Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/TARGET_Maxim/TARGET_MAX32625/mxc/i2cm.c
- Committer:
- <>
- Date:
- 2016-11-08
- Revision:
- 150:02e0a0aed4ec
File content as of revision 150:02e0a0aed4ec:
/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*
* $Date: 2016-06-01 08:51:23 -0500 (Wed, 01 Jun 2016) $
* $Revision: 23131 $
*
******************************************************************************/
/**
* @file i2cm.c
* @brief I2C Master driver source.
*/
/***** Includes *****/
#include <string.h>
#include <math.h>
#include "mxc_assert.h"
#include "mxc_lock.h"
#include "mxc_errors.h"
#include "mxc_sys.h"
#include "i2cm.h"
/***** Definitions *****/
#ifndef MXC_I2CM_TX_TIMEOUT
#define MXC_I2CM_TX_TIMEOUT 0x5000
#endif
#ifndef MXC_I2CM_RX_TIMEOUT
#define MXC_I2CM_RX_TIMEOUT 0x5000
#endif
#define I2CM_READ_BIT 0x0001
#define I2CM_FIFO_DEPTH_3Q ((3 * MXC_I2CM_FIFO_DEPTH) / 4)
#define I2CM_FIFO_DEPTH_2Q (MXC_I2CM_FIFO_DEPTH / 2)
/***** Globals *****/
// Saves the state of the non-blocking requests
typedef enum {
I2CM_STATE_READING = 0,
I2CM_STATE_WRITING = 1
} i2cm_state_t;
typedef struct {
i2cm_req_t *req;
i2cm_state_t state;
} i2cm_req_state_t;
static i2cm_req_state_t states[MXC_CFG_I2CM_INSTANCES];
/***** Functions *****/
//static void I2CM_Recover(mxc_i2cm_regs_t *i2cm);
//static int I2CM_WriteTxFifo(mxc_i2cm_regs_t *regs, mxc_i2cm_fifo_regs_t *fifo, const uint16_t data);
//static int I2CM_TxInProgress(mxc_i2cm_regs_t *i2cm);
static void I2CM_FreeCallback(int i2cm_num, int error);
//static int I2CM_Tx(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, uint8_t addr,
// const uint8_t *data, uint32_t len, uint8_t stop);
//static int I2CM_Rx(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, uint8_t addr,
// uint8_t *data, uint32_t len);
static int I2CM_CmdHandler(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, i2cm_req_t *req);
static int I2CM_ReadHandler(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req, int i2cm_num);
static int I2CM_WriteHandler(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req, int i2cm_num);
/******************************************************************************/
int I2CM_Init(mxc_i2cm_regs_t *i2cm, const sys_cfg_i2cm_t *sys_cfg, i2cm_speed_t speed)
{
int err;
// Check the base pointer
MXC_ASSERT(MXC_I2CM_GET_IDX(i2cm) >= 0);
// Set system level configurations
if ((err = SYS_I2CM_Init(i2cm, sys_cfg)) != E_NO_ERROR) {
return err;
}
I2CM_SetFrequency(i2cm,speed);
// Reset module
i2cm->ctrl = MXC_F_I2CM_CTRL_MSTR_RESET_EN;
i2cm->ctrl = 0;
// Set timeout to 255 ms and turn on the auto-stop option
i2cm->timeout = (MXC_F_I2CM_TIMEOUT_TX_TIMEOUT | MXC_F_I2CM_TIMEOUT_AUTO_STOP_EN);
// Enable tx_fifo and rx_fifo
i2cm->ctrl |= (MXC_F_I2CM_CTRL_TX_FIFO_EN | MXC_F_I2CM_CTRL_RX_FIFO_EN);
return E_NO_ERROR;
}
/******************************************************************************/
int I2CM_Shutdown(mxc_i2cm_regs_t *i2cm)
{
int i2cm_num, err;
