bb685f35b08b 1485 case ADMW1001_ADC_GND_SW_CLOSED:
Vkadaba 23:bb685f35b08b 1486 MeasSetupReg.GND_SW = CORE_MEASUREMENT_SETUP_GND_SW_CLOSED;
Vkadaba 23:bb685f35b08b 1487 break;
Vkadaba 23:bb685f35b08b 1488 default:
Vkadaba 23:bb685f35b08b 1489 ADMW_LOG_ERROR("Invalid ground switch state %d specified",
Vkadaba 23:bb685f35b08b 1490 pFilterConfig->groundSwitch);
Vkadaba 23:bb685f35b08b 1491 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1492 }
Vkadaba 23:bb685f35b08b 1493
Vkadaba 6:9d393a9677f4 1494 WRITE_REG_U32(hDevice, MeasSetupReg.VALUE32, CORE_MEASUREMENT_SETUPn(eChannelId));
ADIJake 0:85855ecd3257 1495
Vkadaba 5:0728bde67bdb 1496 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1497 }
ADIJake 0:85855ecd3257 1498
Vkadaba 5:0728bde67bdb 1499 static ADMW_RESULT admw_SetChannelAdcCurrentConfig(
Vkadaba 5:0728bde67bdb 1500 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1501 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1502 ADMW1001_ADC_EXC_CURRENT_CONFIG *pCurrentConfig)
ADIJake 0:85855ecd3257 1503 {
Vkadaba 8:2f2775c34640 1504 ADMW_CORE_Channel_Excitation_t channelExcitationReg;
ADIJake 0:85855ecd3257 1505
Vkadaba 6:9d393a9677f4 1506 channelExcitationReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn);
Vkadaba 6:9d393a9677f4 1507
Vkadaba 18:cbf514cce921 1508 if (pCurrentConfig->outputLevel == ADMW1001_ADC_NO_EXTERNAL_EXC_CURRENT)
Vkadaba 18:cbf514cce921 1509 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_NONE;
Vkadaba 18:cbf514cce921 1510 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_EXTERNAL)
Vkadaba 6:9d393a9677f4 1511 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_EXTERNAL;
Vkadaba 18:cbf514cce921 1512 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_50uA)
Vkadaba 6:9d393a9677f4 1513 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_50UA;
Vkadaba 6:9d393a9677f4 1514 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_100uA)
Vkadaba 6:9d393a9677f4 1515 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_100UA;
Vkadaba 6:9d393a9677f4 1516 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_250uA)
Vkadaba 6:9d393a9677f4 1517 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_250UA;
Vkadaba 6:9d393a9677f4 1518 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_500uA)
Vkadaba 6:9d393a9677f4 1519 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_500UA;
Vkadaba 6:9d393a9677f4 1520 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_1000uA)
Vkadaba 6:9d393a9677f4 1521 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_1000UA;
Vkadaba 23:bb685f35b08b 1522 else {
Vkadaba 6:9d393a9677f4 1523 ADMW_LOG_ERROR("Invalid ADC excitation current %d specified",
Vkadaba 6:9d393a9677f4 1524 pCurrentConfig->outputLevel);
Vkadaba 6:9d393a9677f4 1525 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1526 }
ADIJake 0:85855ecd3257 1527
Vkadaba 6:9d393a9677f4 1528 WRITE_REG_U16(hDevice, channelExcitationReg.VALUE16, CORE_CHANNEL_EXCITATIONn(eChannelId));
ADIJake 0:85855ecd3257 1529
Vkadaba 5:0728bde67bdb 1530 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1531 }
ADIJake 0:85855ecd3257 1532
Vkadaba 5:0728bde67bdb 1533 ADMW_RESULT admw_SetAdcChannelConfig(
Vkadaba 5:0728bde67bdb 1534 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1535 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1536 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1537 {
Vkadaba 5:0728bde67bdb 1538 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1539 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
ADIJake 0:85855ecd3257 1540 &pChannelConfig->adcChannelConfig;
ADIJake 0:85855ecd3257 1541
Vkadaba 5:0728bde67bdb 1542 eRet = admw_SetChannelAdcSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1543 pAdcChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1544 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1545 ADMW_LOG_ERROR("Failed to set ADC sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1546 eChannelId);
ADIJake 0:85855ecd3257 1547 return eRet;
ADIJake 0:85855ecd3257 1548 }
ADIJake 0:85855ecd3257 1549
Vkadaba 5:0728bde67bdb 1550 eRet = admw_SetChannelAdcSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1551 pChannelConfig);
Vkadaba 23:bb685f35b08b 1552 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1553 ADMW_LOG_ERROR("Failed to set ADC sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1554 eChannelId);
ADIJake 0:85855ecd3257 1555 return eRet;
ADIJake 0:85855ecd3257 1556 }
ADIJake 0:85855ecd3257 1557
Vkadaba 33:df7a00f1b8e1 1558 eRet = admw_SetChannelAdcMeasurementSetup(hDevice, eChannelId,
Vkadaba 33:df7a00f1b8e1 1559 pAdcChannelConfig);
Vkadaba 23:bb685f35b08b 1560 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1561 ADMW_LOG_ERROR("Failed to set ADC filter for channel %d",
Vkadaba 23:bb685f35b08b 1562 eChannelId);
ADIJake 0:85855ecd3257 1563 return eRet;
ADIJake 0:85855ecd3257 1564 }
ADIJake 0:85855ecd3257 1565
Vkadaba 5:0728bde67bdb 1566 eRet = admw_SetChannelAdcCurrentConfig(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1567 &pAdcChannelConfig->current);
Vkadaba 23:bb685f35b08b 1568 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1569 ADMW_LOG_ERROR("Failed to set ADC current for channel %d",
Vkadaba 23:bb685f35b08b 1570 eChannelId);
ADIJake 0:85855ecd3257 1571 return eRet;
ADIJake 0:85855ecd3257 1572 }
ADIJake 0:85855ecd3257 1573
Vkadaba 5:0728bde67bdb 1574 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1575 }
ADIJake 0:85855ecd3257 1576
Vkadaba 5:0728bde67bdb 1577 static ADMW_RESULT admw_SetChannelDigitalSensorDetails(
Vkadaba 5:0728bde67bdb 1578 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1579 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1580 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1581 {
Vkadaba 8:2f2775c34640 1582 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1583
ADIJake 0:85855ecd3257 1584 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1585
Vkadaba 23:bb685f35b08b 1586 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1587 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1588 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1589 } else {
Vkadaba 5:0728bde67bdb 1590 ADMW_LOG_ERROR("Invalid compensation channel specified for digital sensor");
Vkadaba 5:0728bde67bdb 1591 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1592 }
ADIJake 0:85855ecd3257 1593
Vkadaba 23:bb685f35b08b 1594 if (pChannelConfig->measurementUnit == ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED) {
Vkadaba 5:0728bde67bdb 1595 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 23:bb685f35b08b 1596 } else {
Vkadaba 5:0728bde67bdb 1597 ADMW_LOG_ERROR("Invalid measurement unit specified for digital channel");
