Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of CyaSSL by
ctaocrypt/src/sha.c
- Committer:
- Vanger
- Date:
- 2015-01-14
- Revision:
- 4:e505054279ed
- Parent:
- 0:1239e9b70ca2
File content as of revision 4:e505054279ed:
/* sha.c * * Copyright (C) 2006-2014 wolfSSL Inc. * * This file is part of CyaSSL. * * CyaSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * CyaSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cyassl/ctaocrypt/settings.h> #if !defined(NO_SHA) #ifdef CYASSL_PIC32MZ_HASH #define InitSha InitSha_sw #define ShaUpdate ShaUpdate_sw #define ShaFinal ShaFinal_sw #endif #ifdef HAVE_FIPS /* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */ #define FIPS_NO_WRAPPERS #endif #include <cyassl/ctaocrypt/sha.h> #ifdef NO_INLINE #include <cyassl/ctaocrypt/misc.h> #else #include <ctaocrypt/src/misc.c> #endif #ifdef FREESCALE_MMCAU #include "cau_api.h" #define XTRANSFORM(S,B) cau_sha1_hash_n((B), 1, ((S))->digest) #else #define XTRANSFORM(S,B) Transform((S)) #endif #ifdef STM32F2_HASH /* * STM32F2 hardware SHA1 support through the STM32F2 standard peripheral * library. Documentation located in STM32F2xx Standard Peripheral Library * document (See note in README). */ #include "stm32f2xx.h" #include "stm32f2xx_hash.h" int InitSha(Sha* sha) { /* STM32F2 struct notes: * sha->buffer = first 4 bytes used to hold partial block if needed * sha->buffLen = num bytes currently stored in sha->buffer * sha->loLen = num bytes that have been written to STM32 FIFO */ XMEMSET(sha->buffer, 0, SHA_REG_SIZE); sha->buffLen = 0; sha->loLen = 0; /* initialize HASH peripheral */ HASH_DeInit(); /* configure algo used, algo mode, datatype */ HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE); HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH | HASH_DataType_8b); /* reset HASH processor */ HASH->CR |= HASH_CR_INIT; return 0; } int ShaUpdate(Sha* sha, const byte* data, word32 len) { word32 i = 0; word32 fill = 0; word32 diff = 0; /* if saved partial block is available */ if (sha->buffLen) { fill = 4 - sha->buffLen; /* if enough data to fill, fill and push to FIFO */ if (fill <= len) { XMEMCPY((byte*)sha->buffer + sha->buffLen, data, fill); HASH_DataIn(*(uint32_t*)sha->buffer); data += fill; len -= fill; sha->loLen += 4; sha->buffLen = 0; } else { /* append partial to existing stored block */ XMEMCPY((byte*)sha->buffer + sha->buffLen, data, len); sha->buffLen += len; return; } } /* write input block in the IN FIFO */ for(i = 0; i < len; i += 4) { diff = len - i; if ( diff < 4) { /* store incomplete last block, not yet in FIFO */ XMEMSET(sha->buffer, 0, SHA_REG_SIZE); XMEMCPY((byte*)sha->buffer, data, diff); sha->buffLen = diff; } else { HASH_DataIn(*(uint32_t*)data); data+=4; } } /* keep track of total data length thus far */ sha->loLen += (len - sha->buffLen); return 0; } int ShaFinal(Sha* sha, byte* hash) { __IO uint16_t nbvalidbitsdata = 0; /* finish reading any trailing bytes into FIFO */ if (sha->buffLen) { HASH_DataIn(*(uint32_t*)sha->buffer); sha->loLen += sha->buffLen; } /* calculate number of valid bits in last word of input data */ nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE); /* configure number of valid bits in last word of the data */ HASH_SetLastWordValidBitsNbr(nbvalidbitsdata); /* start HASH processor */ HASH_StartDigest(); /* wait until Busy flag == RESET */ while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {} /* read message digest */ sha->digest[0] = HASH->HR[0]; sha->digest[1] = HASH->HR[1]; sha->digest[2] = HASH->HR[2]; sha->digest[3] = HASH->HR[3]; sha->digest[4] = HASH->HR[4]; ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE); XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE); return InitSha(sha); /* reset state */ } #else /* CTaoCrypt software implementation */ #ifndef min static INLINE word32 min(word32 a, word32 b) { return a > b ? b : a; } #endif /* min */ int InitSha(Sha* sha) { #ifdef FREESCALE_MMCAU cau_sha1_initialize_output(sha->digest); #else sha->digest[0] = 0x67452301L; sha->digest[1] = 0xEFCDAB89L; sha->digest[2] = 