// Check the base pointer
i2cm_num = MXC_I2CM_GET_IDX(i2cm);
MXC_ASSERT(i2cm_num >= 0);
// Disable and clear interrupts
i2cm->inten = 0;
i2cm->intfl = i2cm->intfl;
// Call all of the pending callbacks for this I2CM
if(states[i2cm_num].req != NULL) {
I2CM_Recover(i2cm);
I2CM_FreeCallback(i2cm_num, E_SHUTDOWN);
}
// Clears system level configurations
if ((err = SYS_I2CM_Shutdown(i2cm)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/******************************************************************************/
int I2CM_Read(mxc_i2cm_regs_t *i2cm, uint8_t addr, const uint8_t *cmd_data,
uint32_t cmd_len, uint8_t* data, uint32_t len)
{
int i2cm_num;
int error = E_NO_ERROR;
int retval = E_NO_ERROR;
mxc_i2cm_fifo_regs_t *fifo;
if(data == NULL) {
return E_NULL_PTR;
}
// Make sure the I2CM has been initialized
if(i2cm->ctrl == 0) {
return E_UNINITIALIZED;
}
if(!(len > 0)) {
return E_NO_ERROR;
}
// Lock this I2CM
i2cm_num = MXC_I2CM_GET_IDX(i2cm);
while(mxc_get_lock((uint32_t*)&states[i2cm_num].req,1) != E_NO_ERROR) {}
// Get the FIFO pointer for this I2CM
fifo = MXC_I2CM_GET_FIFO(i2cm_num);
// Disable and clear the interrupts
i2cm->inten = 0;
i2cm->intfl = i2cm->intfl;
// Transmit the command if there is command data and length
if((cmd_data != NULL) && (cmd_len > 0)) {
retval = I2CM_Tx(i2cm, fifo, addr, cmd_data, cmd_len, 0);
}
// Read data from the slave if we don't have any errors
if(retval == E_NO_ERROR) {
retval = I2CM_Rx(i2cm, fifo, addr, data, len);
}
// Wait for the transaction to complete
if((error = I2CM_TxInProgress(i2cm)) != E_NO_ERROR) {
retval = error;
}
// Unlock this I2CM
mxc_free_lock((uint32_t*)&states[i2cm_num].req);
if(retval != E_NO_ERROR) {
return retval;
}
return len;
}
/******************************************************************************/
int I2CM_Write(mxc_i2cm_regs_t *i2cm, uint8_t addr, const uint8_t *cmd_data,
uint32_t cmd_len, uint8_t* data, uint32_t len)
{
int i2cm_num;
int error = E_NO_ERROR;
int retval = E_NO_ERROR;
mxc_i2cm_fifo_regs_t *fifo;
if(data == NULL) {
return E_NULL_PTR;
}
// Make sure the I2CM has been initialized
if(i2cm->ctrl == 0) {
return E_UNINITIALIZED;
}
if(!(len > 0)) {
return E_NO_ERROR;
}
// Lock this I2CM
i2cm_num = MXC_I2CM_GET_IDX(i2cm);
while(mxc_get_lock((uint32_t*)&states[i2cm_num].req,1) != E_NO_ERROR) {}
// Get the FIFO pointer for this I2CM
fifo = MXC_I2CM_GET_FIFO(i2cm_num);
// Disable and clear the interrupts
i2cm->inten = 0;
i2cm->intfl = i2cm->intfl;
// Transmit the command if there is command data and length, don't send stop bit
if((cmd_data != NULL) && (cmd_len > 0)) {
retval = I2CM_Tx(i2cm, fifo, addr, cmd_data, cmd_len, 0);
}
// Write data to the slave, send the stop bit
if(retval == E_NO_ERROR) {
retval = I2CM_Tx(i2cm, fifo, addr, data, len, 1);
}
// Wait for the transaction to complete
if((error = I2CM_TxInProgress(i2cm)) != E_NO_ERROR) {
retval = error;
}
// Unlock this I2CM
mxc_free_lock((uint32_t*)&states[i2cm_num].req);
if(retval != E_NO_ERROR) {
return retval;