Vkadaba 5:0728bde67bdb 1598 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1599 }
ADIJake 0:85855ecd3257 1600
ADIJake 0:85855ecd3257 1601 if (pChannelConfig->disablePublishing)
ADIJake 0:85855ecd3257 1602 sensorDetailsReg.Do_Not_Publish = 1;
ADIJake 0:85855ecd3257 1603 else
ADIJake 0:85855ecd3257 1604 sensorDetailsReg.Do_Not_Publish = 0;
ADIJake 0:85855ecd3257 1605
ADIJake 0:85855ecd3257 1606 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1607
Vkadaba 5:0728bde67bdb 1608 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1609 }
ADIJake 0:85855ecd3257 1610
Vkadaba 5:0728bde67bdb 1611 static ADMW_RESULT admw_SetDigitalSensorFormat(
Vkadaba 5:0728bde67bdb 1612 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1613 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1614 ADMW1001_DIGITAL_SENSOR_DATA_FORMAT *pDataFormat)
ADIJake 0:85855ecd3257 1615 {
Vkadaba 8:2f2775c34640 1616 ADMW_CORE_Digital_Sensor_Config_t sensorConfigReg;
ADIJake 0:85855ecd3257 1617
ADIJake 0:85855ecd3257 1618 sensorConfigReg.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_CONFIGn);
ADIJake 0:85855ecd3257 1619
Vkadaba 23:bb685f35b08b 1620 if (pDataFormat->coding != ADMW1001_DIGITAL_SENSOR_DATA_CODING_NONE) {
Vkadaba 23:bb685f35b08b 1621 if (pDataFormat->frameLength == 0) {
Vkadaba 5:0728bde67bdb 1622 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1623 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1624 }
Vkadaba 23:bb685f35b08b 1625 if (pDataFormat->numDataBits == 0) {
Vkadaba 5:0728bde67bdb 1626 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1627 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1628 }
ADIJake 0:85855ecd3257 1629
ADIJake 0:85855ecd3257 1630 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_READ_BYTES,
ADIJake 0:85855ecd3257 1631 pDataFormat->frameLength - 1);
ADIJake 0:85855ecd3257 1632 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_DATA_BITS,
ADIJake 0:85855ecd3257 1633 pDataFormat->numDataBits - 1);
ADIJake 0:85855ecd3257 1634 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_BIT_OFFSET,
ADIJake 0:85855ecd3257 1635 pDataFormat->bitOffset);
ADIJake 0:85855ecd3257 1636
ADIJake 0:85855ecd3257 1637 sensorConfigReg.Digital_Sensor_Read_Bytes = pDataFormat->frameLength - 1;
ADIJake 0:85855ecd3257 1638 sensorConfigReg.Digital_Sensor_Data_Bits = pDataFormat->numDataBits - 1;
ADIJake 0:85855ecd3257 1639 sensorConfigReg.Digital_Sensor_Bit_Offset = pDataFormat->bitOffset;
ADIJake 0:85855ecd3257 1640 sensorConfigReg.Digital_Sensor_Left_Aligned = pDataFormat->leftJustified ? 1 : 0;
ADIJake 0:85855ecd3257 1641 sensorConfigReg.Digital_Sensor_Little_Endian = pDataFormat->littleEndian ? 1 : 0;
ADIJake 0:85855ecd3257 1642
Vkadaba 23:bb685f35b08b 1643 switch (pDataFormat->coding) {
Vkadaba 23:bb685f35b08b 1644 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_UNIPOLAR:
Vkadaba 23:bb685f35b08b 1645 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_UNIPOLAR;
Vkadaba 23:bb685f35b08b 1646 break;
Vkadaba 23:bb685f35b08b 1647 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_TWOS_COMPLEMENT:
Vkadaba 23:bb685f35b08b 1648 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_TWOS_COMPL;
Vkadaba 23:bb685f35b08b 1649 break;
Vkadaba 23:bb685f35b08b 1650 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_OFFSET_BINARY:
Vkadaba 23:bb685f35b08b 1651 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_OFFSET_BINARY;
Vkadaba 23:bb685f35b08b 1652 break;
Vkadaba 23:bb685f35b08b 1653 default:
Vkadaba 23:bb685f35b08b 1654 ADMW_LOG_ERROR("Invalid coding specified for digital sensor data format");
Vkadaba 23:bb685f35b08b 1655 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1656 }
Vkadaba 23:bb685f35b08b 1657 } else {
Vkadaba 5:0728bde67bdb 1658 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_NONE;
ADIJake 0:85855ecd3257 1659 }
ADIJake 0:85855ecd3257 1660
ADIJake 0:85855ecd3257 1661 WRITE_REG_U16(hDevice, sensorConfigReg.VALUE16,
ADIJake 0:85855ecd3257 1662 CORE_DIGITAL_SENSOR_CONFIGn(eChannelId));
ADIJake 0:85855ecd3257 1663
ADIJake 0:85855ecd3257 1664
Vkadaba 5:0728bde67bdb 1665 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1666 }
ADIJake 0:85855ecd3257 1667
Vkadaba 5:0728bde67bdb 1668 static ADMW_RESULT admw_SetDigitalCalibrationParam(
Vkadaba 23:bb685f35b08b 1669 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 23:bb685f35b08b 1670 ADMW1001_CH_ID eChannelId,
Vkadaba 23:bb685f35b08b 1671 ADMW1001_DIGITAL_CALIBRATION_COMMAND *pCalibrationParam)
ADIJake 0:85855ecd3257 1672 {
Vkadaba 32:52445bef314d 1673 // ADMW_CORE_Calibration_Parameter_t calibrationParamReg;
Vkadaba 32:52445bef314d 1674 //
Vkadaba 32:52445bef314d 1675 // calibrationParamReg.VALUE32 = REG_RESET_VAL(CORE_CALIBRATION_PARAMETERn);
Vkadaba 32:52445bef314d 1676 //
Vkadaba 32:52445bef314d 1677 // if (pCalibrationParam->enableCalibrationParam == false)
Vkadaba 32:52445bef314d 1678 // calibrationParamReg.Calibration_Parameter_Enable = 0;
Vkadaba 32:52445bef314d 1679 // else
Vkadaba 32:52445bef314d 1680 // calibrationParamReg.Calibration_Parameter_Enable = 1;
Vkadaba 32:52445bef314d 1681 //
Vkadaba 32:52445bef314d 1682 // CHECK_REG_FIELD_VAL(CORE_CALIBRATION_PARAMETER_CALIBRATION_PARAMETER,
Vkadaba 32:52445bef314d 1683 // pCalibrationParam->calibrationParam);
Vkadaba 32:52445bef314d 1684 //
Vkadaba 32:52445bef314d 1685 // calibrationParamReg.Calibration_Parameter = pCalibrationParam->calibrationParam;
Vkadaba 32:52445bef314d 1686 //
Vkadaba 32:52445bef314d 1687 // WRITE_REG_U32(hDevice, calibrationParamReg.VALUE32,
Vkadaba 32:52445bef314d 1688 // CORE_CALIBRATION_PARAMETERn(eChannelId));
Vkadaba 32:52445bef314d 1689 //
Vkadaba 5:0728bde67bdb 1690 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1691 }
ADIJake 0:85855ecd3257 1692
Vkadaba 5:0728bde67bdb 1693 static ADMW_RESULT admw_SetChannelI2cSensorType(
Vkadaba 5:0728bde67bdb 1694 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1695 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1696 ADMW1001_I2C_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1697 {
Vkadaba 8:2f2775c34640 1698 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1699
ADIJake 0:85855ecd3257 1700 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1701
ADIJake 0:85855ecd3257 1702 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1703 switch(sensorType) {
Vkadaba 8:2f2775c34640 1704 case ADMW1001_I2C_SENSOR_HUMIDITY_A:
Vkadaba 8:2f2775c34640 1705 case ADMW1001_I2C_SENSOR_HUMIDITY_B:
Vkadaba 8:2f2775c34640 1706 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 8:2f2775c34640 1707 break;
Vkadaba 8:2f2775c34640 1708 default:
Vkadaba 8:2f2775c34640 1709 ADMW_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType);