0x98BADCFEL; sha->digest[3] = 0x10325476L; sha->digest[4] = 0xC3D2E1F0L; #endif sha->buffLen = 0; sha->loLen = 0; sha->hiLen = 0; return 0; } #ifndef FREESCALE_MMCAU #define blk0(i) (W[i] = sha->buffer[i]) #define blk1(i) (W[i&15] = \ rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1)) #define f1(x,y,z) (z^(x &(y^z))) #define f2(x,y,z) (x^y^z) #define f3(x,y,z) ((x&y)|(z&(x|y))) #define f4(x,y,z) (x^y^z) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+= f1(w,x,y) + blk0(i) + 0x5A827999+ \ rotlFixed(v,5); w = rotlFixed(w,30); #define R1(v,w,x,y,z,i) z+= f1(w,x,y) + blk1(i) + 0x5A827999+ \ rotlFixed(v,5); w = rotlFixed(w,30); #define R2(v,w,x,y,z,i) z+= f2(w,x,y) + blk1(i) + 0x6ED9EBA1+ \ rotlFixed(v,5); w = rotlFixed(w,30); #define R3(v,w,x,y,z,i) z+= f3(w,x,y) + blk1(i) + 0x8F1BBCDC+ \ rotlFixed(v,5); w = rotlFixed(w,30); #define R4(v,w,x,y,z,i) z+= f4(w,x,y) + blk1(i) + 0xCA62C1D6+ \ rotlFixed(v,5); w = rotlFixed(w,30); static void Transform(Sha* sha) { word32 W[SHA_BLOCK_SIZE / sizeof(word32)]; /* Copy context->state[] to working vars */ word32 a = sha->digest[0]; word32 b = sha->digest[1]; word32 c = sha->digest[2]; word32 d = sha->digest[3]; word32 e = sha->digest[4]; #ifdef USE_SLOW_SHA word32 t, i; for (i = 0; i < 16; i++) { R0(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 20; i++) { R1(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 40; i++) { R2(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 60; i++) { R3(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 80; i++) { R4(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } #else /* nearly 1 K bigger in code size but 25% faster */ /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); #endif /* Add the working vars back into digest state[] */ sha->digest[0] += a; sha->digest[1] += b; sha->digest[2] += c; sha->digest[3] += d; sha->digest[4] += e; } #endif /* FREESCALE_MMCAU */ static INLINE void AddLength(Sha* sha, word32 len) { word32 tmp = sha->loLen; if ( (sha->loLen += len) < tmp) sha->hiLen++; /* carry low to high */ } int ShaUpdate(Sha* sha, const byte* data, word32 len) { /* do block size increments */ byte* local = (byte*)sha->buffer; while (len) { word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen); XMEMCPY(&local[sha->buffLen], data, add); sha->buffLen += add; data += add; len -= add; if (sha->buffLen == SHA_BLOCK_SIZE) { #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU) ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE); #endif XTRANSFORM(sha, local); AddLength(sha, SHA_BLOCK_SIZE); sha->buffLen = 0; } } return 0; } int ShaFinal(Sha* sha, byte* hash) { byte* local = (byte*)sha->buffer; AddLength(sha, sha->buffLen); /* before adding pads */ local[sha->buffLen++] = 0x80; /* add 1 */ /* pad with zeros */ if (sha->buffLen > SHA_PAD_SIZE) { XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen); sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen; #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU) ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE); #endif XTRANSFORM(sha, local); sha->buffLen = 0; } XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen); /* put lengths in bits */ sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + (sha->hiLen << 3); sha->loLen = sha->loLen << 3; /* store lengths */ #if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU) ByteReverseWords(sha->buffer, sha->buffer, SHA_BLOCK_SIZE); #endif /* ! length ordering dependent on digest endian type ! */ XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32)); XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32)); #ifdef FREESCALE_MMCAU /* Kinetis requires only these bytes reversed */ ByteReverseWords(&sha->buffer[SHA_PAD_SIZE/sizeof(word32)], &sha->buffer[SHA_PAD_SIZE/sizeof(word32)], 2 * sizeof(word32)); #endif XTRANSFORM(sha, local); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE); #endif XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE); return InitSha(sha); /* reset state */ } #endif /* STM32F2_HASH */ #endif /* NO_SHA */