}
return len;
}
/******************************************************************************/
int I2CM_ReadAsync(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req)
{
int i2cm_num, error;
if(req->data == NULL) {
return E_NULL_PTR;
}
// Make sure the I2CM has been initialized
if(i2cm->ctrl == 0) {
return E_UNINITIALIZED;
}
if(!(req->data_len > 0)) {
return E_NO_ERROR;
}
i2cm_num = MXC_I2CM_GET_IDX(i2cm);
// Attempt to register this request
if(mxc_get_lock((uint32_t*)&states[i2cm_num].req, (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
states[i2cm_num].state = I2CM_STATE_READING;
// Clear the number of bytes counter
req->cmd_num = 0;
req->data_num = 0;
// Disable and clear the interrupts
i2cm->inten = 0;
i2cm->intfl = i2cm->intfl;
// Start the read
if((error = I2CM_ReadHandler(i2cm, req, i2cm_num)) != E_NO_ERROR) {
I2CM_Recover(i2cm);
I2CM_FreeCallback(i2cm_num, error);
return error;
}
return E_NO_ERROR;
}
/******************************************************************************/
int I2CM_WriteAsync(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req)
{
int i2cm_num, error;
if(req->data == NULL) {
return E_NULL_PTR;
}
// Make sure the I2CM has been initialized
if(i2cm->ctrl == 0) {
return E_UNINITIALIZED;
}
if(!(req->data_len > 0)) {
return E_NO_ERROR;
}
i2cm_num = MXC_I2CM_GET_IDX(i2cm);
// Attempt to register this request
if(mxc_get_lock((uint32_t*)&states[i2cm_num].req, (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
states[i2cm_num].state = I2CM_STATE_WRITING;
// Clear the number of bytes counter
req->cmd_num = 0;
req->data_num = 0;
// Disable and clear the interrupts
i2cm->inten = 0;
i2cm->intfl = i2cm->intfl;
// Start the Write
if((error = I2CM_WriteHandler(i2cm, req, i2cm_num)) != E_NO_ERROR) {
I2CM_Recover(i2cm);
I2CM_FreeCallback(i2cm_num, error);
return error;
}
return E_NO_ERROR;
}
/******************************************************************************/
int I2CM_AbortAsync(i2cm_req_t *req)
{
int i2cm_num;
mxc_i2cm_regs_t *i2cm;
// Find the request, set to NULL
for(i2cm_num = 0; i2cm_num < MXC_CFG_I2CM_INSTANCES; i2cm_num++) {
if(req == states[i2cm_num].req) {
i2cm = MXC_I2CM_GET_I2CM(i2cm_num);
I2CM_Recover(i2cm);
I2CM_FreeCallback(i2cm_num, E_ABORT);
return E_NO_ERROR;
}
}
return E_BAD_PARAM;
}
/******************************************************************************/
void I2CM_Handler(mxc_i2cm_regs_t *i2cm)
{
uint32_t intfl;
int i2cm_num, error;
// Save and clear the interrupts
intfl = i2cm->intfl;
i2cm->intfl = intfl;
// Mask the disabled interrupts
intfl &= i2cm->inten;
i2cm_num = MXC_I2CM_GET_IDX(i2cm);
// Check for errors
if ((intfl & MXC_F_I2CM_INTFL_TX_NACKED) || (intfl & MXC_F_I2CM_INTFL_TX_LOST_ARBITR)) {
I2CM_Recover(i2cm);
I2CM_FreeCallback(i2cm_num, E_COMM_ERR);
return;
}
if(intfl & MXC_F_I2CM_INTFL_TX_TIMEOUT) {
I2CM_Recover(i2cm);
I2CM_FreeCallback(i2cm_num, E_TIME_OUT);
return;
}
// Read or write
if(states[i2cm_num].state == I2CM_STATE_READING) {