Vkadaba 8:2f2775c34640 1710 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1711 }
ADIJake 0:85855ecd3257 1712
ADIJake 0:85855ecd3257 1713 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1714
Vkadaba 5:0728bde67bdb 1715 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1716 }
ADIJake 0:85855ecd3257 1717
Vkadaba 5:0728bde67bdb 1718 static ADMW_RESULT admw_SetChannelI2cSensorAddress(
Vkadaba 5:0728bde67bdb 1719 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1720 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1721 uint32_t deviceAddress)
ADIJake 0:85855ecd3257 1722 {
ADIJake 0:85855ecd3257 1723 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress);
ADIJake 0:85855ecd3257 1724 WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId));
ADIJake 0:85855ecd3257 1725
Vkadaba 5:0728bde67bdb 1726 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1727 }
ADIJake 0:85855ecd3257 1728
Vkadaba 5:0728bde67bdb 1729 static ADMW_RESULT admw_SetDigitalChannelComms(
Vkadaba 5:0728bde67bdb 1730 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1731 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1732 ADMW1001_DIGITAL_SENSOR_COMMS *pDigitalComms)
ADIJake 0:85855ecd3257 1733 {
Vkadaba 8:2f2775c34640 1734 ADMW_CORE_Digital_Sensor_Comms_t digitalSensorComms;
ADIJake 0:85855ecd3257 1735
ADIJake 0:85855ecd3257 1736 digitalSensorComms.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_COMMSn);
ADIJake 0:85855ecd3257 1737
Vkadaba 23:bb685f35b08b 1738 if(pDigitalComms->useCustomCommsConfig) {
ADIJake 0:85855ecd3257 1739 digitalSensorComms.Digital_Sensor_Comms_En = 1;
ADIJake 0:85855ecd3257 1740
Vkadaba 23:bb685f35b08b 1741 if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_100K) {
Vkadaba 5:0728bde67bdb 1742 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_100K;
Vkadaba 23:bb685f35b08b 1743 } else if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_400K) {
Vkadaba 5:0728bde67bdb 1744 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_400K;
Vkadaba 23:bb685f35b08b 1745 } else {
Vkadaba 5:0728bde67bdb 1746 ADMW_LOG_ERROR("Invalid I2C clock speed %d specified",
Vkadaba 23:bb685f35b08b 1747 pDigitalComms->i2cClockSpeed);
Vkadaba 5:0728bde67bdb 1748 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1749 }
ADIJake 0:85855ecd3257 1750
Vkadaba 23:bb685f35b08b 1751 if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_0) {
Vkadaba 5:0728bde67bdb 1752 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_0;
Vkadaba 23:bb685f35b08b 1753 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_1) {
Vkadaba 5:0728bde67bdb 1754 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_1;
Vkadaba 23:bb685f35b08b 1755 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_2) {
Vkadaba 5:0728bde67bdb 1756 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_2;
Vkadaba 23:bb685f35b08b 1757 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_3) {
Vkadaba 5:0728bde67bdb 1758 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_3;
Vkadaba 23:bb685f35b08b 1759 } else {
Vkadaba 5:0728bde67bdb 1760 ADMW_LOG_ERROR("Invalid SPI mode %d specified",
Vkadaba 23:bb685f35b08b 1761 pDigitalComms->spiMode);
Vkadaba 5:0728bde67bdb 1762 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1763 }
ADIJake 0:85855ecd3257 1764
Vkadaba 23:bb685f35b08b 1765 switch (pDigitalComms->spiClock) {
Vkadaba 23:bb685f35b08b 1766 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_8MHZ:
Vkadaba 23:bb685f35b08b 1767 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_8MHZ;
Vkadaba 23:bb685f35b08b 1768 break;
Vkadaba 23:bb685f35b08b 1769 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_4MHZ:
Vkadaba 23:bb685f35b08b 1770 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_4MHZ;
Vkadaba 23:bb685f35b08b 1771 break;
Vkadaba 23:bb685f35b08b 1772 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_2MHZ:
Vkadaba 23:bb685f35b08b 1773 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_2MHZ;
Vkadaba 23:bb685f35b08b 1774 break;
Vkadaba 23:bb685f35b08b 1775 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1MHZ:
Vkadaba 23:bb685f35b08b 1776 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1MHZ;
Vkadaba 23:bb685f35b08b 1777 break;
Vkadaba 23:bb685f35b08b 1778 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_500KHZ:
Vkadaba 23:bb685f35b08b 1779 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_500KHZ;
Vkadaba 23:bb685f35b08b 1780 break;
Vkadaba 23:bb685f35b08b 1781 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_250KHZ:
Vkadaba 23:bb685f35b08b 1782 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_250KHZ;
Vkadaba 23:bb685f35b08b 1783 break;
Vkadaba 23:bb685f35b08b 1784 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_125KHZ:
Vkadaba 23:bb685f35b08b 1785 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_125KHZ;
Vkadaba 23:bb685f35b08b 1786 break;
Vkadaba 23:bb685f35b08b 1787 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_62P5KHZ:
Vkadaba 23:bb685f35b08b 1788 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_62P5KHZ;
Vkadaba 23:bb685f35b08b 1789 break;
Vkadaba 23:bb685f35b08b 1790 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_31P3KHZ:
Vkadaba 23:bb685f35b08b 1791 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_31P3KHZ;
Vkadaba 23:bb685f35b08b 1792 break;
Vkadaba 23:bb685f35b08b 1793 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_15P6KHZ:
Vkadaba 23:bb685f35b08b 1794 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_15P6KHZ;
Vkadaba 23:bb685f35b08b 1795 break;
Vkadaba 23:bb685f35b08b 1796 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_7P8KHZ:
Vkadaba 23:bb685f35b08b 1797 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_7P8KHZ;
Vkadaba 23:bb685f35b08b 1798 break;
Vkadaba 23:bb685f35b08b 1799 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3P9KHZ:
Vkadaba 23:bb685f35b08b 1800 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3P9KHZ;
Vkadaba 23:bb685f35b08b 1801 break;
Vkadaba 23:bb685f35b08b 1802 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1P9KHZ:
Vkadaba 23:bb685f35b08b 1803 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1P9KHZ;
Vkadaba 23:bb685f35b08b 1804 break;
Vkadaba 23:bb685f35b08b 1805 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_977HZ:
Vkadaba 23:bb685f35b08b 1806 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_977HZ;
Vkadaba 23:bb685f35b08b 1807 break;
Vkadaba 23:bb685f35b08b 1808 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_488HZ:
Vkadaba 23:bb685f35b08b 1809 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_488HZ;
Vkadaba 23:bb685f35b08b 1810 break;
Vkadaba 23:bb685f35b08b 1811 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_244HZ:
Vkadaba 23:bb685f35b08b 1812 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_244HZ;
Vkadaba 23:bb685f35b08b 1813 break;
Vkadaba 23:bb685f35b08b 1814 default:
Vkadaba 23:bb685f35b08b 1815 ADMW_LOG_ERROR("Invalid SPI clock %d specified",
Vkadaba 23:bb685f35b08b 1816 pDigitalComms->spiClock);
Vkadaba 23:bb685f35b08b 1817 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1818 }
Vkadaba 23:bb685f35b08b 1819 } else {
ADIJake 0:85855ecd3257 1820 digitalSensorComms.Digital_Sensor_Comms_En = 0;
ADIJake 0:85855ecd3257 1821 }
ADIJake 0:85855ecd3257 1822
ADIJake 0:85855ecd3257 1823 WRITE_REG_U16(hDevice, digitalSensorComms.VALUE16, CORE_DIGITAL_SENSOR_COMMSn(eChannelId));
ADIJake 0:85855ecd3257 1824
Vkadaba 5:0728bde67bdb 1825 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1826 }
ADIJake 0:85855ecd3257 1827
Vkadaba 5:0728bde67bdb 1828 ADMW_RESULT admw_SetI2cChannelConfig(
Vkadaba 5:0728bde67bdb 1829 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1830 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1831 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1832 {
Vkadaba 5:0728bde67bdb 1833 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1834 ADMW1001_I2C_CHANNEL_CONFIG *pI2cChannelConfig =
ADIJake 0:85855ecd3257 1835 &pChannelConfig->i2cChannelConfig;
ADIJake 0:85855ecd3257 1836
Vkadaba 5:0728bde67bdb 1837 eRet = admw_SetChannelI2cSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1838 pI2cChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1839 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1840 ADMW_LOG_ERROR("Failed to set I2C sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1841 eChannelId);
ADIJake 0:85855ecd3257 1842 return eRet;
ADIJake 0:85855ecd3257 1843 }
ADIJake 0:85855ecd3257 1844
Vkadaba 5:0728bde67bdb 1845 eRet = admw_SetChannelI2cSensorAddress(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1846 pI2cChannelConfig->deviceAddress);
Vkadaba 23:bb685f35b08b 1847 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1848 ADMW_LOG_ERROR("Failed to set I2C sensor address for channel %d",
Vkadaba 23:bb685f35b08b 1849 eChannelId);
ADIJake 0:85855ecd3257 1850 return eRet;
ADIJake 0:85855ecd3257 1851 }
ADIJake 0:85855ecd3257 1852
Vkadaba 5:0728bde67bdb 1853 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1854 pChannelConfig);
Vkadaba 23:bb685f35b08b 1855 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1856 ADMW_LOG_ERROR("Failed to set I2C sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1857 eChannelId);
ADIJake 0:85855ecd3257 1858 return eRet;
ADIJake 0:85855ecd3257 1859 }
ADIJake 0:85855ecd3257 1860
Vkadaba 5:0728bde67bdb 1861 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1862 &pI2cChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 1863 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1864 ADMW_LOG_ERROR("Failed to set I2C sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 1865 eChannelId);
ADIJake 0:85855ecd3257 1866 return eRet;
ADIJake 0:85855ecd3257 1867 }
ADIJake 0:85855ecd3257 1868
Vkadaba 5:0728bde67bdb 1869 eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1870 &pI2cChannelConfig->digitalCalibrationParam);
Vkadaba 23:bb685f35b08b 1871 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1872 ADMW_LOG_ERROR("Failed to set I2C digital calibration param for channel %d",
Vkadaba 23:bb685f35b08b 1873 eChannelId);
ADIJake 0:85855ecd3257 1874 return eRet;
ADIJake 0:85855ecd3257 1875 }
ADIJake 0:85855ecd3257 1876
Vkadaba 5:0728bde67bdb 1877 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1878 &pI2cChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 1879 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1880 ADMW_LOG_ERROR("Failed to set I2C comms for channel %d",
Vkadaba 23:bb685f35b08b 1881 eChannelId);
ADIJake 0:85855ecd3257 1882 return eRet;
ADIJake 0:85855ecd3257 1883 }
ADIJake 0:85855ecd3257 1884
Vkadaba 5:0728bde67bdb 1885 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1886 }
ADIJake 0:85855ecd3257 1887
Vkadaba 5:0728bde67bdb 1888 static ADMW_RESULT admw_SetChannelSpiSensorType(
Vkadaba 5:0728bde67bdb 1889 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1890 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1891 ADMW1001_SPI_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1892 {
Vkadaba 8:2f2775c34640 1893 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1894
ADIJake 0:85855ecd3257 1895 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1896
ADIJake 0:85855ecd3257 1897 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1898 switch(sensorType) {
Vkadaba 23:bb685f35b08b 1899 case ADMW1001_SPI_SENSOR_PRESSURE_A:
Vkadaba 23:bb685f35b08b 1900 case ADMW1001_SPI_SENSOR_ACCELEROMETER_A:
Vkadaba 23:bb685f35b08b 1901 case ADMW1001_SPI_SENSOR_ACCELEROMETER_B:
Vkadaba 23:bb685f35b08b 1902
Vkadaba 23:bb685f35b08b 1903 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 23:bb685f35b08b 1904 break;
Vkadaba 23:bb685f35b08b 1905 default:
Vkadaba 23:bb685f35b08b 1906 ADMW_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType);
Vkadaba 23:bb685f35b08b 1907 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1908 }
ADIJake 0:85855ecd3257 1909
ADIJake 0:85855ecd3257 1910 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1911
Vkadaba 5:0728bde67bdb 1912 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1913 }
ADIJake 0:85855ecd3257 1914
Vkadaba 5:0728bde67bdb 1915 ADMW_RESULT admw_SetSpiChannelConfig(
Vkadaba 5:0728bde67bdb 1916 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1917 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1918 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1919 {
Vkadaba 5:0728bde67bdb 1920 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1921 ADMW1001_SPI_CHANNEL_CONFIG *pSpiChannelConfig =
ADIJake 0:85855ecd3257 1922 &pChannelConfig->spiChannelConfig;
ADIJake 0:85855ecd3257 1923
Vkadaba 5:0728bde67bdb 1924 eRet = admw_SetChannelSpiSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1925 pSpiChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1926 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1927 ADMW_LOG_ERROR("Failed to set SPI sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1928 eChannelId);
ADIJake 0:85855ecd3257 1929 return eRet;
ADIJake 0:85855ecd3257 1930 }
ADIJake 0:85855ecd3257 1931
Vkadaba 5:0728bde67bdb 1932 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1933 pChannelConfig);
Vkadaba 23:bb685f35b08b 1934 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1935 ADMW_LOG_ERROR("Failed to set SPI sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1936 eChannelId);
ADIJake 0:85855ecd3257 1937 return eRet;
ADIJake 0:85855ecd3257 1938 }