if((error = I2CM_ReadHandler(i2cm, states[i2cm_num].req, i2cm_num)) != E_NO_ERROR) {
I2CM_Recover(i2cm);
I2CM_FreeCallback(i2cm_num, error);
return;
}
} else if(states[i2cm_num].state == I2CM_STATE_WRITING) {
if((error = I2CM_WriteHandler(i2cm, states[i2cm_num].req, i2cm_num)) != E_NO_ERROR) {
I2CM_Recover(i2cm);
I2CM_FreeCallback(i2cm_num, error);
return;
}
}
// Done with the transaction
if(intfl & MXC_F_I2CM_INTFL_TX_DONE) {
I2CM_Recover(i2cm);
I2CM_FreeCallback(i2cm_num, E_NO_ERROR);
}
}
/******************************************************************************/
int I2CM_Busy(mxc_i2cm_regs_t *i2cm)
{
// Check to see if there are any ongoing transactions
if((states[MXC_I2CM_GET_IDX(i2cm)].req == NULL) &&
!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) {
return E_NO_ERROR;
}
return E_BUSY;
}
/******************************************************************************/
int I2CM_PrepForSleep(mxc_i2cm_regs_t *i2cm)
{
if(I2CM_Busy(i2cm) != E_NO_ERROR) {
return E_BUSY;
}
// Disable interrupts
i2cm->inten = 0;
return E_NO_ERROR;
}
/******************************************************************************/
int I2CM_BusCheck(mxc_i2cm_regs_t *i2cm)
{
// If SCL is low, we don't have the bus
if(!(i2cm->bb & MXC_F_I2CM_BB_BB_SCL_IN_VAL)) {
return E_BUSY;
}
// If SDA is low, we don't have the bus
if(!(i2cm->bb & MXC_F_I2CM_BB_BB_SDA_IN_VAL)) {
return E_BUSY;
}
return E_NO_ERROR;
}
/******************************************************************************/
static void I2CM_FreeCallback(int i2cm_num, int error)
{
// Save the request
i2cm_req_t *temp_req = states[i2cm_num].req;
// Unlock this UART to write
mxc_free_lock((uint32_t*)&states[i2cm_num].req);
// Callback if not NULL
if(temp_req->callback != NULL) {
temp_req->callback(temp_req, error);
}
}
/******************************************************************************/
void I2CM_Recover(mxc_i2cm_regs_t *i2cm)
{
// Disable and clear interrupts
i2cm->inten = 0;
i2cm->intfl = i2cm->intfl;
i2cm->ctrl = MXC_F_I2CM_CTRL_MSTR_RESET_EN;
i2cm->ctrl = MXC_F_I2CM_CTRL_TX_FIFO_EN | MXC_F_I2CM_CTRL_RX_FIFO_EN;
}
/******************************************************************************/
int I2CM_WriteTxFifo(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, const uint16_t data)
{
int32_t timeout = MXC_I2CM_TX_TIMEOUT;
// Read the TX FIFO to determine if it's full
do {
// Wait for the TX FIFO to have room and check for errors
if (i2cm->intfl & (MXC_F_I2CM_INTFL_TX_NACKED |
MXC_F_I2CM_INTFL_TX_LOST_ARBITR)) {
return E_COMM_ERR;
}
if((i2cm->intfl & MXC_F_I2CM_INTFL_TX_TIMEOUT) || !timeout--) {
return E_TIME_OUT;
}
} while (fifo->tx);
fifo->tx = data;
return E_NO_ERROR;
}
/******************************************************************************/
int I2CM_TxInProgress(mxc_i2cm_regs_t *i2cm)
{
int32_t timeout = MXC_I2CM_TX_TIMEOUT;
while ((i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS) && --timeout);
if (i2cm->intfl & (MXC_F_I2CM_INTFL_TX_NACKED |
MXC_F_I2CM_INTFL_TX_LOST_ARBITR)) {
I2CM_Recover(i2cm);
return E_COMM_ERR;
}
if((i2cm->intfl & MXC_F_I2CM_INTFL_TX_TIMEOUT) && !timeout--) {
I2CM_Recover(i2cm);
return E_TIME_OUT;
}
return E_NO_ERROR;
}
/******************************************************************************/
int I2CM_Tx(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, uint8_t addr,
const uint8_t *data, uint32_t len, uint8_t stop)
{
uint32_t i;
int error;
// Write the address to the TXFIFO
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_START | (addr << 1)))) != E_NO_ERROR) {
return error;
}
// Start the transaction if it is not currently ongoing
if (!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) {
i2cm->trans |= MXC_F_I2CM_TRANS_TX_START;
}
// Fill the FIFO
for (i = 0; i < len; i++) {
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_TXDATA_ACK | data[i]))) != E_NO_ERROR) {
return error;
}
}
// Send the stop condition
if(stop) {
if ((error = I2CM_WriteTxFifo(i2cm, fifo, MXC_S_I2CM_TRANS_TAG_STOP)) != E_NO_ERROR) {
return error;
}
}
return E_NO_ERROR;
}
/******************************************************************************/
int I2CM_Rx(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, uint8_t addr,
uint8_t *data, uint32_t len)
{
uint32_t i = len;
int32_t timeout;
uint16_t temp;
int error;
// Write the address to the TXFIFO
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_START |
(addr << 1) | I2CM_READ_BIT))) != E_NO_ERROR) {
return error;
}
// Write to the TXFIFO the number of bytes we want to read
while(i > 256) {
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_COUNT | 255))) != E_NO_ERROR) {
return error;
}
i -= 256;
}
if(i > 1) {
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_COUNT | (i-2)))) != E_NO_ERROR) {
return error;
}
}
// Start the transaction if it is not currently ongoing
if (!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) {
i2cm->trans |= MXC_F_I2CM_TRANS_TX_START;
}
// NACK the last read byte
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_NACK))) != E_NO_ERROR) {
return error;
}
// Send the stop condition
if ((error = I2CM_WriteTxFifo(i2cm, fifo, MXC_S_I2CM_TRANS_TAG_STOP)) != E_NO_ERROR) {
return error;
}
// Get the data from the RX FIFO
i = 0;
while (i < len) {
// Wait for there to be data in the RX FIFO
timeout = MXC_I2CM_RX_TIMEOUT;
while (!(i2cm->intfl & MXC_F_I2CM_INTFL_RX_FIFO_NOT_EMPTY) &&
((i2cm->bb & MXC_F_I2CM_BB_RX_FIFO_CNT) == 0)) {
if((timeout-- < 0) || (i2cm->trans & MXC_F_I2CM_TRANS_TX_TIMEOUT)) {
return E_TIME_OUT;
}
if (i2cm->trans & (MXC_F_I2CM_TRANS_TX_LOST_ARBITR | MXC_F_I2CM_TRANS_TX_NACKED)) {
return E_COMM_ERR;
}
}
i2cm->intfl = MXC_F_I2CM_INTFL_RX_FIFO_NOT_EMPTY;
// Save the data from the RX FIFO
temp = fifo->rx;
if (temp & MXC_S_I2CM_RSTLS_TAG_EMPTY) {
continue;
}
data[i++] = (uint8_t)temp;
}
return E_NO_ERROR;
}
/******************************************************************************/