ADIJake 0:85855ecd3257 1939
Vkadaba 5:0728bde67bdb 1940 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1941 &pSpiChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 1942 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1943 ADMW_LOG_ERROR("Failed to set SPI sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 1944 eChannelId);
ADIJake 0:85855ecd3257 1945 return eRet;
ADIJake 0:85855ecd3257 1946 }
ADIJake 0:85855ecd3257 1947
Vkadaba 5:0728bde67bdb 1948 eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1949 &pSpiChannelConfig->digitalCalibrationParam);
Vkadaba 23:bb685f35b08b 1950 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1951 ADMW_LOG_ERROR("Failed to set SPI digital calibration param for channel %d",
Vkadaba 23:bb685f35b08b 1952 eChannelId);
ADIJake 0:85855ecd3257 1953 return eRet;
ADIJake 0:85855ecd3257 1954 }
ADIJake 0:85855ecd3257 1955
Vkadaba 5:0728bde67bdb 1956 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1957 &pSpiChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 1958 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1959 ADMW_LOG_ERROR("Failed to set SPI comms for channel %d",
Vkadaba 23:bb685f35b08b 1960 eChannelId);
ADIJake 0:85855ecd3257 1961 return eRet;
ADIJake 0:85855ecd3257 1962 }
ADIJake 0:85855ecd3257 1963
Vkadaba 5:0728bde67bdb 1964 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1965 }
ADIJake 0:85855ecd3257 1966
Vkadaba 5:0728bde67bdb 1967 ADMW_RESULT admw1001_SetChannelThresholdLimits(
Vkadaba 5:0728bde67bdb 1968 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1969 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1970 float32_t fHighThresholdLimit,
ADIJake 0:85855ecd3257 1971 float32_t fLowThresholdLimit)
ADIJake 0:85855ecd3257 1972 {
ADIJake 0:85855ecd3257 1973 /*
ADIJake 0:85855ecd3257 1974 * If the low/high limits are *both* set to 0 in memory, or NaNs, assume
ADIJake 0:85855ecd3257 1975 * that they are unset, or not required, and use infinity defaults instead
ADIJake 0:85855ecd3257 1976 */
Vkadaba 23:bb685f35b08b 1977 if (fHighThresholdLimit == 0.0f && fLowThresholdLimit == 0.0f) {
ADIJake 0:85855ecd3257 1978 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 1979 fLowThresholdLimit = -INFINITY;
Vkadaba 23:bb685f35b08b 1980 } else {
ADIJake 0:85855ecd3257 1981 if (isnan(fHighThresholdLimit))
ADIJake 0:85855ecd3257 1982 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 1983 if (isnan(fLowThresholdLimit))
ADIJake 0:85855ecd3257 1984 fLowThresholdLimit = -INFINITY;
ADIJake 0:85855ecd3257 1985 }
ADIJake 0:85855ecd3257 1986
ADIJake 0:85855ecd3257 1987 WRITE_REG_FLOAT(hDevice, fHighThresholdLimit,
ADIJake 0:85855ecd3257 1988 CORE_HIGH_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 1989 WRITE_REG_FLOAT(hDevice, fLowThresholdLimit,
ADIJake 0:85855ecd3257 1990 CORE_LOW_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 1991
Vkadaba 5:0728bde67bdb 1992 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1993 }
ADIJake 0:85855ecd3257 1994
Vkadaba 5:0728bde67bdb 1995 ADMW_RESULT admw1001_SetOffsetGain(
Vkadaba 5:0728bde67bdb 1996 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1997 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1998 float32_t fOffsetAdjustment,
ADIJake 0:85855ecd3257 1999 float32_t fGainAdjustment)
ADIJake 0:85855ecd3257 2000 {
ADIJake 0:85855ecd3257 2001 /* Replace with default values if NaNs are specified (or 0.0 for gain) */
ADIJake 0:85855ecd3257 2002 if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0f))
ADIJake 0:85855ecd3257 2003 fGainAdjustment = 1.0f;
ADIJake 0:85855ecd3257 2004 if (isnan(fOffsetAdjustment))
ADIJake 0:85855ecd3257 2005 fOffsetAdjustment = 0.0f;
ADIJake 0:85855ecd3257 2006
ADIJake 0:85855ecd3257 2007 WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId));
ADIJake 0:85855ecd3257 2008 WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId));
ADIJake 0:85855ecd3257 2009
Vkadaba 5:0728bde67bdb 2010 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2011 }
ADIJake 0:85855ecd3257 2012
Vkadaba 5:0728bde67bdb 2013 ADMW_RESULT admw1001_SetSensorParameter(
Vkadaba 5:0728bde67bdb 2014 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2015 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2016 float32_t fSensorParam)
ADIJake 0:85855ecd3257 2017 {
ADIJake 0:85855ecd3257 2018 if (fSensorParam == 0.0f)
ADIJake 0:85855ecd3257 2019 fSensorParam = NAN;
ADIJake 0:85855ecd3257 2020
Vkadaba 32:52445bef314d 2021 //WRITE_REG_FLOAT(hDevice, fSensorParam, CORE_SENSOR_PARAMETERn(eChannelId));
ADIJake 0:85855ecd3257 2022
Vkadaba 5:0728bde67bdb 2023 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2024 }
ADIJake 0:85855ecd3257 2025
Vkadaba 5:0728bde67bdb 2026 ADMW_RESULT admw1001_SetChannelSettlingTime(
Vkadaba 5:0728bde67bdb 2027 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2028 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2029 uint32_t nSettlingTime)
ADIJake 0:85855ecd3257 2030 {
Vkadaba 8:2f2775c34640 2031 ADMW_CORE_Settling_Time_t settlingTimeReg;
ADIJake 0:85855ecd3257 2032
Vkadaba 23:bb685f35b08b 2033 if (nSettlingTime < (1 << 12)) {
Vkadaba 5:0728bde67bdb 2034 settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MICROSECONDS;
Vkadaba 23:bb685f35b08b 2035 } else if (nSettlingTime < (1000 * (1 << 12))) {
Vkadaba 5:0728bde67bdb 2036 settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MILLISECONDS;
ADIJake 0:85855ecd3257 2037 nSettlingTime /= 1000;
Vkadaba 23:bb685f35b08b 2038 } else {
Vkadaba 5:0728bde67bdb 2039 settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_SECONDS;
ADIJake 0:85855ecd3257 2040 nSettlingTime /= 1000000;
ADIJake 0:85855ecd3257 2041 }
ADIJake 0:85855ecd3257 2042
ADIJake 0:85855ecd3257 2043 CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime);
ADIJake 0:85855ecd3257 2044 settlingTimeReg.Settling_Time = nSettlingTime;
ADIJake 0:85855ecd3257 2045
ADIJake 0:85855ecd3257 2046 WRITE_REG_U16(hDevice, settlingTimeReg.VALUE16, CORE_SETTLING_TIMEn(eChannelId));
ADIJake 0:85855ecd3257 2047
Vkadaba 5:0728bde67bdb 2048 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2049 }
ADIJake 0:85855ecd3257 2050
Vkadaba 5:0728bde67bdb 2051 ADMW_RESULT admw1001_SetChannelConfig(
Vkadaba 5:0728bde67bdb 2052 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2053 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 2054 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 2055 {
Vkadaba 5:0728bde67bdb 2056 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2057
Vkadaba 23:bb685f35b08b 2058 if (! ADMW1001_CHANNEL_IS_VIRTUAL(eChannelId)) {
Vkadaba 5:0728bde67bdb 2059 eRet = admw1001_SetChannelCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2060 pChannelConfig->enableChannel ?