static int I2CM_CmdHandler(mxc_i2cm_regs_t *i2cm, mxc_i2cm_fifo_regs_t *fifo, i2cm_req_t *req)
{
int error;
// Start of the command
if(req->cmd_num == 0) {
// Write the address to the TXFIFO
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_START | (req->addr << 1)))) != E_NO_ERROR) {
return error;
}
// Start the transaction if it is not currently ongoing
if (!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) {
i2cm->trans |= MXC_F_I2CM_TRANS_TX_START;
}
}
// Write to the FIFO until it is full or we run out of command bytes
while((req->cmd_num < req->cmd_len) && (!fifo->tx)) {
fifo->tx = MXC_S_I2CM_TRANS_TAG_TXDATA_ACK | req->cmd_data[req->cmd_num++];
}
return E_NO_ERROR;
}
/******************************************************************************/
static int I2CM_ReadHandler(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req, int i2cm_num)
{
int error, cmd_remain, data_remain;
uint16_t data;
uint32_t temp_len, inten;
mxc_i2cm_fifo_regs_t *fifo;
// Get the FIFO pointer for this I2CM
fifo = MXC_I2CM_GET_FIFO(i2cm_num);
cmd_remain = req->cmd_len - req->cmd_num;
data_remain = req->data_len - req->data_num;
// Process the command portion
if((cmd_remain) && (req->cmd_data != NULL)) {
if((error = I2CM_CmdHandler(i2cm, fifo, req)) != E_NO_ERROR) {
return error;
}
cmd_remain = req->cmd_len - req->cmd_num;
}
// Process the data portion
if((cmd_remain == 0) && (data_remain)) {
// Save the data from the RXFIFO
data = fifo->rx;
while((req->data_num < req->data_len) && !(data & MXC_S_I2CM_RSTLS_TAG_EMPTY)) {
req->data[req->data_num++] = data;
data = fifo->rx;
}
// Start of the data portion
if(req->data_num == 0) {
temp_len = req->data_len;
// Write the address to the TXFIFO
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_START |
(req->addr << 1) | I2CM_READ_BIT))) != E_NO_ERROR) {
return error;
}
// Write to the TXFIFO the number of bytes we want to read
while(temp_len > 256) {
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_COUNT | 255))) != E_NO_ERROR) {
return error;
}
temp_len -= 256;
}
if(temp_len > 1) {
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_COUNT | (temp_len-2)))) != E_NO_ERROR) {
return error;
}
}
// Start the transaction if it is not currently ongoing
if (!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) {
i2cm->trans |= MXC_F_I2CM_TRANS_TX_START;
}
// NACK the last read byte
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_RXDATA_NACK))) != E_NO_ERROR) {
return error;
}
// Send the stop condition
if ((error = I2CM_WriteTxFifo(i2cm, fifo, MXC_S_I2CM_TRANS_TAG_STOP)) != E_NO_ERROR) {
return error;
}
}
}
// Enable the required interrupts
inten = MXC_F_I2CM_INTEN_TX_DONE | MXC_F_I2CM_INTEN_TX_NACKED |
MXC_F_I2CM_INTEN_TX_LOST_ARBITR | MXC_F_I2CM_INTEN_TX_TIMEOUT;
if (cmd_remain) {
inten |= (MXC_F_I2CM_INTEN_TX_FIFO_EMPTY | MXC_F_I2CM_INTEN_TX_FIFO_3Q_EMPTY);
}
data_remain = req->data_len - req->data_num;
if (data_remain > I2CM_FIFO_DEPTH_3Q) {
inten |= MXC_F_I2CM_INTEN_RX_FIFO_3Q_FULL;
} else if (data_remain > I2CM_FIFO_DEPTH_2Q) {