Vkadaba 23:bb685f35b08b 2061 pChannelConfig->measurementsPerCycle : 0);
Vkadaba 23:bb685f35b08b 2062 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2063 ADMW_LOG_ERROR("Failed to set measurement count for channel %d",
Vkadaba 23:bb685f35b08b 2064 eChannelId);
ADIJake 0:85855ecd3257 2065 return eRet;
ADIJake 0:85855ecd3257 2066 }
ADIJake 0:85855ecd3257 2067
Vkadaba 5:0728bde67bdb 2068 eRet = admw1001_SetChannelOptions(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2069 pChannelConfig->priority);
Vkadaba 23:bb685f35b08b 2070 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2071 ADMW_LOG_ERROR("Failed to set priority for channel %d",
Vkadaba 23:bb685f35b08b 2072 eChannelId);
ADIJake 0:85855ecd3257 2073 return eRet;
ADIJake 0:85855ecd3257 2074 }
ADIJake 0:85855ecd3257 2075
ADIJake 0:85855ecd3257 2076 /* If the channel is not enabled, we can skip the following steps */
Vkadaba 23:bb685f35b08b 2077 if (pChannelConfig->enableChannel) {
Vkadaba 5:0728bde67bdb 2078 eRet = admw1001_SetChannelSkipCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2079 pChannelConfig->cycleSkipCount);
Vkadaba 23:bb685f35b08b 2080 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2081 ADMW_LOG_ERROR("Failed to set cycle skip count for channel %d",
Vkadaba 23:bb685f35b08b 2082 eChannelId);
ADIJake 0:85855ecd3257 2083 return eRet;
ADIJake 0:85855ecd3257 2084 }
ADIJake 0:85855ecd3257 2085
Vkadaba 23:bb685f35b08b 2086 switch (eChannelId) {
Vkadaba 23:bb685f35b08b 2087 case ADMW1001_CH_ID_ANLG_1_UNIVERSAL:
Vkadaba 23:bb685f35b08b 2088 case ADMW1001_CH_ID_ANLG_2_UNIVERSAL:
Vkadaba 23:bb685f35b08b 2089 case ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 2090 case ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 2091 eRet = admw_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2092 break;
Vkadaba 23:bb685f35b08b 2093 case ADMW1001_CH_ID_DIG_I2C_0:
Vkadaba 23:bb685f35b08b 2094 case ADMW1001_CH_ID_DIG_I2C_1:
Vkadaba 23:bb685f35b08b 2095 eRet = admw_SetI2cChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2096 break;
Vkadaba 23:bb685f35b08b 2097 case ADMW1001_CH_ID_DIG_SPI_0:
Vkadaba 23:bb685f35b08b 2098 eRet = admw_SetSpiChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2099 break;
Vkadaba 23:bb685f35b08b 2100 default:
Vkadaba 23:bb685f35b08b 2101 ADMW_LOG_ERROR("Invalid channel ID %d specified", eChannelId);
Vkadaba 32:52445bef314d 2102 eRet = ADMW_INVALID_PARAM;
Vkadaba 32:52445bef314d 2103 #if 0
Vkadaba 32:52445bef314d 2104 /* when using i2c sensors there is an error ( dataformat->length=0)
Vkadaba 32:52445bef314d 2105 the code below catches this error and this causes further problems.*/
Vkadaba 32:52445bef314d 2106 break;
Vkadaba 32:52445bef314d 2107 }
Vkadaba 32:52445bef314d 2108 if (eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 2109 ADMW_LOG_ERROR("Failed to set config for channel %d",
Vkadaba 32:52445bef314d 2110 eChannelId);
Vkadaba 32:52445bef314d 2111 return eRet;
Vkadaba 32:52445bef314d 2112 #endif
ADIJake 0:85855ecd3257 2113 }
ADIJake 0:85855ecd3257 2114
Vkadaba 5:0728bde67bdb 2115 eRet = admw1001_SetChannelSettlingTime(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2116 pChannelConfig->extraSettlingTime);
Vkadaba 23:bb685f35b08b 2117 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2118 ADMW_LOG_ERROR("Failed to set settling time for channel %d",
Vkadaba 23:bb685f35b08b 2119 eChannelId);
ADIJake 0:85855ecd3257 2120 return eRet;
ADIJake 0:85855ecd3257 2121 }
ADIJake 0:85855ecd3257 2122 }
ADIJake 0:85855ecd3257 2123 }
ADIJake 0:85855ecd3257 2124
Vkadaba 23:bb685f35b08b 2125 if (pChannelConfig->enableChannel) {
ADIJake 0:85855ecd3257 2126 /* Threshold limits can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2127 eRet = admw1001_SetChannelThresholdLimits(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2128 pChannelConfig->highThreshold,
Vkadaba 23:bb685f35b08b 2129 pChannelConfig->lowThreshold);
Vkadaba 23:bb685f35b08b 2130 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2131 ADMW_LOG_ERROR("Failed to set threshold limits for channel %d",
Vkadaba 23:bb685f35b08b 2132 eChannelId);
ADIJake 0:85855ecd3257 2133 return eRet;
ADIJake 0:85855ecd3257 2134 }
ADIJake 0:85855ecd3257 2135
ADIJake 0:85855ecd3257 2136 /* Offset and gain can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2137 eRet = admw1001_SetOffsetGain(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2138 pChannelConfig->offsetAdjustment,
Vkadaba 23:bb685f35b08b 2139 pChannelConfig->gainAdjustment);
Vkadaba 23:bb685f35b08b 2140 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2141 ADMW_LOG_ERROR("Failed to set offset/gain for channel %d",
Vkadaba 23:bb685f35b08b 2142 eChannelId);
ADIJake 0:85855ecd3257 2143 return eRet;
ADIJake 0:85855ecd3257 2144 }
ADIJake 0:85855ecd3257 2145
ADIJake 0:85855ecd3257 2146 /* Set sensor specific parameter */
Vkadaba 5:0728bde67bdb 2147 eRet = admw1001_SetSensorParameter(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2148 pChannelConfig->sensorParameter);
Vkadaba 23:bb685f35b08b 2149 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2150 ADMW_LOG_ERROR("Failed to set sensor parameter for channel %d",
Vkadaba 23:bb685f35b08b 2151 eChannelId);
ADIJake 0:85855ecd3257 2152 return eRet;
ADIJake 0:85855ecd3257 2153 }
ADIJake 0:85855ecd3257 2154 }
ADIJake 0:85855ecd3257 2155
Vkadaba 5:0728bde67bdb 2156 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2157 }
ADIJake 0:85855ecd3257 2158
Vkadaba 5:0728bde67bdb 2159 ADMW_RESULT admw_SetConfig(
Vkadaba 5:0728bde67bdb 2160 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2161 ADMW_CONFIG * const pConfig)
ADIJake 0:85855ecd3257 2162 {
Vkadaba 5:0728bde67bdb 2163 ADMW1001_CONFIG *pDeviceConfig;
Vkadaba 5:0728bde67bdb 2164 ADMW_PRODUCT_ID productId;
Vkadaba 5:0728bde67bdb 2165 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2166
Vkadaba 23:bb685f35b08b 2167 if (pConfig->productId != ADMW_PRODUCT_ID_ADMW1001) {
Vkadaba 5:0728bde67bdb 2168 ADMW_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)",
Vkadaba 23:bb685f35b08b 2169 pConfig->productId, ADMW_PRODUCT_ID_ADMW1001);
Vkadaba 5:0728bde67bdb 2170 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2171 }
Vkadaba 23:bb685f35b08b 2172
Vkadaba 23:bb685f35b08b 2173 if (!((pConfig->versionId.major==VERSIONID_MAJOR) &&
Vkadaba 23:bb685f35b08b 2174 (pConfig->versionId.minor==VERSIONID_MINOR))) {
Vkadaba 23:bb685f35b08b 2175 ADMW_LOG_ERROR("Configuration Version ID (0x%X) is not supported",
Vkadaba 23:bb685f35b08b 2176 pConfig->versionId);
Vkadaba 6:9d393a9677f4 2177 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 2178 }
Vkadaba 23:bb685f35b08b 2179
Vkadaba 23:bb685f35b08b 2180
ADIJake 0:85855ecd3257 2181 /* Check that the actual Product ID is a match? */
Vkadaba 5:0728bde67bdb 2182 eRet = admw_GetProductID(hDevice, &productId);
Vkadaba 23:bb685f35b08b 2183 if (eRet) {
Vkadaba 5:0728bde67bdb 2184 ADMW_LOG_ERROR("Failed to read device Product ID register");
ADIJake 0:85855ecd3257 2185 return eRet;
ADIJake 0:85855ecd3257 2186 }
Vkadaba 23:bb685f35b08b 2187 if (pConfig->productId != productId) {
Vkadaba 5:0728bde67bdb 2188 ADMW_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)",
Vkadaba 8:2f2775c34640 2189 pConfig->productId, productId);
Vkadaba 5:0728bde67bdb 2190 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2191 }
ADIJake 0:85855ecd3257 2192
Vkadaba 5:0728bde67bdb 2193 pDeviceConfig = &pConfig->admw1001;
Vkadaba 5:0728bde67bdb 2194
Vkadaba 5:0728bde67bdb 2195 eRet = admw1001_SetPowerConfig(hDevice, &pDeviceConfig->power);
Vkadaba 23:bb685f35b08b 2196 if (eRet) {
Vkadaba 5:0728bde67bdb 2197 ADMW_LOG_ERROR("Failed to set power configuration");
ADIJake 0:85855ecd3257 2198 return eRet;
ADIJake 0:85855ecd3257 2199 }
ADIJake 0:85855ecd3257 2200
Vkadaba 5:0728bde67bdb 2201 eRet = admw1001_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
Vkadaba 23:bb685f35b08b 2202 if (eRet) {
Vkadaba 5:0728bde67bdb 2203 ADMW_LOG_ERROR("Failed to set measurement configuration");
ADIJake 0:85855ecd3257 2204 return eRet;
ADIJake 0:85855ecd3257 2205 }
ADIJake 0:85855ecd3257 2206
Vkadaba 32:52445bef314d 2207 // eRet = admw1001_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
Vkadaba 32:52445bef314d 2208 // if (eRet)
Vkadaba 32:52445bef314d 2209 // {
Vkadaba 32:52445bef314d 2210 // ADMW_LOG_ERROR("Failed to set diagnostics configuration");
Vkadaba 32:52445bef314d 2211 // return eRet;
Vkadaba 32:52445bef314d 2212 // }
ADIJake 0:85855ecd3257 2213
Vkadaba 8:2f2775c34640 2214 for (ADMW1001_CH_ID id = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 2215 id < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 2216 id++) {
Vkadaba 5:0728bde67bdb 2217 eRet = admw1001_SetChannelConfig(hDevice, id,
Vkadaba 23:bb685f35b08b 2218 &pDeviceConfig->channels[id]);
Vkadaba 23:bb685f35b08b 2219 if (eRet) {
Vkadaba 5:0728bde67bdb 2220 ADMW_LOG_ERROR("Failed to set channel %d configuration", id);
ADIJake 0:85855ecd3257 2221 return eRet;
ADIJake 0:85855ecd3257 2222 }
ADIJake 0:85855ecd3257 2223 }
ADIJake 0:85855ecd3257 2224
Vkadaba 5:0728bde67bdb 2225 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2226 }
ADIJake 0:85855ecd3257 2227
Vkadaba 5:0728bde67bdb 2228 ADMW_RESULT admw1001_SetLutData(
Vkadaba 8:2f2775c34640 2229 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2230 ADMW1001_LUT * const pLutData)
ADIJake 0:85855ecd3257 2231 {
Vkadaba 5:0728bde67bdb 2232 ADMW1001_LUT_HEADER *pLutHeader = &pLutData->header;
Vkadaba 8:2f2775c34640 2233 ADMW1001_LUT_TABLE *pLutTable = pLutData->tables;
ADIJake 0:85855ecd3257 2234 unsigned actualLength = 0;
ADIJake 0:85855ecd3257 2235
Vkadaba 23:bb685f35b08b 2236 if (pLutData->header.signature != ADMW_LUT_SIGNATURE) {
Vkadaba 5:0728bde67bdb 2237 ADMW_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)",
Vkadaba 23:bb685f35b08b 2238 ADMW_LUT_SIGNATURE, pLutHeader->signature);
Vkadaba 5:0728bde67bdb 2239 return ADMW_INVALID_SIGNATURE;
ADIJake 0:85855ecd3257 2240 }
ADIJake 0:85855ecd3257 2241
Vkadaba 23:bb685f35b08b 2242 for (unsigned i = 0; i < pLutHeader->numTables; i++) {
Vkadaba 5:0728bde67bdb 2243 ADMW1001_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
Vkadaba 5:0728bde67bdb 2244 ADMW1001_LUT_TABLE_DATA *pData = &pLutTable->data;
ADIJake 0:85855ecd3257 2245 unsigned short calculatedCrc;
ADIJake 0:85855ecd3257 2246
Vkadaba 23:bb685f35b08b 2247 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2248 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 23:bb685f35b08b 2249 switch (pDesc->equation) {
Vkadaba 23:bb685f35b08b 2250 case ADMW1001_LUT_EQUATION_POLYN:
Vkadaba 23:bb685f35b08b 2251 case ADMW1001_LUT_EQUATION_POLYNEXP:
Vkadaba 23:bb685f35b08b 2252 case ADMW1001_LUT_EQUATION_QUADRATIC:
Vkadaba 23:bb685f35b08b 2253 case ADMW1001_LUT_EQUATION_STEINHART:
Vkadaba 23:bb685f35b08b 2254 case ADMW1001_LUT_EQUATION_LOGARITHMIC:
Vkadaba 23:bb685f35b08b 2255 case ADMW1001_LUT_EQUATION_BIVARIATE_POLYN:
Vkadaba 23:bb685f35b08b 2256 break;
Vkadaba 23:bb685f35b08b 2257 default:
Vkadaba 23:bb685f35b08b 2258 ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2259 pDesc->equation, i);
Vkadaba 23:bb685f35b08b 2260 return ADMW_INVALID_PARAM;
Vkadaba 23:bb685f35b08b 2261 }
ADIJake 0:85855ecd3257 2262 break;
Vkadaba 23:bb685f35b08b 2263 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2264 case ADMW1001_LUT_GEOMETRY_NES_2D:
Vkadaba 23:bb685f35b08b 2265 case ADMW1001_LUT_GEOMETRY_ES_1D:
Vkadaba 23:bb685f35b08b 2266 case ADMW1001_LUT_GEOMETRY_ES_2D:
Vkadaba 23:bb685f35b08b 2267 if (pDesc->equation != ADMW1001_LUT_EQUATION_LUT) {
Vkadaba 5:0728bde67bdb 2268 ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2269 pDesc->equation, i);
Vkadaba 5:0728bde67bdb 2270 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2271 }
Vkadaba 23:bb685f35b08b 2272 break;
Vkadaba 23:bb685f35b08b 2273 default:
Vkadaba 23:bb685f35b08b 2274 ADMW_LOG_ERROR("Invalid geometry %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2275 pDesc->geometry, i);
Vkadaba 23:bb685f35b08b 2276 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2277 }
ADIJake 0:85855ecd3257 2278
Vkadaba 23:bb685f35b08b 2279 switch (pDesc->dataType) {
Vkadaba 23:bb685f35b08b 2280 case ADMW1001_LUT_DATA_TYPE_FLOAT32:
Vkadaba 23:bb685f35b08b 2281 case ADMW1001_LUT_DATA_TYPE_FLOAT64:
Vkadaba 23:bb685f35b08b 2282 break;
Vkadaba 23:bb685f35b08b 2283 default:
Vkadaba 23:bb685f35b08b 2284 ADMW_LOG_ERROR("Invalid vector format %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2285 pDesc->dataType, i);
Vkadaba 23:bb685f35b08b 2286 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2287 }
ADIJake 0:85855ecd3257 2288
Vkadaba 5:0728bde67bdb 2289 calculatedCrc = admw_crc16_ccitt(pData, pDesc->length);
Vkadaba 23:bb685f35b08b 2290 if (calculatedCrc != pDesc->crc16) {
Vkadaba 5:0728bde67bdb 2291 ADMW_LOG_ERROR("CRC validation failed on LUT table %u (expected 0x%04X, actual 0x%04X)",
Vkadaba 23:bb685f35b08b 2292 i, pDesc->crc16, calculatedCrc);
Vkadaba 5:0728bde67bdb 2293 return ADMW_CRC_ERROR;
ADIJake 0:85855ecd3257 2294 }
ADIJake 0:85855ecd3257 2295
ADIJake 0:85855ecd3257 2296 actualLength += sizeof(*pDesc) + pDesc->length;
ADIJake 0:85855ecd3257 2297
ADIJake 0:85855ecd3257 2298 /* Move to the next look-up table */
Vkadaba 5:0728bde67bdb 2299 pLutTable = (ADMW1001_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length);
ADIJake 0:85855ecd3257 2300 }
ADIJake 0:85855ecd3257 2301