inten |= MXC_F_I2CM_INTEN_RX_FIFO_2Q_FULL;
} else if (data_remain > 0) {
inten |= MXC_F_I2CM_INTEN_RX_FIFO_NOT_EMPTY;
}
i2cm->inten = inten;
return E_NO_ERROR;
}
/******************************************************************************/
static int I2CM_WriteHandler(mxc_i2cm_regs_t *i2cm, i2cm_req_t *req, int i2cm_num)
{
int error, cmd_remain, data_remain;
uint32_t inten;
mxc_i2cm_fifo_regs_t *fifo;
// Get the FIFO pointer for this I2CM
fifo = MXC_I2CM_GET_FIFO(i2cm_num);
cmd_remain = req->cmd_len - req->cmd_num;
data_remain = req->data_len - req->data_num;
// Process the command portion
if((cmd_remain) && (req->cmd_data != NULL)) {
if((error = I2CM_CmdHandler(i2cm, fifo, req)) != E_NO_ERROR) {
return error;
}
cmd_remain = req->cmd_len - req->cmd_num;
}
// Process the data portion
if((cmd_remain == 0) && (data_remain)) {
// Start of the data portion
if(req->data_num == 0) {
// Write the address to the TXFIFO
if((error = I2CM_WriteTxFifo(i2cm, fifo, (MXC_S_I2CM_TRANS_TAG_START |
(req->addr << 1)))) != E_NO_ERROR) {
return error;
}
// Start the transaction if it is not currently ongoing
if (!(i2cm->trans & MXC_F_I2CM_TRANS_TX_IN_PROGRESS)) {
i2cm->trans |= MXC_F_I2CM_TRANS_TX_START;
}
}
// Write bytes to the FIFO until it's full or we run out of bytes
while(req->data_num < req->data_len) {
fifo->tx = MXC_S_I2CM_TRANS_TAG_TXDATA_ACK | req->data[req->data_num++];
}
// Send the stop condition
if ((error = I2CM_WriteTxFifo(i2cm, fifo, MXC_S_I2CM_TRANS_TAG_STOP)) != E_NO_ERROR) {
return error;
}
}
// Enable the required interrupts
data_remain = req->data_len - req->data_num;
inten = MXC_F_I2CM_INTEN_TX_DONE | MXC_F_I2CM_INTEN_TX_NACKED |
MXC_F_I2CM_INTEN_TX_LOST_ARBITR | MXC_F_I2CM_INTEN_TX_TIMEOUT;
if(data_remain || cmd_remain) {
inten |= (MXC_F_I2CM_INTEN_TX_FIFO_EMPTY | MXC_F_I2CM_INTEN_TX_FIFO_3Q_EMPTY);
}
i2cm->inten = inten;
return E_NO_ERROR;
}
int I2CM_SetFrequency(mxc_i2cm_regs_t *i2cm, int speed)
{
// Speed converted into Khz
float i2cSpeed = speed / 1000.0f;
//get clk speed into MHz
int sClk = SYS_I2CM_GetFreq(i2cm) / 1000000;
// duty cycle of .67
float dc = 2.0f / 3.0f;
//Hold Time
float hold = (100.0f / i2cSpeed);
int riseTime;
//max rise time based on speed according to the I2C specs
if (i2cSpeed <= 100) {
riseTime = 1000;
} else if (i2cSpeed <= 400) {
riseTime = 300;
} else if (i2cSpeed <= 1000) {
riseTime = 120;
} else {
return E_NOT_SUPPORTED;
}
// Clock cycles to delay
int latency = 4;
int filtDev, sclHi, sclLow;
filtDev = (hold * sClk) / 2;
sclHi = (((dc * sClk * 1000.0f / i2cSpeed) - (((2.5f * filtDev) + (riseTime / 1000.0f * sClk) + latency) * (1.0f + dc))) / (1.0f + dc));
sclLow = ((sClk * 1000.0f / i2cSpeed) - (2.5f * filtDev) - (riseTime / 1000.0f * sClk) - latency - sclHi);
i2cm->fs_clk_div = ((filtDev << MXC_F_I2CM_FS_CLK_DIV_FS_FILTER_CLK_DIV_POS) |
(sclHi << MXC_F_I2CM_FS_CLK_DIV_FS_SCL_HI_CNT_POS) |
(sclLow << MXC_F_I2CM_FS_CLK_DIV_FS_SCL_LO_CNT_POS));
return E_NO_ERROR;
}