Vkadaba 23:bb685f35b08b 2302 if (actualLength != pLutHeader->totalLength) {
Vkadaba 5:0728bde67bdb 2303 ADMW_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)",
Vkadaba 23:bb685f35b08b 2304 pLutHeader->totalLength, actualLength);
Vkadaba 5:0728bde67bdb 2305 return ADMW_WRONG_SIZE;
ADIJake 0:85855ecd3257 2306 }
ADIJake 0:85855ecd3257 2307
Vkadaba 23:bb685f35b08b 2308 if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADMW_LUT_MAX_SIZE) {
Vkadaba 5:0728bde67bdb 2309 ADMW_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded",
Vkadaba 23:bb685f35b08b 2310 ADMW_LUT_MAX_SIZE);
Vkadaba 5:0728bde67bdb 2311 return ADMW_WRONG_SIZE;
ADIJake 0:85855ecd3257 2312 }
ADIJake 0:85855ecd3257 2313
ADIJake 0:85855ecd3257 2314 /* Write the LUT data to the device */
ADIJake 0:85855ecd3257 2315 unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength;
ADIJake 0:85855ecd3257 2316 WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET);
ADIJake 0:85855ecd3257 2317 WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA);
ADIJake 0:85855ecd3257 2318
Vkadaba 5:0728bde67bdb 2319 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2320 }
ADIJake 0:85855ecd3257 2321
Vkadaba 5:0728bde67bdb 2322 ADMW_RESULT admw1001_SetLutDataRaw(
Vkadaba 5:0728bde67bdb 2323 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2324 ADMW1001_LUT_RAW * const pLutData)
ADIJake 0:85855ecd3257 2325 {
Vkadaba 5:0728bde67bdb 2326 return admw1001_SetLutData(hDevice,
Vkadaba 23:bb685f35b08b 2327 (ADMW1001_LUT *)pLutData);
ADIJake 0:85855ecd3257 2328 }
ADIJake 0:85855ecd3257 2329
Vkadaba 5:0728bde67bdb 2330 static ADMW_RESULT getLutTableSize(
Vkadaba 5:0728bde67bdb 2331 ADMW1001_LUT_DESCRIPTOR * const pDesc,
Vkadaba 5:0728bde67bdb 2332 ADMW1001_LUT_TABLE_DATA * const pData,
ADIJake 0:85855ecd3257 2333 unsigned *pLength)
ADIJake 0:85855ecd3257 2334 {
Vkadaba 23:bb685f35b08b 2335 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2336 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 23:bb685f35b08b 2337 if (pDesc->equation == ADMW1001_LUT_EQUATION_BIVARIATE_POLYN)
Vkadaba 23:bb685f35b08b 2338 *pLength = ADMW1001_LUT_2D_POLYN_COEFF_LIST_SIZE(pData->coeffList2d);
Vkadaba 23:bb685f35b08b 2339 else
Vkadaba 23:bb685f35b08b 2340 *pLength = ADMW1001_LUT_COEFF_LIST_SIZE(pData->coeffList);
Vkadaba 23:bb685f35b08b 2341 break;
Vkadaba 23:bb685f35b08b 2342 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2343 *pLength = ADMW1001_LUT_1D_NES_SIZE(pData->lut1dNes);
Vkadaba 23:bb685f35b08b 2344 break;
Vkadaba 23:bb685f35b08b 2345 case ADMW1001_LUT_GEOMETRY_NES_2D:
Vkadaba 23:bb685f35b08b 2346 *pLength = ADMW1001_LUT_2D_NES_SIZE(pData->lut2dNes);
Vkadaba 23:bb685f35b08b 2347 break;
Vkadaba 23:bb685f35b08b 2348 case ADMW1001_LUT_GEOMETRY_ES_1D:
Vkadaba 23:bb685f35b08b 2349 *pLength = ADMW1001_LUT_1D_ES_SIZE(pData->lut1dEs);
Vkadaba 23:bb685f35b08b 2350 break;
Vkadaba 23:bb685f35b08b 2351 case ADMW1001_LUT_GEOMETRY_ES_2D:
Vkadaba 23:bb685f35b08b 2352 *pLength = ADMW1001_LUT_2D_ES_SIZE(pData->lut2dEs);
Vkadaba 23:bb685f35b08b 2353 break;
Vkadaba 23:bb685f35b08b 2354 default:
Vkadaba 23:bb685f35b08b 2355 ADMW_LOG_ERROR("Invalid LUT table geometry %d specified\r\n",
Vkadaba 23:bb685f35b08b 2356 pDesc->geometry);
Vkadaba 23:bb685f35b08b 2357 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2358 }
ADIJake 0:85855ecd3257 2359
Vkadaba 5:0728bde67bdb 2360 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2361 }
ADIJake 0:85855ecd3257 2362
Vkadaba 5:0728bde67bdb 2363 ADMW_RESULT admw1001_AssembleLutData(
Vkadaba 5:0728bde67bdb 2364 ADMW1001_LUT * pLutBuffer,
ADIJake 0:85855ecd3257 2365 unsigned nLutBufferSize,
ADIJake 0:85855ecd3257 2366 unsigned const nNumTables,
Vkadaba 5:0728bde67bdb 2367 ADMW1001_LUT_DESCRIPTOR * const ppDesc[],
Vkadaba 5:0728bde67bdb 2368 ADMW1001_LUT_TABLE_DATA * const ppData[])
ADIJake 0:85855ecd3257 2369 {
Vkadaba 5:0728bde67bdb 2370 ADMW1001_LUT_HEADER *pHdr = &pLutBuffer->header;
ADIJake 0:85855ecd3257 2371 uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr);
ADIJake 0:85855ecd3257 2372
Vkadaba 23:bb685f35b08b 2373 if (sizeof(*pHdr) > nLutBufferSize) {
Vkadaba 5:0728bde67bdb 2374 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2375 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2376 }
ADIJake 0:85855ecd3257 2377
ADIJake 0:85855ecd3257 2378 /* First initialise the top-level header */
Vkadaba 5:0728bde67bdb 2379 pHdr->signature = ADMW_LUT_SIGNATURE;
ADIJake 0:85855ecd3257 2380 pHdr->version.major = 1;
ADIJake 0:85855ecd3257 2381 pHdr->version.minor = 0;
ADIJake 0:85855ecd3257 2382 pHdr->numTables = 0;
ADIJake 0:85855ecd3257 2383 pHdr->totalLength = 0;
ADIJake 0:85855ecd3257 2384
ADIJake 0:85855ecd3257 2385 /*
ADIJake 0:85855ecd3257 2386 * Walk through the list of table pointers provided, appending the table
ADIJake 0:85855ecd3257 2387 * descriptor+data from each one to the provided LUT buffer
ADIJake 0:85855ecd3257 2388 */
Vkadaba 23:bb685f35b08b 2389 for (unsigned i = 0; i < nNumTables; i++) {
Vkadaba 5:0728bde67bdb 2390 ADMW1001_LUT_DESCRIPTOR * const pDesc = ppDesc[i];
Vkadaba 5:0728bde67bdb 2391 ADMW1001_LUT_TABLE_DATA * const pData = ppData[i];
Vkadaba 5:0728bde67bdb 2392 ADMW_RESULT res;
ADIJake 0:85855ecd3257 2393 unsigned dataLength = 0;
ADIJake 0:85855ecd3257 2394
ADIJake 0:85855ecd3257 2395 /* Calculate the length of the table data */
ADIJake 0:85855ecd3257 2396 res = getLutTableSize(pDesc, pData, &dataLength);
Vkadaba 5:0728bde67bdb 2397 if (res != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 2398 return res;
ADIJake 0:85855ecd3257 2399
ADIJake 0:85855ecd3257 2400 /* Fill in the table descriptor length and CRC fields */
ADIJake 0:85855ecd3257 2401 pDesc->length = dataLength;
Vkadaba 5:0728bde67bdb 2402 pDesc->crc16 = admw_crc16_ccitt(pData, dataLength);
ADIJake 0:85855ecd3257 2403
Vkadaba 23:bb685f35b08b 2404 if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize) {
Vkadaba 5:0728bde67bdb 2405 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2406 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2407 }
ADIJake 0:85855ecd3257 2408
ADIJake 0:85855ecd3257 2409 /* Append the table to the LUT buffer (desc + data) */
ADIJake 0:85855ecd3257 2410 memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc));
ADIJake 0:85855ecd3257 2411 pHdr->totalLength += sizeof(*pDesc);
ADIJake 0:85855ecd3257 2412 memcpy(pLutTableData + pHdr->totalLength, pData, dataLength);
ADIJake 0:85855ecd3257 2413 pHdr->totalLength += dataLength;
ADIJake 0:85855ecd3257 2414
ADIJake 0:85855ecd3257 2415 pHdr->numTables++;
ADIJake 0:85855ecd3257 2416 }
ADIJake 0:85855ecd3257 2417
Vkadaba 5:0728bde67bdb 2418 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2419 }